
Citation: Mamman, H.; Balogun,

A.O.; Basri, S.; Capretz, L.F.;

Adeyemo, V.E.; Imam, A.A.; Kumar,

G. Software Requirement Risk

Prediction Using Enhanced Fuzzy

Induction Models. Electronics 2023,

12, 3805. https://doi.org/10.3390/

electronics12183805

Academic Editor: Juan M. Corchado

Received: 30 June 2023

Revised: 22 August 2023

Accepted: 6 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Software Requirement Risk Prediction Using Enhanced Fuzzy
Induction Models
Hussaini Mamman 1,2 , Abdullateef Oluwagbemiga Balogun 1,* , Shuib Basri 1, Luiz Fernando Capretz 3,4 ,
Victor Elijah Adeyemo 5 , Abdullahi Abubakar Imam 6 and Ganesh Kumar 1

1 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS,
Seri Iskandar 32610, Malaysia; hussaini_21000736@utp.edu.my (H.M.); shuib_basri@utp.edu.my (S.B.);
ganesh_17005106@utp.edu.my (G.K.)

2 Department of Management and Information Technology, Abubakar Tafawa Balewa University,
Bauchi 740272, Nigeria

3 Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada;
lcapretz@uwo.ca

4 Division of Science, Yale-NUS College, Singapore 138533, Singapore
5 School of Built Environment, Engineering, and Computing, Leeds Beckett University, Headingley Campus,

Leeds LS6 3QS, UK; v.adeyemo5225@student.leedsbeckett.ac.uk
6 School of Digital Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;

abdullahi.imam@ubd.edu.bn
* Correspondence: abdullateef.ob@utp.edu.my

Abstract: The development of most modern software systems is accompanied by a significant level
of uncertainty, which can be attributed to the unanticipated activities that may occur throughout the
software development process. As these modern software systems become more complex and drawn
out, escalating software project failure rates have become a critical concern. These unforeseeable
uncertainties are known as software risks, and they emerge from many risk factors inherent to the
numerous activities comprising the software development lifecycle (SDLC). Consequently, these
software risks have resulted in massive revenue losses for software organizations. Hence, it is
imperative to address these software risks, to curb future software system failures. The subjective risk
assessment (SRM) method is regarded as a viable solution to software risk problems. However, it is
inherently reliant on humans and, therefore, in certain situations, imprecise, due to its dependence on
an expert’s knowledge and experience. In addition, the SRM does not allow repeatability, as expertise
is not easily exchanged across the different units working on a software project. Developing intelligent
modelling methods that may offer more unbiased, reproducible, and explainable decision-making
assistance in risk management is crucial. Hence, this research proposes enhanced fuzzy induction
models for software requirement risk prediction. Specifically, the fuzzy unordered rule induction
algorithm (FURIA), and its enhanced variants based on nested subset selection dichotomies, are
developed for software requirement risk prediction. The suggested fuzzy induction models are based
on the use of effective rule-stretching methods for the prediction process. Additionally, the proposed
FURIA method is enhanced through the introduction of nested subset selection dichotomy concepts
into its prediction process. The prediction performances of the proposed models are evaluated
using a benchmark dataset, and are then compared with existing machine learning (ML)-based and
rule-based software risk prediction models. From the experimental results, it was observed that the
FURIA performed comparably, in most cases, to the rule-based and ML-based models. However, the
FURIA nested dichotomy variants were superior in performance to the conventional FURIA method,
and rule-based and ML-based methods, with the least accuracy, area under the curve (AUC), and
Mathew’s correlation coefficient (MCC), with values of approximately 98%.

Keywords: software requirement; software risk prediction; fuzzy induction model; nested dichotomy

Electronics 2023, 12, 3805. https://doi.org/10.3390/electronics12183805 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183805
https://doi.org/10.3390/electronics12183805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-0404-3125
https://orcid.org/0000-0001-7411-3639
https://orcid.org/0000-0001-6966-2369
https://orcid.org/0000-0002-8398-3609
https://orcid.org/0000-0003-2076-1109
https://orcid.org/0000-0002-0098-0948
https://doi.org/10.3390/electronics12183805
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183805?type=check_update&version=1

Electronics 2023, 12, 3805 2 of 19

1. Introduction

The development of most software systems is associated with a high probability of
uncertainty, and these uncertainties are ascribed to the unpredictable activities that may
happen during the software development process. Increasing software project failure rates
are now regarded as a pressing issue because modern software systems are now more
complicated and interconnected [1,2]. These unpredictable uncertainties are known as
software risks, and they result from multiple risk variables inherent to the many activities
of the software development lifecycle (SDLC) [3,4]. Notably, these software risks have
resulted in huge financial losses and effort wastage for software companies. Consequently,
these software risks should be addressed as soon as possible, so that they do not become
the reason for software system failures [5,6].

According to Standish Group research, 31.1% of software projects fail before successful
delivery, and only 16.2% of software projects are finished on schedule and within budget.
In global enterprises, the situation is much more dire: barely 9% of software projects are
completed on schedule and within budget. Furthermore, often, finalized software projects
do not cover all the originally specified requirements. Furthermore, approximately 42%
of the elicited functional requirements of software projects are finalized by US-based tech
corporations. Therefore, one feasible approach to software risk problems is to conduct risk
assessment processes [1,7].

Risk assessment is the methodical process of assessing the possible risks associated
with a proposed activity in the SDLC [8]. This assessment can be conducted either as a
proactive or a reactive method. The reactive method is not a mature risk assessment ap-
proach, because it usually extends the scheduled project timeline, and uses more resources
while lowering the quality and reliability of the software. On the other hand, the proactive
assessment method, which is based on the use of machine learning (ML), aims to reduce
the chances of software project failure [9]. Software risk prediction is useful at every phase
of SDLC and, particularly, at the requirement elicitation phase, as it improves the software
development process [1].

Subjective assessment or expert opinion is one of the techniques often employed in
project risk management today [10,11]. However, because it relies on an expert’s knowl-
edge, subjective assessment is vulnerable to human error, and insights may be vague or
ambiguous [12]. Furthermore, it does not allow repeatability, as expertise is not easily ex-
changed across the various units working on a software project [13]. As a result, it is critical
that we develop intelligent modelling methods that offer more unbiased, reproducible, and
explainable decision-making assistance in risk management [1,3].

The modelling of software risk prediction has been presented as consisting of four
components, which are risk identification, risk analysis, risk prioritization, and risk mea-
surement (dataset) [1]. Risk identification is the initial phase of the Software Risk Prediction
Model, during which the Risk Manager or Project Manager identifies possible threats that
have the potential to impact the project’s duration, assets, or costs. A hazard is an adverse
occurrence that, if it transpires, poses a disadvantage to the effective culmination of the
project. The process is executed via a “checklist”. The criteria described in the Software
Requirements Specification (SRS) have been systematically evaluated and identified as
potential risk concerns. These requirements have been marked as checked, to facilitate
further analysis. The checklist is, thereafter, advanced to the subsequent stage [9]. Risk
analysis involves the identification of potential risks, which are subsequently transformed
into valuable information for decision-making. Risk analysis is utilized to evaluate the
likelihood and impact of every threat. This process involves transforming the risks that
are discovered into decision-making information [9]. Subsequently, each risk is assessed,
and a determination is reached on both the likelihood and the severity of the risk. The risk
dataset has an attribute called the “Risk Level”, which serves the purpose of categorizing
requirements into five distinct risk categories [1]. Risk prioritization is the final stage of the
framework, in which the analyzed risks are assigned priority based on their significance.
The criteria with a significant degree of risk are moved to the front of the list, while the

Electronics 2023, 12, 3805 3 of 19

requirements with a low degree of risk are placed at the bottom. The software requirement
risk dataset comprises a collection of data. Risk measures for software requirements can be
found in the datasets available on Zenodo [2].

Several techniques have been proposed and developed for predicting software risks
in the SDLC. For instance, [14] investigated the application of artificial neural networks
(ANNs) and support vector machines (SVMs) for software risk prediction. The suggested
methods were deployed on the dataset extracted from the questionnaire. Similarly, ensem-
ble methods based on Bayesian network (BN) models have been proposed for software
risk prediction [7]. The Influence Diagram (ID) model and Bayesian Belief Network (BBN)
have also been implemented for software project risk prediction. However, ID and the BBN
have two intrinsic disadvantages: both models require previous information, and both are
difficult to extend [15,16]. Nonetheless, the ANN is commonly used as a successful risk
prediction methodology. For example, [16] developed a successful ANN-based model for
prediction. Furthermore, the ANN approach outperforms conventional methods, such as
decision tree (DT) and multiple linear regression (MLR) in addressing complex software
project risk prediction issues [16,17].

The objective of researchers is to provide sturdiness in the proper prediction of software
project risk [1,3]. However, the efficacy in implementing an ML technique is contingent
upon the proficiency of the selected ML technique, and the dataset utilized for its develop-
ment [18,19]. Different ML approaches have been deployed for software risk prediction
with comparably low prediction performances. This could be attributed to issues with data
quality, such as disparities in the class labels, or the presence of irrelevant data attributes,
which cause the performance of ML techniques to deteriorate [20].

Consequently, this research proposes rule-based models for software requirement risk
prediction. Specifically, the Fuzzy Unordered Rule Induction Algorithm (FURIA) and its
nested dichotomy variants were developed for software requirement risk prediction. The
FURIA is a rule learner that employs fuzzy rules and an effective rule-stretching method
for its classification processes. Fuzzy rules are more generic than conventional rules, as they
create dynamic boundaries for classification processes. For instance, the conventional rules
work with fixed decision boundaries, with abrupt transitions between different classes,
thereby generating questionable and non-intuitive models [21,22]. The understandability
of the FURIA is, thus, a major advantage over the alternative (black box) conventional rule
and ML-based methods, and a major reason for its adoption in this research. For improved
performances, variants of the FURIA are based on nested dichotomy subset selection
techniques, such as random (default), furthest centroid, balanced data, and random-pair
subset selection methods.

In summary, the following are the scientific contributions made via this study:

(1) The implementation of the FURIA model for software risk prediction;
(2) The development of nested FURIA dichotomies for software risk prediction;
(3) The empirical comparison of proposed FURIA and nested FURIA dichotomy variants

with existing software risk prediction models.

The remainder of the article is structured as follows. Related and relevant studies
are presented and discussed in Section 2. An exhaustive description of the experimental
procedure and methods used is provided in Section 3. Section 4 outlines the experimental
results and the observed research findings. Section 5 concludes this study, and recommends
further research.

2. Related Works

The United States Department of Defense (DoD) describes software risks as measuring
indices when general pre-defined objectives cannot be met as a result of budgetary, time, or
technological constraints [23]. In 1989, Boehm introduced the concept of software risk man-
agement into software engineering practices, laying the groundwork for future study [24].
Risk identification, risk analysis, and risk control are all aspects of risk management in
software projects [25].

Electronics 2023, 12, 3805 4 of 19

BBN, ID, ANN, Monte Carlo analysis (MC), classification and regression tree (CART),
and other risk analysis techniques have been successfully deployed in software project risk
prediction. Nonetheless, the drawback of the BBN and ID is that they require knowledge of
risk factor connections and the impact of the variables on the project results is inferred from
the correlations. The relations and the conditional probability table are very subjective,
having been learned via professional experience. Regarding the ANN, as new nodes are
added to the network, new research is required, to obtain a new conditional probability
table, limiting network expandability.

Hu et al. [14] demonstrated that the software project development process is inherently
risky, and has a high failure rate. To reduce the risks, they developed an intelligent model
capable of predicting and managing the risks latent in software projects. Specifically, the
SVM and ANN were used on software risk datasets extracted from questionnaires. In
another study by [26], they reported that more than 70% of software project failures are
related to risk. As a solution, they deployed a Naïve Bayes (NB) classifier for software
risk prediction on software datasets gathered from 332 software projects, via an online
poll. They concluded that software risk prediction can assist organizations in prioritizing
software projects based on risk value. Similarly, Christiansen et al. [27] utilized MLR in
their research, to estimate software development risk based on data collected through
surveys from certain experts. They used statistical integration to show the risk variables
that were predicted and controlled by reducing risk throughout the software development
processes. The categorization of the likelihood of software project failure or success was
predicted using a mix of factor analysis and MLR. Their research ended with an emphasis
on the fact that there are inherent risk factors in software development processes that
must be recognized and handled if software projects are to be delivered and finished on
time. However, as these studies are conducted on data extracted from questionnaires, their
respective findings cannot be generalized.

In a bid to address the data issues in software risk prediction, Shaukat et al. [2] identi-
fied the requirement elicitation phase of the SDLC as the most essential and difficult. They
observed that there was no clear dataset from real-world software projects that had the char-
acteristics of software needs and associated risks that could be used to predict risks in future
software projects. They thus suggested a dataset for the SDLC’s requirement-collecting
phase that includes requirements derived from the software requirements specification
(SRS) of certain software projects, as well as their risk characteristics.

Alharbi et al. [3] offered an analytical perspective on risk assessment in the context
of numerous software projects running concurrently. This research demonstrated excel-
lent levels of accuracy. For instance, logistic regression (LR) showed a risk prediction
accuracy of 93%, while REPTree recorded a 98% risk accuracy in evaluating risk levels
in a multi-project scenario that was running concurrently. Moreover, Xu, Yang et al. [28]
hybridized the genetic algorithm (GA) and decision tree (DT) method, which automatically
selects the optimum metric subset for software risk prediction. The experimental findings
demonstrated the method’s viability, while also showing substantial increases in the pre-
diction performance. Xu, Zhang et al. [11] presented a BN-based framework with causality
constraints (BNCC) for software project risk analysis. From their report, it was observed
that the suggested model not only identifies causalities via expert knowledge, but also
outperforms other ML methods, such as LR, DT, NB, and conventional BN.

Akumba et al. [29] used an NB classifier in risk prediction during the requirement
elicitation phase of the SDLC in certain software projects. The NB model was built based
on risk dataset features, such as size, effect, likelihood, priority, and risk dimension, to
decide whether they were catastrophic, high, moderate, low, or inconsequential. From
the analyses, probability and priority were reported to be the most important factors in
predicting risk levels. That is, it is beneficial to recognize that the likelihood of the risk
happening is high, and the priority is also recorded in advance. Furthermore, Naseem
et al. [1] conducted an extensive empirical analysis of the applicability of ML techniques
in software risk prediction. The findings from the experimental results indicated that

Electronics 2023, 12, 3805 5 of 19

ML techniques can be used for software risk prediction. However, the preceding studies
on software risk prediction failed to consider the inherent class imbalance characteristic
of software risk dataset(s) used for developing models. For instance, Naseem et al. [1]
reported that the occurrence of imbalanced classes (labels) in the software risk dataset may
affect the prediction performance of ML techniques. Moreover, existing studies have shown
that models developed with imbalanced datasets tend to overfit.

Consequently, the FURIA and its enhanced variants based on nested subset selection
dichotomies are deployed for software risk prediction and are proposed in this research.

3. Methodology

In this section, the research methodology utilized in this research work is extensively
discussed. Specifically, the FURIA and its nested dichotomy variants are presented. The
software risk dataset we used, and the experimental procedure, are also discussed.

3.1. Fuzzy Unordered Rule Induction Algorithm (FURIA)

The Fuzzy Unordered Rule Induction Algorithm (FURIA) is an enhanced version of
the Repeated Incremental Pruning to Produce Error Reduction (RIPPER) and Incremental
Reduced Error Pruning (IREP) algorithms. It was created to address the latent problems
in the RIPPER and IREP regarding the rule generation process from a decision sub-space,
and using one class for the primary prediction. These problems are known to lead to a
systemic bias for the default class label. However, the FURIA tends to distinguish class
labels without considering the default rule and the order of the class labels. Typically,
the FURIA introduces an additional rule-stretching function that allows it to extend the
generated rules, to render it generic for all data instances [30].

For its pruning process, the FURIA applies pruning for the creation of the replacement
and revision rule. In this case, the original pruning strategy is applied, except in cases
where the pruning strategy tries to remove all antecedents from a rule, thereby generating
a default rule. In this case, the pruning will be aborted, and the unpruned rule will be used
for the Minimum Description Length (MDL) comparison in the optimization phase. These
pruning strategies are still sufficient to avoid overfitting the generated model.

To generate fuzzy rules, the FURIA searches for the optimal fuzzy extension of each
rule, where a fuzzy extension is deployed as a rule of the same structure, but with a fuzzy
interval. For instance, for intervals Ai on the initial rules as the cores

[
∂a,B

x , ∂a,C
x

]
of the

sought intervals AF
i , the issues are to ascertain optimal bounds for the generated supports.

For the fuzzification of a single antecedent (Hj ∈ Ai), it is critical to consider only the
relevant training instances Ti

t .

Ti
t = {y = (y1 . . . yk) ∈ Tt|AF

i
(
yj
)
> 0 f or all j 6= i} ⊆ Tt (1)

Ti
t is split into subsets of positive (T i

t+) and negative (T i
t−) instances.

To determine the degree of fuzzification, the rule purity (RP) is utilized:

RP =
ri

ri + mi
(2)

where
ri = ∑y∈Ti

t+
αHj(y) (3)

mi = ∑y∈Ti
t−

αHj(y) (4)

The fuzzification is then realized for the antecedent with the largest purity. This
is repeated until all antecedents have been fuzzified. It is worth noting that a simple
fuzzification is always discovered—notably, the one that sets the support bound to the first
occurrence behind the core bound. Although this fuzzification does not affect the purity of
the training data, it is useful in classifying new instances.

Electronics 2023, 12, 3805 6 of 19

In addition, the FURIA uses minimal generalizations of all rules as appropriate re-
placements for any data instance. A generalization or “stretching” of a rule is obtained
via deleting one or more of its antecedents, and a generalization is minimal if it does not
delete more antecedents than is necessary to cover the query instance. Thus, the minimal
generalization of a rule is simply obtained by deleting all antecedents that are not satisfied
by the query. Further detail on the FURIA is available in [31–33]. Figure 1 depicts the
flowchart for the working operation of the FURIA.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 19

The fuzzification is then realized for the antecedent with the largest purity. This is
repeated until all antecedents have been fuzzified. It is worth noting that a simple fuzzifi-
cation is always discovered—notably, the one that sets the support bound to the first oc-
currence behind the core bound. Although this fuzzification does not affect the purity of
the training data, it is useful in classifying new instances.

In addition, the FURIA uses minimal generalizations of all rules as appropriate re-
placements for any data instance. A generalization or “stretching” of a rule is obtained via
deleting one or more of its antecedents, and a generalization is minimal if it does not delete
more antecedents than is necessary to cover the query instance. Thus, the minimal gener-
alization of a rule is simply obtained by deleting all antecedents that are not satisfied by
the query. Further detail on the FURIA is available in [31–33]. Figure 1 depicts the
flowchart for the working operation of the FURIA.

Figure 1. Flowchart for the working operation of the FURIA algorithm.

3.2. FURIA Nested Dichotomies Variants
A binary tree is utilized in a nested dichotomy approach to partition a multiclass

problem into multiple binary classification problems, with the root node of the tree repre-
senting the complete set of problem classes. Subsequently, the classes are partitioned into
two distinct subsets of classes, denoted as superclasses, and a model is formulated to dis-
criminate between them. The procedure is iteratively executed, partitioning super classes
until they comprise a solitary class from the initial set, signifying that each terminal node
of the hierarchical structure exclusively encompasses a singular class. To categorize a
novel entity, the tree that has been created is navigated through a binary framework,
which selects the appropriate branch to follow at each level. Upon reaching a leaf, the
object is assigned the corresponding class.

The rationale behind the Nested Dichotomy (ND) technique is that more dissimilar
groups are better separated at the higher levels of a nested dichotomy because of the in-
creased distance between them. The distance between classes is calculated by finding the

Figure 1. Flowchart for the working operation of the FURIA algorithm.

3.2. FURIA Nested Dichotomies Variants

A binary tree is utilized in a nested dichotomy approach to partition a multiclass
problem into multiple binary classification problems, with the root node of the tree rep-
resenting the complete set of problem classes. Subsequently, the classes are partitioned
into two distinct subsets of classes, denoted as superclasses, and a model is formulated
to discriminate between them. The procedure is iteratively executed, partitioning super
classes until they comprise a solitary class from the initial set, signifying that each terminal
node of the hierarchical structure exclusively encompasses a singular class. To categorize a
novel entity, the tree that has been created is navigated through a binary framework, which
selects the appropriate branch to follow at each level. Upon reaching a leaf, the object is
assigned the corresponding class.

The rationale behind the Nested Dichotomy (ND) technique is that more dissimilar
groups are better separated at the higher levels of a nested dichotomy because of the
increased distance between them. The distance between classes is calculated by finding
the centroid of each class, and then measuring the difference. After these distances are
calculated, the classes are classified into two groups, say x1 and x2 as their centres, as they
are the most distant from each other.

For simplicity, a nested dichotomy can be subdivided into two sequential steps: the
construction step and the classification step.

Electronics 2023, 12, 3805 7 of 19

1. Construction Step: This phase is primarily on the construction of the nested dichotomy.
Assume we have a data collection of items that have been labelled with classes, and
that every item has its own set of features.

a. Select the class centroid that best represents the class means across all items in
the data collection. When there are non-numeric features of a class, the item
that is, on average, most like the others in that class is selected.

b. The tree’s starting point should consist of all the classes and their respective
centres.

c. Generate a dichotomy. This operation is repeatedly carried out on every node
that has multiple classes until every tree leaf has exactly one class.

i. Select the two classes whose centroids exhibit the highest degree of
separation. Utilize the centroids that have been identified as the centres
of the respective groups.

ii. At the present node, each class is categorised based on its proximity to
the nearest centre, as determined by the distance between the centroid of
the class and the designated group centres. When the distance towards
both centres is equivalent, the class is assigned to the initial group.

iii. A new child node is generated for every group, and this procedure
is iterated.

d. Upon construction of the tree, a binary classifier is trained at every internal
node to effectively distinguish between the groups of classes represented by
their respective child nodes. In pursuit of this objective, every instance from the
training set that matches the classes grouped at each child node is utilized.

2. Classification Step: For the classification process, the process of tree traversal com-
mences at the root and proceeds by traversing the paths that correspond to each
binary classifier until a leaf node is ultimately arrived at and the instance is assigned
the class that is associated with the final tree leaf.

Nonetheless, as the nested dichotomy approach recursively applies binary splits to
divide the set of classes into two subsets, and trains a binary classifier for each split, the split
process can be deployed in several ways. In this research, we deployed four subset selection
methods for the enhancement of the predictive performance of nested dichotomies based
on random subset selection, furthest centroid subset selection, balanced subset selection,
and random-pair subset selection.

3. Subset Selection Method

At every internal node i in a nested dichotomy, the collection of classes that exist at
the node, denoted as N1, is partitioned into two distinct and mutually exclusive subsets,
namely Ni1 and Ni2, both of which are non-empty. This section presents an overview of
implemented class subset selection techniques for nested dichotomies. The techniques are
primarily intended for employment in an ensemble context, wherein several ND decompo-
sitions are produced, each of which constitutes an ensemble member. The ensemble, in this
context, is based on the randomness of the selection process.

a. Random Subset Selection

One of the fundamental approaches to selecting a subset of classes is to randomly
divide the class set into two distinct subsets. This method offers various appealing char-
acteristics. Firstly, the computational process is straightforward, and not dependent on
the size of the training dataset, rendering it appropriate for extensive datasets. Moreover,
in the context of a multi-class problem, the quantity of potentially nested dichotomies is
exceedingly vast and can be expressed through a recurrence relation.

Electronics 2023, 12, 3805 8 of 19

R(n) = (2n− 3)× R(n− 1) (5)

where R(1) = 1. This guarantees that in a nested dichotomy, there is a high degree of
heterogeneity in the generated subsets. In this research work, the random subset selection
method is deployed as the default subset selection method for the FURIA.

b. Furthest Centroid Subset Selection

The centroid-based techniques entail selecting each class split deterministically, using
a distance metric. This implies that the arrangement of each embedded division within
a collection will exhibit uniformity. The determination of the class radius involves the
calculation of the spatial separation between the class centroid and the element situated at
the maximum distance from the centroid, within the same class. Therefore, to quantify the
distance between the two classes, C1 and C2, the centroid of each class (m 1, m2) is utilized
as a metric for the inter-class distance d(m 1, m2), and the radius of each class (r 1, r2),
using Equation (5), as follows.

D(C 1, C2) =
d(m 1, m2)

r1 + r2
(6)

It should be noted that when D = 1, the classes are adjacent to each other, without any
overlap. On the other hand, when D > 1, the classes are separate from each other. When
D < 1, there is an overlap between the classes.

c. Balanced Data Subset Selection

One potential drawback associated with the utilization of random subset selection is
the possibility of generating highly imbalanced tree structures. The quantity of internal
nodes and, consequently, the quantity of binary models, is the determining factor. In any
nest dichotomy with the same number of classes, an unbalanced tree frequently indicates
that the training of internal binary models is conducted on extensive datasets located
in the lower levels of the model hierarchy. As a result of this detrimental impact, the
duration required to train the complete model is adversely affected. Additionally, subtrees
that are further down in the hierarchical structure allow for a greater potential for the
accumulation of estimation errors. [34] addressed this phenomenon, by partitioning Ni into
two distinct subsets, Ni1 and Ni2, with the constraint that the absolute difference between
the cardinalities of Ni1 and Ni2 was no greater than one. Empirical evidence suggests that,
in most cases, this approach has minimal impact on the accuracy, but it does result in a
reduction in the training time required for nested dichotomies. The utilization of balanced
selection is more advantageous in scenarios that involve many classes. The analysis
indicates that, while the sample space of class-balanced nested dichotomy is smaller than
that of random nested dichotomy, it remains sufficiently extensive to guarantee adequate
random subset diversity.

RCB(n) =

{
1
2 (

n
n/2)RCB(n/2)RCB(n/2) i f n is even

(n
(n+1)/2)RCB (

n+1
2)RCB (

n−1
2), i f n is odd (7)

where RCB(2) = RCB(1) = 1.

d. Random-Pair Subset Selection

The utilization of random-pair selection offers a non-deterministic approach to the
formation of Ni1 and Ni2, which effectively clusters comparable classes, according to
reference [35]. The random-pair selection method involves utilizing the base classifier to
directly detect analogous categories within the set of Ni. Initially, a pair of classes, N1 and
N2, belonging to the set Ni, is randomly chosen, and then a binary classifier is trained
exclusively on these two classes. Subsequently, the classifier is applied to the remaining

Electronics 2023, 12, 3805 9 of 19

classes, and the resulting predictions are recorded in the form of a confusion matrix, M.
The matrices Ni1 and Ni2 are then generated, based on the information contained in M.

Ni1 =
{

N ∈ Ni\{N1, N2} : MN,N1 ≤ MN,N2

}
∪ {N1}

Ni2 =
{

N ∈ Ni\{N1, N2} : MN,N1 > MN,N2

}
∪ {N2} (8)

where Mj, i denotes the number of instances belonging to class j that were categorized as
class i by the binary classifier. Stated differently, a class is designated as Ni1 if it exhibits
a lower occurrence of confusion with N1 in comparison to N2, and as Ni2 if the opposite
is true. Subsequently, the binary classifier undergoes re-training concerning the newly
introduced meta-classes Ni1 and Ni2. The suggested approach facilitates the separation of
each split by the base learner, as opposed to a fully random split. Additionally, it introduces
a level of randomness that results in the creation of varied subsets.

3.3. Software Requirement Risk Prediction Dataset

The dataset used in the experimentation phase of this research is based on risks in
software projects and is composed of attributes that are associated with both risks and
requirements, as stated in [2]. The dataset is constructed by incorporating risk attributes
into the SRS data. Specifically, the project’s risk attributes, including the project category, re-
quirement category, risk target category, probability, impact, dimension of risk, and priority
of risk, were obtained from sources [9,31,36]. The dataset has 299 instances, and 13 features
across five different class labels. Appendix A (Table A1) tabulates the components of the
dataset, and further details of the dataset are provided in [1,2,29].

3.4. Experimental Procedure

This section presents and explains the experimental procedure conducted in this re-
search. Specifically, Figure 2 depicts a schematic illustration of the experimental procedures
carried out in our research, and highlights the significance of the methodology, which aims
to offer empirical justification for the efficacy of the suggested and implemented fuzzy
induction models. This research involved the development and analysis of a two-stage
experimental design, with a subsequent evaluation of the predictive capabilities of the
resulting FURIA-based models, in a fair and unbiased manner.

Initially, the proposed FURIA model and baseline rule-based and ML-based models
are implemented on the software risk dataset (See Section 3.3), using the parameter set-
ting as depicted in Table 1. The primary objective of this assessment is to ascertain and
authenticate the effectiveness of the FURIA model in software risk prediction in contrast
to the baseline rule-based and ML-based models. The investigated rule-based (rough
set (RS), partial decision tree (PART), RIPPER) and ML-based (SVM, k nearest neighbour
(KNN), DT, average one dependency estimator (A1DE), NB, random forest (RF)) models
are selected based on their reported predictive performances in existing software risk
prediction studies and other ML processes [7,11,28,29,37,38]. In addition, these models
have diverse computational characteristics and are aimed at introducing heterogeneity to
empirical experimentation.

Finally, enhanced fuzzy induction methods based on nested subset selection di-
chotomies are designed and deployed on the experimental dataset. Specifically, the FURIA
is further improved via the introduction of nested dichotomy subset selection techniques
(further centroid subset selection (FURIA-FCS), balanced subset selection (FURIA-BSS),
and random-pair subset selection (FURIA-RPS)), which iteratively deploy binary splits, and
function by separating the class label and generating optimal subsets for effective classifica-
tion. Consequently, the FURIA variant models (FURIA-FCS, FURIA-BSS, and FURIA-RPS)
are compared with the baseline FURIA and current rule-based and ML-based models.

Electronics 2023, 12, 3805 10 of 19Electronics 2023, 12, x FOR PEER REVIEW 10 of 19

Figure 2. Experimental framework.

Table 1. Parameter settings of the implemented models.

Models Model Type Parameter Setting

RS

Rule-based

alphaForPartialReducts = 0.5; discernabilityMethod =
OrdinaryDecisionAndInconsistenciesOmitted;

discrConfidenceLevelForIntervalDifference = 0.9; reducts = AllLocals;
discretization = MaximalDiscernabiliyHeuristicLocal

PART
confidenceFactor = 0.25; useMDLCorrection = True; unpruned = False;

NumFolds = 3
RIPPER optimizations = 2; checkErrorRate = True; usePruning = True; NumFolds = 3

SVM

ML-based

SVMType = C-SVC; KernelType = RadialBasisFunction; loss = 0.1; eps = 0.001;
cost = 0.1; nu = 0.5; shrinking = True; gamma = 0.0

A1DE
subsumptionResolution = False; weight = 1.0; weightAODE = False;

frequencyLimit = 1

KNN
K = 1; distanceWeighting = False; NearestNeighbourSearchAlgorithm =

LinearNNSearch; DistanceFunction = EuclideanDistance

DT useMDLCorrection = True; collapseTree = True; confidenceFactor = 0.25;
subtreeRaising = True;

RF bagSizePercent = 100; calcOutOfBag = False; numIterations = 100
NB UseKernelEstimator = False; UseSupervisedDiscretization = False

FURIA Fuzzy-rule-based T-Norm = ProductT-Norm; checkErrorRate = True; optimization = 2;
uncovAction = ApplyRuleStreching; minFolds = 3;

Figure 2. Experimental framework.

Table 1. Parameter settings of the implemented models.

Models Model Type Parameter Setting

RS

Rule-based

alphaForPartialReducts = 0.5;
discernabilityMethod = OrdinaryDecisionAndInconsistenciesOmitted;
discrConfidenceLevelForIntervalDifference = 0.9; reducts = AllLocals;

discretization = MaximalDiscernabiliyHeuristicLocal

PART confidenceFactor = 0.25; useMDLCorrection = True; unpruned = False; NumFolds = 3

RIPPER optimizations = 2; checkErrorRate = True; usePruning = True; NumFolds = 3

SVM

ML-based

SVMType = C-SVC; KernelType = RadialBasisFunction; loss = 0.1; eps = 0.001; cost = 0.1;
nu = 0.5; shrinking = True; gamma = 0.0

A1DE subsumptionResolution = False; weight = 1.0; weightAODE = False; frequencyLimit = 1

KNN
K = 1; distanceWeighting = False;

NearestNeighbourSearchAlgorithm = LinearNNSearch;
DistanceFunction = EuclideanDistance

DT useMDLCorrection = True; collapseTree = True; confidenceFactor = 0.25;
subtreeRaising = True;

RF bagSizePercent = 100; calcOutOfBag = False; numIterations = 100

NB UseKernelEstimator = False; UseSupervisedDiscretization = False

FURIA Fuzzy-rule-based T-Norm = ProductT-Norm; checkErrorRate = True; optimization = 2;
uncovAction = ApplyRuleStreching; minFolds = 3;

Analysis of the empirical results obtained from experiments, along with the inferences
drawn from these observations, is conducted, to address the research inquiries outlined
in Section 1. The cross-validation (CV) technique was utilized in the development of the

Electronics 2023, 12, 3805 11 of 19

software risk prediction models we investigated on the model development technique. The
present research employs the k-fold cross-validation technique, where k is equal to 10, to con-
struct the models used for experimentation. The rationale behind utilizing the CV technique
is rooted in its ability to withstand data quality issues that may result in model overfitting,
as shown in previous studies [4,32,34]. The training and test datasets were randomly
partitioned to mitigate the presence of duplicate values or recurring patterns. To ensure
consistency in the performance of the models under investigation, each experiment was
conducted ten (10) times, in adherence with the principle of fairness. Ultimately, the mean
values of the generated performance metric are utilized to assess the implemented mod-
els [39,40]. The experimentation involved the utilization of the WEKA machine learning
library [41], and the R programming language [42], on a computer equipped with an Intel(R)
CoreTM processor, operating at 3.4 gigahertz, and 16 gigabytes of random-access memory.
Samples of the experimental dataset, generated models, and solution buffers are available at
the GitHub repository (https://github.com/bharlow058/SoftwareRiskPrediction/tree/main,
accessed on 29 June 2023).

3.5. Experimental Procedure

This research employed well-established evaluation metrics, including accuracy, f-
measure, the area under the curve (AUC), and Matthew’s correlation coefficient (MCC), to
assess and contrast the predictive capabilities of the various investigated models. The selec-
tion of these performance indicators was based on their frequent utilization in prior studies
in the assessment of rule-based and ML-based software risk prediction models [43–45].
Furthermore, these metrics are reported to be dependable collectively, as they consider all
areas of the confusion matrix produced for each developed model [46,47].

4. Experimental Results and Discussion

This section presents a comparative analysis of the predictive performances of the
suggested fuzzy induction models against the corresponding rule-based (RS, PART, and
RIPPER) and ML-based (SVM, KNN, NB, DT, RF, and A1DE) classifiers. The analysis is
conducted on a benchmark software risk dataset. The primary objective of the comparison
is to verify and authenticate the efficacy of the fuzzy induction models in comparison to
the established baseline rule, and the ML-based classifiers and current models utilized in
prior research.

To enhance the clarity, the analysis of the results is presented and discussed through
the utilization of three distinct scenarios. The initial scenario showcases the prediction
performances of the FURIA model against the rule- and ML-based models. In the second
scenario, a comparative analysis is conducted between the FURIA and its variants (FURIA-
FCS, FURIA-BSS, and FURIA-RPS). Lastly, the predictive performance of the suggested
fuzzy induction models is compared with the current rule and ML models utilized on the
same experimental benchmark dataset.

4.1. Scenario 1: Performance Analysis of the FURIA against the Rule- and ML-Based Models

As shown in Table 2, the predictive performance of the FURIA was compared with
individual baseline classifiers such as NB, AIDE, SVM, KNN, DT, RF, RS, PART, and RIPPER,
on the experimental dataset. As observed, the FURIA showed the highest accuracy (97.99%),
f-measure (0.980), and MCC (0.975) values. Specifically, the FURIA showed +7.71%, +8.11%,
+6.16%, +15.03%, +1.73%, and +17.66% increments over the respective accuracy values of
NB (90.97%), A1DE (90.64%), SVM (92.30%), KNN (85.19%), DT (96.32%), RF (83.28%) and
RIPPER (93.29%), which are ML-based models. A similar occurrence can be observed with
other evaluation metrics, such as the f-measure and MCC. The best-performing ML model
was DT, and the lowest-performing ML model was KNN. The poor predictive performances
of KNN can be attributed to its operational mechanism of instance (lazy) learning, and its
dependence on parameter tuning. Nonetheless, the FURIA outperformed the ML-based
models on the utilized evaluation metrics.

https://github.com/bharlow058/SoftwareRiskPrediction/tree/main

Electronics 2023, 12, 3805 12 of 19

Table 2. The performance comparison of the FURIA against the rule- and ML-based models.

Models Accuracy (%) F-Measure MCC

NB 90.97 0.911 0.877

A1DE 90.64 0.907 0.872

SVM 92.30 0.923 0.897

KNN 85.19 0.579 0.406

DT 96.32 0.963 0.952

RF 83.28 0.805 0.766

RS 93.31 0.929 0.910

PART 96.65 0.967 0.956

RIPPER 97.32 0.973 0.964

FURIA 97.99 0.980 0.975

Concerning rule-based models, such as PART, RS, and RIPPER, the FURIA showed
a comparable predictive performance across the evaluation metrics. Based on accuracy
values, the FURIA showed a +5.31%, +1.38%, and +0.7% increment over RS (93.31%), PART
(96.65%), and RIPPER (97.32%). Regarding the f-measure and MCC values, similar trends
were observed in the predictive performance of the FURIA over the rule-based models.

Although RIPPER’s performance was quite comparable to the FURIA, the FURIA still
showed higher predictive performances. The relatively high predictive performance of
RIPPER may be due to its divide-and-conquer operational mechanism, which makes it easy
to use for the classification of data instances. However, the FURIA’s use of fuzzy rules over
conventional rules, as in the case of RIPPER and RS, makes it better. Moreover, the FURIA
can consider an unordered rule set and deploy an effective rule-stretching function. Figure 3
displays a graphical representation of the predictive performances of the FURIA against the
investigated rule- and ML-based models on the investigated software risk dataset.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 19

Figure 3. Graphical representation of the FURIA and the baseline rule and ML models.

4.2. Scenario 2: Performance Analysis of the FURIA against Its Nested Subset Selection
Dichotomy Variants

Table 3 presents the predictive performance comparison of the FURIA and its nested
subset selection dichotomy variants (FURIA-FCS, FURIA-BSS, and FURIA-RPS) on the
dataset studied. As indicated, the proposed FURIA variants outperformed the conven-
tional FURIA model. Specifically, FURIA-FCS showed the highest accuracy (98.62%), f-
measure (0.987), and MCC (0.983) values at +0.64%, +0.71%, and +0.82% increments over
the predictive performance of the FURIA on the same dataset. The duo of FURIA-BSS and
FURIA-RPS showed a similar predictive performance, with a 98.33% accuracy value, a
0.983 f-measure value, and a 0.979 MCC value. The differences in the predictive perfor-
mance of the suggested fuzzy induction models may be insignificant; however, the cost of
misprediction or misclassification is significant.

Table 3. The performance comparison of the FURIA against its nested subset selection dichotomy
variants.

Model Accuracy (%) F-Measure MCC
FURIA 97.99 0.980 0.975

FURIA-FCS 98.62 0.987 0.983
FURIA-BSS 98.33 0.983 0.979
FURIA-RPS 98.33 0.983 0.979

The superior predictive performances of the nested subset selection dichotomy vari-
ants may be attributed to their respective ability to manage hierarchical class relationships.
The variants can, for example, handle overlapping class labels, which can be detrimental
to the predictive performance of rule- or ML-based models. In addition, the proposed
nested subset selection dichotomy variants exhibit incremental learning, where new clas-
ses or instances can be added to the existing model without the requirement to completely
retrain the entire system. Further, incremental learning in nested dichotomy methods can
save computational resources, and allow for efficient adaptation to changing environ-
ments. Figure 4 presents the graphical representation of the predictive performances of

Figure 3. Graphical representation of the FURIA and the baseline rule and ML models.

To improve the predictive performance of the FURIA, nested dichotomy functions were
introduced into its working operations. Hence, the following subsection presents a detailed

Electronics 2023, 12, 3805 13 of 19

comparison of the predictive performances of the FURIA, and its nested subset selection
dichotomy variants (FURIA-FCS, FURIA-BSS, and FURIA-RPS), on the dataset used.

4.2. Scenario 2: Performance Analysis of the FURIA against Its Nested Subset Selection
Dichotomy Variants

Table 3 presents the predictive performance comparison of the FURIA and its nested
subset selection dichotomy variants (FURIA-FCS, FURIA-BSS, and FURIA-RPS) on the
dataset studied. As indicated, the proposed FURIA variants outperformed the conventional
FURIA model. Specifically, FURIA-FCS showed the highest accuracy (98.62%), f-measure
(0.987), and MCC (0.983) values at +0.64%, +0.71%, and +0.82% increments over the predic-
tive performance of the FURIA on the same dataset. The duo of FURIA-BSS and FURIA-RPS
showed a similar predictive performance, with a 98.33% accuracy value, a 0.983 f-measure
value, and a 0.979 MCC value. The differences in the predictive performance of the sug-
gested fuzzy induction models may be insignificant; however, the cost of misprediction or
misclassification is significant.

Table 3. The performance comparison of the FURIA against its nested subset selection dichotomy
variants.

Model Accuracy (%) F-Measure MCC

FURIA 97.99 0.980 0.975

FURIA-FCS 98.62 0.987 0.983

FURIA-BSS 98.33 0.983 0.979

FURIA-RPS 98.33 0.983 0.979

The superior predictive performances of the nested subset selection dichotomy vari-
ants may be attributed to their respective ability to manage hierarchical class relationships.
The variants can, for example, handle overlapping class labels, which can be detrimental
to the predictive performance of rule- or ML-based models. In addition, the proposed
nested subset selection dichotomy variants exhibit incremental learning, where new classes
or instances can be added to the existing model without the requirement to completely
retrain the entire system. Further, incremental learning in nested dichotomy methods can
save computational resources, and allow for efficient adaptation to changing environments.
Figure 4 presents the graphical representation of the predictive performances of the FURIA
and its nested subset selection dichotomy variants on the investigated software risk dataset.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 19

the FURIA and its nested subset selection dichotomy variants on the investigated software
risk dataset.

Figure 4. Graphical representation of the FURIA and its nested subset selection dichotomy vari-
ants.

For a generalizable predictive performance evaluation, the predictive performances
of the suggested fuzzy induction models are contrasted with those of the current software
risk prediction models with varied computational characteristics on the same dataset.
That is, in the following subsection, the predictive performances of the FURIA, FURIA-
FCS, FURIA-BSS, and FURIA-RPS are compared with the current advanced rule- and ML-
based models, on the same dataset.

4.3. Scenario 3: Performance Analysis of the FURIA and Its Enhanced Nested Dichotomy
Variants against the Existing Rule- and ML-Based Models

The predictive performance of the proposed FURIA, FURIA-FCS, FURIA-BSS, and
FURIA-RPS models, with the current advanced rule- and ML-based models, is shown in
Table 4.

Table 4. The performance comparison of the FURIA and its enhanced nested dichotomy variants,
against the existing rule- and ML-based models.

Model Accuracy (%) F-Measure MCC
FURIA * 97.99 0.980 0.975

FURIA-FCS * 98.62 0.987 0.983
FURIA-BSS * 98.33 0.983 0.979
FURIA-RPS * 98.33 0.983 0.979

[1], DTNB 97.99 0.980 0.959
[1], CDT 97.99 0.980 0.968
[29] NB 98.00 - -

[11] BNCC 75.15 - -
[14] ANN 75.00 - -
[14] SVM 85.00 - -

The sign (*) indicates the proposed models.

Figure 4. Graphical representation of the FURIA and its nested subset selection dichotomy variants.

Electronics 2023, 12, 3805 14 of 19

For a generalizable predictive performance evaluation, the predictive performances of
the suggested fuzzy induction models are contrasted with those of the current software
risk prediction models with varied computational characteristics on the same dataset. That
is, in the following subsection, the predictive performances of the FURIA, FURIA-FCS,
FURIA-BSS, and FURIA-RPS are compared with the current advanced rule- and ML-based
models, on the same dataset.

4.3. Scenario 3: Performance Analysis of the FURIA and Its Enhanced Nested Dichotomy Variants
against the Existing Rule- and ML-Based Models

The predictive performance of the proposed FURIA, FURIA-FCS, FURIA-BSS, and
FURIA-RPS models, with the current advanced rule- and ML-based models, is shown in
Table 4.

Table 4. The performance comparison of the FURIA and its enhanced nested dichotomy variants,
against the existing rule- and ML-based models.

Model Accuracy (%) F-Measure MCC

FURIA * 97.99 0.980 0.975

FURIA-FCS * 98.62 0.987 0.983

FURIA-BSS * 98.33 0.983 0.979

FURIA-RPS * 98.33 0.983 0.979

[1], DTNB 97.99 0.980 0.959

[1], CDT 97.99 0.980 0.968

[29] NB 98.00 - -

[11] BNCC 75.15 - -

[14] ANN 75.00 - -

[14] SVM 85.00 - -
The sign (*) indicates the proposed models.

As shown in Table 4, the predictive performances of the suggested fuzzy induction
models are compared to current advanced rule- and ML-based models, such as [1,11,14,29],
on the same dataset. For instance, Naseem et al. [1] implemented a hybrid method for soft-
ware risk prediction, based on Decision Tables and Naïve Bayes (DTNB), which recorded
an accuracy value of 97.99%, an f-measure value of 0.980, and an MCC value of 0.959.
Although the DTNB showed a prediction performance competitive with that of the FURIA
model, the nested subset selection dichotomy variants outperformed the DTNB. In addi-
tion, Naseem et al. [1] deployed a credal decision tree (CDT) with a comparable predictive
performance; still, the suggested fuzzy induction models are better. Hu, Zhang et al. [11]
developed an enhanced Bayesian network model with causality constraints (BNCC). The
BNCC had a prediction accuracy value of 75.15%, which is still inferior to the accuracy
values of the suggested fuzzy induction models. Xu, Zhang, Sun et al. [14] and Akumba
et al. [29] used a hyper-parameterized ANN, SVM, and NB, respectively. However, their
respective performances are not as good as those of the FURIA model or any of its nested
dichotomy variants. Figure 5 presents the graphical representation of the FURIA and
current software risk prediction models.

In conclusion, the suggested fuzzy induction models outperformed the current rule-
and ML-based models that were investigated using various computational methods on the
same experimental dataset. Moreover, the suggested fuzzy induction models can handle
datasets with imprecise values and inherent fuzziness. In addition, the suggested fuzzy
induction models employed rule-stretching and subset selection methods that helped to
reduce rule redundancy in the generated models, which, in turn, improved the efficiency of
the fuzzy induction models, by eliminating overlapping or duplicate rules, while preserving
the classification accuracy.

Electronics 2023, 12, 3805 15 of 19

Electronics 2023, 12, x FOR PEER REVIEW 15 of 19

As shown in Table 4, the predictive performances of the suggested fuzzy induction
models are compared to current advanced rule- and ML-based models, such as
[1,11,14,29], on the same dataset. For instance, Naseem et al. [1] implemented a hybrid
method for software risk prediction, based on Decision Tables and Naïve Bayes (DTNB),
which recorded an accuracy value of 97.99%, an f-measure value of 0.980, and an MCC
value of 0.959. Although the DTNB showed a prediction performance competitive with
that of the FURIA model, the nested subset selection dichotomy variants outperformed
the DTNB. In addition, Naseem et al. [1] deployed a credal decision tree (CDT) with a
comparable predictive performance; still, the suggested fuzzy induction models are bet-
ter. Hu, Zhang et al. [11] developed an enhanced Bayesian network model with causality
constraints (BNCC). The BNCC had a prediction accuracy value of 75.15%, which is still
inferior to the accuracy values of the suggested fuzzy induction models. Xu, Zhang, Sun
et al. [14] and Akumba et al. [29] used a hyper-parameterized ANN, SVM, and NB, re-
spectively. However, their respective performances are not as good as those of the FURIA
model or any of its nested dichotomy variants. Figure 5 presents the graphical represen-
tation of the FURIA and current software risk prediction models.

Figure 5. Graphical representation of FURIA and its nested subset selection dichotomy variants
against existing current software risk prediction models [1,11,14,29]. The sign (*) indicates the pro-
posed models.

In conclusion, the suggested fuzzy induction models outperformed the current rule-
and ML-based models that were investigated using various computational methods on
the same experimental dataset. Moreover, the suggested fuzzy induction models can han-
dle datasets with imprecise values and inherent fuzziness. In addition, the suggested
fuzzy induction models employed rule-stretching and subset selection methods that
helped to reduce rule redundancy in the generated models, which, in turn, improved the
efficiency of the fuzzy induction models, by eliminating overlapping or duplicate rules,
while preserving the classification accuracy.

5. Threat to Validity

Figure 5. Graphical representation of FURIA and its nested subset selection dichotomy variants
against existing current software risk prediction models [1,11,14,29]. The sign (*) indicates the
proposed models.

5. Threat to Validity

Assessing and managing potential risks that may affect the dependability of empirical
results is an essential aspect of any experimental investigation [48–50]. Through conducting
the present research, we have identified several potential threats to its validity, which are
outlined below:

External validity: The transferability of scientific investigations to real-world settings is
a crucial factor in determining their reliability. The generalizability of experimental insights
to other contexts may be limited, due to various factors, such as the characteristics and
scope of the datasets utilized. The present research has incorporated a benchmark dataset
that exhibits a diverse range of attributes. The public dataset is widely utilized in the
advancement and assessment of software risk prediction models, and it is readily accessible
to the public without charge. Furthermore, the present research provided a thorough
assessment of the experimental methodology, potentially enhancing the consistency and
accuracy of its methodological approaches across various software risk datasets.

Internal validity: This paradigm embodies the significance and consistency of the data,
tested models, and empirical research. Consequently, this research utilizes established
machine learning methodologies that have been previously implemented and utilized in
prior research endeavours. The selection of these ML methods was based on their ability to
encompass a diverse array of approaches, and their demonstrated efficacy in accomplishing
ML objectives. Furthermore, the cross-validation (CV) methodology was employed to
train the investigated rule-based and ML-based models on the designated dataset, with
great attention to detail. Each trial was repeated 10 times, to ensure its validity. The
implementation of this approach has proven effective in mitigating the probability of un-
foreseen disparities in empirical findings. Conversely, further investigations could explore
alternative approaches and techniques for appraising models, in subsequent studies.

Construct validity: This concept pertains to the criteria employed to evaluate the
efficacy of the software risk prediction models that were examined. The present research
utilized various statistical performance metrics, including the accuracy, f-measure, and

Electronics 2023, 12, 3805 16 of 19

Matthew’s correlation coefficient (MCC). These measures facilitated a thorough empirical
evaluation of the investigated models utilized in the research. The models investigated
were designed with careful consideration of the software risk prediction and its correspond-
ing features.

6. Conclusions and Future Works

This research proposed enhanced Fuzzy Induction Methods for software risk predic-
tion. Specifically, the FURIA and its variants, based on nested subset selection dichotomies,
were developed for the software risk prediction process. The enhancement of the predic-
tive capabilities of the FURIA with the nested dichotomies was performed via iteratively
deploying binary split functions, to separate the class label, and to generate optimal subsets
for effective classification or the prediction process. The viability and effectiveness of the
proposed enhanced fuzzy induction models were tested via experiments. The experimen-
tal findings observed on the software risk dataset studied indicate the superiority of the
fuzzy induction models over the prominent baseline rule- and ML-based models. These
findings validate the applicability and efficacy of fuzzy induction models for multi-class
software risk prediction processes. In an extended evaluation, the prediction performances
of enhanced fuzzy induction models in most cases outperformed the existing rule- and
ML-based models from the current research on publicly available software risk prediction.
Consequently, this research recommends the use of fuzzy induction-based models in soft-
ware risk prediction. Aside from the empirically validated predictive performance of the
suggested models, fuzzy models allow explainability and are highly scalable and, in most
cases, stable, compared to other conventional ML models.

In the next phase of this research, ensemble-based nested dichotomies for software risk
prediction and multi-class ML processes will be explored, as ensemble methods are often
able to generate more accurate classifiers than individual classifiers. Hence, it is worth
investigating the application of ensemble methods to nested dichotomies with varying
configurations. Furthermore, the optimization process of the nested dichotomies can be
studied more effectively. Regardless, these highlighted areas will be explored in future
research studies.

Author Contributions: Conceptualization, H.M., A.O.B. and L.F.C.; Methodology, H.M., A.O.B. and
L.F.C.; Software, A.O.B., V.E.A. and G.K.; Validation, V.E.A.; Formal analysis, H.M., A.A.I. and
G.K.; Investigation, A.O.B.; Resources, V.E.A. and G.K.; Data curation, V.E.A., A.A.I. and G.K.;
Writing—original draft, H.M. and A.O.B.; Writing—review & editing, S.B., L.F.C. and A.A.I.; Visual-
ization, V.E.A., A.A.I. and G.K.; Supervision, S.B. and L.F.C.; Project administration, S.B. and A.A.I.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in [https://
github.com/bharlow058/SoftwareRiskPrediction/tree/main] (accessed on 29 June 2023).

Acknowledgments: This research/paper was fully supported by Universiti Teknologi PETRONAS,
under the STIRF Grant Scheme (015LA0-049).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Description of the software requirement risk dataset [1,2].

Features Datatype Description

Requirements String Text

Project Category Nominal
Transaction Processing System, Safety Critical

System, Enterprise System,
Management Information System

https://github.com/bharlow058/SoftwareRiskPrediction/tree/main
https://github.com/bharlow058/SoftwareRiskPrediction/tree/main

Electronics 2023, 12, 3805 17 of 19

Table A1. Cont.

Features Datatype Description

Requirement Category Nominal Functional, Usability, Reliability & Availability, Performance, Security,
Supportability, Constraints, Interfaces, Standards, Safety

Risk Target Category Nominal

Budget, Quality, Schedule, Personal, Performance, Functional Validity,
People, Project complexity, Planning & Control, Team, Resource availability, User,

Requirement, Time Dimension, Organizational Environment, Cost, Design,
Business, Unrealistic Requirements, Overdrawn Budget, Software, Process

Probability Numeric 0–100%

Magnitude of Risk Nominal Negligible, Very Low, Low, Medium, High, Very High, Extreme

Impact Nominal high, catastrophic, moderate, Low, insignificant

Dimension of Risk Numeric

Requirements, User, Project complexity,
planning and control, Team, Organizational

Environment, Estimations, Software Requirement, Planning and Control,
Schedule, Complexity, Project cost, Organizational Requirements

Affecting No Modules Numeric Numbers (Whole Numbers)

Fixing Duration Numeric Days (Digits)

Priority Numeric 0–100%

Risk Level Nominal 1, 2, 3, 4, 5

References
1. Naseem, R.; Shaukat, Z.; Irfan, M.; Shah, M.A.; Ahmad, A.; Muhammad, F.; Glowacz, A.; Dunai, L.; Antonino-Daviu, J.; Sulaiman,

A. Empirical assessment of machine learning techniques for software requirements risk prediction. Electronics 2021, 10, 168.
[CrossRef]

2. Shaukat, Z.S.; Naseem, R.; Zubair, M. A dataset for software requirements risk prediction. In Proceedings of the 2018 IEEE
International Conference on Computational Science and Engineering (CSE), Bucharest, Romania, 29–31 October 2018; pp. 112–118.

3. Alharbi, I.M.; Alyoubi, A.A.; Altuwairiqi, M.; Ellatif, M.A. Analysis of Risks Assessment in Multi Software Projects Development
Environment Using Classification Techniques. In Proceedings of the International Conference on Advanced Machine Learning
Technologies and Applications, Cairo, Egypt, 20–22 March 2021; pp. 845–854.

4. Mohamed, H.A.M. Model-Based Prediction of Resource Utilization and Performance Risks. Ph.D. Thesis, Sudan University of
Science & Technology, Khartoum, Sudan, 2018.

5. Balogun, A.O.; Almomani, M.; Basri, S.; Almomani, O.; Capretz, L.F.; Khan, A.A.; Gilal, A.R.; Baashar, Y. Towards the sustainability
of small and medium software enterprises through the implementation of software process improvement: Empirical investigation.
J. Softw. Evol. Process 2022, 34, e2466. [CrossRef]

6. Salih, H.A.; Ammar, H.H. Model-based resource utilization and performance risk prediction using machine learning Techniques.
JOIV Int. J. Inform. Vis. 2017, 1, 101–109.

7. Hu, Y.; Feng, B.; Mo, X.; Zhang, X.; Ngai, E.; Fan, M.; Liu, M. Cost-sensitive and ensemble-based prediction model for outsourced
software project risk prediction. Decis. Support Syst. 2015, 72, 11–23. [CrossRef]

8. Aslam, A.; Ahmad, N.; Saba, T.; Almazyad, A.S.; Rehman, A.; Anjum, A.; Khan, A. Decision support system for risk assessment
and management strategies in distributed software development. IEEE Access 2017, 5, 20349–20373. [CrossRef]

9. Williams, L. Project risks product-specific risks. J. Secur. NCSU 2004, 1, 1–22.
10. Du, S.; Keil, M.; Mathiassen, L.; Shen, Y.; Tiwana, A. Attention-shaping tools, expertise, and perceived control in IT project risk

assessment. Decis. Support Syst. 2007, 43, 269–283. [CrossRef]
11. Hu, Y.; Zhang, X.; Ngai, E.; Cai, R.; Liu, M. Software project risk analysis using Bayesian networks with causality constraints.

Decis. Support Syst. 2013, 56, 439–449. [CrossRef]
12. Fan, C.-F.; Yu, Y.-C. BBN-based software project risk management. J. Syst. Softw. 2004, 73, 193–203. [CrossRef]
13. Neumann, D.E. An enhanced neural network technique for software risk analysis. IEEE Trans. Softw. Eng. 2002, 28, 904–912.

[CrossRef]
14. Hu, Y.; Zhang, X.; Sun, X.; Liu, M.; Du, J. An intelligent model for software project risk prediction. In Proceedings of the 2009

International Conference on Information Management, Innovation Management and Industrial Engineering, Xi’an, China, 26–27
December 2009; pp. 629–632.

15. Bai, C.-G. Bayesian network based software reliability prediction with an operational profile. J. Syst. Softw. 2005, 77, 103–112.
[CrossRef]

https://doi.org/10.3390/electronics10020168
https://doi.org/10.1002/smr.2466
https://doi.org/10.1016/j.dss.2015.02.003
https://doi.org/10.1109/ACCESS.2017.2757605
https://doi.org/10.1016/j.dss.2006.10.002
https://doi.org/10.1016/j.dss.2012.11.001
https://doi.org/10.1016/j.jss.2003.12.032
https://doi.org/10.1109/TSE.2002.1033229
https://doi.org/10.1016/j.jss.2004.11.034

Electronics 2023, 12, 3805 18 of 19

16. Lee, E.; Park, Y.; Shin, J.G. Large engineering project risk management using a Bayesian belief network. Expert Syst. Appl. 2009,
36, 5880–5887. [CrossRef]

17. Khoshgoftaar, T.M.; Allen, E.B.; Hudepohl, J.P.; Aud, S.J. Application of neural networks to software quality modeling of a very
large telecommunications system. IEEE Trans. Neural Netw. 1997, 8, 902–909. [CrossRef]

18. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Hashim, A.S. Performance analysis of feature selection methods in software defect
prediction: A search method approach. Appl. Sci. 2019, 9, 2764. [CrossRef]

19. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Almomani, M.A.; Adeyemo, V.E.; Al-Tashi, Q.; Mojeed, H.A.; Imam,
A.A.; Bajeh, A.O. Impact of feature selection methods on the predictive performance of software defect prediction models: An
extensive empirical study. Symmetry 2020, 12, 1147. [CrossRef]

20. Balogun, A.O.; Basri, S.; Said, J.A.; Adeyemo, V.E.; Imam, A.A.; Bajeh, A.O. Software defect prediction: Analysis of class imbalance
and performance stability. J. Eng. Sci. Technol. 2019, 14, 3294–3308.

21. Kamarudin, N.K.; Firdaus, A.; Zabidi, A.; Ernawan, F.; Hisham, S.I.; Ab Razak, M.F. Android malware detection using PMCC
heatmap and Fuzzy Unordered Rule Induction Algorithm (FURIA). J. Intell. Fuzzy Syst. 2023, 44, 5601–5615. [CrossRef]

22. Průcha, P.; Skrbek, J. Use of FURIA for Improving Task Mining. Acta Inform. Pragensia 2022, 11, 241–253. [CrossRef]
23. McConnell, S. Software Project Survival Guide; Microsoft Press: Redmond, WA, USA, 1998.
24. Boehm, B. Software risk management. In Proceedings of the European Software Engineering Conference, Coventry, UK, 11–15

September 1989; pp. 1–19.
25. Yong, H.; Juhua, C.; Zhenbang, R.; Liu, M.; Kang, X. A neural networks approach for software risk analysis. In Proceedings of the

Sixth IEEE International Conference on Data Mining-Workshops (ICDMW’06), Hong Kong, China; 2006; pp. 722–725.
26. Kawamura, T.; Toma, T.; Takano, K.I. Outcome prediction of software projects for information technology vendors. In Proceedings

of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13
December 2017; pp. 1733–1737.

27. Christiansen, T.; Wuttidittachotti, P.; Prakancharoen, S.; Vallipakorn, S.A.-o. Prediction of risk factors of software development
project by using multiple logistic regression. ARPN J. Eng. Appl. Sci. 2015, 10, 1324–1331.

28. Xu, Z.; Yang, B.; Guo, P. Software risk prediction based on the hybrid algorithm of genetic algorithm and decision tree. In
Proceedings of the International Conference on Intelligent Computing, Qingdao, China, 21–24 August 2007; pp. 266–274.

29. Akumba, O.B.; Otor, S.U.; Agaji, I.; Akumba, B.T. A Predictive Risk Model for Software Projects’ Requirement Gathering Phase.
Int. J. Innov. Sci. Res. Technol. 2020, 5, 231–236. [CrossRef]

30. Akter, S.; Shahriar, H.; Cuzzocrea, A. Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison
Between Central Processing Unit vs Graphics Processing Unit Functions for Neural Networks. In Proceedings of the 2023 IEEE
47th Annual Computers, Software, and Applications Conference (COMPSAC), Torino, Italy, 26–30 June 2023; pp. 1084–1092.

31. Hühn, J.; Hüllermeier, E. FURIA: An algorithm for unordered fuzzy rule induction. Data Min. Knowl. Discov. 2009, 19, 293–319.
[CrossRef]

32. Mejjaouli, S.; Guizani, S. PDF Malware Detection Based on Fuzzy Unordered Rule Induction Algorithm (FURIA). Appl. Sci. 2023,
13, 3980. [CrossRef]

33. Zhang, T.; Fu, Q.; Li, C.; Liu, F.; Wang, H.; Han, L.; Quevedo, R.P.; Chen, T.; Lei, N. Modeling landslide susceptibility using
data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest.
Nat. Hazards 2022, 114, 3327–3358. [CrossRef]

34. Dong, L.; Frank, E.; Kramer, S. Ensembles of balanced nested dichotomies for multi-class problems. In Proceedings of the
Knowledge Discovery in Databases: PKDD 2005: 9th European Conference on Principles and Practice of Knowledge Discovery in
Databases, Porto, Portugal, 3–7 October 2005; pp. 84–95.

35. Leathart, T.; Pfahringer, B.; Frank, E. Building ensembles of adaptive nested dichotomies with random-pair selection. In
Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva
del Garda, Italy, 19–23 September 2016; pp. 179–194.

36. Boehm, B.W. Software risk management: Principles and practices. IEEE Softw. 1991, 8, 32–41. [CrossRef]
37. Rana, A.; Dumka, A.; Singh, R.; Panda, M.K.; Priyadarshi, N.; Twala, B. Imperative role of machine learning algorithm for

detection of Parkinson’s disease: Review, challenges and recommendations. Diagnostics 2022, 12, 2003. [CrossRef] [PubMed]
38. Alarfaj, F.K.; Malik, I.; Khan, H.U.; Almusallam, N.; Ramzan, M.; Ahmed, M. Credit card fraud detection using state-of-the-art

machine learning and deep learning algorithms. IEEE Access 2022, 10, 39700–39715. [CrossRef]
39. Bhatt, C.M.; Patel, P.; Ghetia, T.; Mazzeo, P.L. Effective heart disease prediction using machine learning techniques. Algorithms

2023, 16, 88. [CrossRef]
40. Shafiezadeh, S.; Duma, G.M.; Mento, G.; Danieli, A.; Antoniazzi, L.; Del Popolo Cristaldi, F.; Bonanni, P.; Testolin, A. Methodolog-

ical issues in evaluating machine learning models for EEG seizure prediction: Good cross-validation accuracy does not guarantee
generalization to new patients. Appl. Sci. 2023, 13, 4262. [CrossRef]

41. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update.
ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

42. Crawley, M.J. The R Book; John Wiley & Sons: Hoboken, NJ, USA, 2012.
43. Alkhatib, R.; Sahwan, W.; Alkhatieb, A.; Schütt, B. A Brief Review of Machine Learning Algorithms in Forest Fires Science.

Appl. Sci. 2023, 13, 8275. [CrossRef]

https://doi.org/10.1016/j.eswa.2008.07.057
https://doi.org/10.1109/72.595888
https://doi.org/10.3390/app9132764
https://doi.org/10.3390/sym12071147
https://doi.org/10.3233/JIFS-222612
https://doi.org/10.18267/j.aip.183
https://doi.org/10.38124/IJISRT20JUN066
https://doi.org/10.1007/s10618-009-0131-8
https://doi.org/10.3390/app13063980
https://doi.org/10.1007/s11069-022-05520-7
https://doi.org/10.1109/52.62930
https://doi.org/10.3390/diagnostics12082003
https://www.ncbi.nlm.nih.gov/pubmed/36010353
https://doi.org/10.1109/ACCESS.2022.3166891
https://doi.org/10.3390/a16020088
https://doi.org/10.3390/app13074262
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.3390/app13148275

Electronics 2023, 12, 3805 19 of 19

44. Joshi, K.; Bhatt, C.; Shah, K.; Parmar, D.; Corchado, J.M.; Bruno, A.; Mazzeo, P.L. Machine-learning techniques for predicting
phishing attacks in blockchain networks: A comparative study. Algorithms 2023, 16, 366. [CrossRef]

45. Li, S.; Oshnoei, A.; Blaabjerg, F.; Anvari-Moghaddam, A. Hierarchical Control for Microgrids: A Survey on Classical and Machine
Learning-Based Methods. Sustainability 2023, 15, 8952. [CrossRef]

46. Akintola, A.G.; Balogun, A.O.; Capretz, L.F.; Mojeed, H.A.; Basri, S.; Salihu, S.A.; Usman-Hamza, F.E.; Sadiku, P.O.; Balogun, G.B.;
Alanamu, Z.O. Empirical Analysis of Forest Penalizing Attribute and Its Enhanced Variations for Android Malware Detection.
Appl. Sci. 2022, 12, 4664. [CrossRef]

47. Balogun, A.O.; Odejide, B.J.; Bajeh, A.O.; Alanamu, Z.O.; Usman-Hamza, F.E.; Adeleke, H.O.; Mabayoje, M.A.; Yusuff, S.R.
Empirical Analysis of Data Sampling-Based Ensemble Methods in Software Defect Prediction. In Proceedings of the International
Conference on Computational Science and Its Applications, Malaga, Spain, 4–7 July 2022; pp. 363–379.

48. Coleman, P. Validity and reliability within qualitative research for the caring sciences. Int. J. Caring Sci. 2022, 14, 2041–2045.
49. Flake, J.K.; Davidson, I.J.; Wong, O.; Pek, J. Construct validity and the validity of replication studies: A systematic review. Am.

Psychol. 2022, 77, 576. [CrossRef]
50. Slocum, T.A.; Pinkelman, S.E.; Joslyn, P.R.; Nichols, B. Threats to internal validity in multiple-baseline design variations. Perspect.

Behav. Sci. 2022, 45, 619–638. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/a16080366
https://doi.org/10.3390/su15118952
https://doi.org/10.3390/app12094664
https://doi.org/10.1037/amp0001006
https://doi.org/10.1007/s40614-022-00326-1

	Introduction
	Related Works
	Methodology
	Fuzzy Unordered Rule Induction Algorithm (FURIA)
	FURIA Nested Dichotomies Variants
	Software Requirement Risk Prediction Dataset
	Experimental Procedure
	Experimental Procedure

	Experimental Results and Discussion
	Scenario 1: Performance Analysis of the FURIA against the Rule- and ML-Based Models
	Scenario 2: Performance Analysis of the FURIA against Its Nested Subset Selection Dichotomy Variants
	Scenario 3: Performance Analysis of the FURIA and Its Enhanced Nested Dichotomy Variants against the Existing Rule- and ML-Based Models

	Threat to Validity
	Conclusions and Future Works
	Appendix A
	References

