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Abstract: The automation of the manufacturing process of printed circuit boards (PCBs) requires
accurate PCB inspections, which in turn require clear images that accurately represent the product
PCBs. However, if low-quality images are captured during the involved image-capturing process,
accurate PCB inspections cannot be guaranteed. Therefore, this study proposes a method to effectively
detect defective images for PCB inspection. This method involves using a convolutional neural
network (CNN) and a Laplacian filter to achieve a higher accuracy of the classification of the obtained
images as normal and defective images than that obtained using existing methods, with the results
showing an improvement of 11.87%. Notably, the classification accuracy obtained using both a
CNN and Laplacian filter is higher than that obtained using only CNNs. Furthermore, applying the
proposed method to images of computer components other than PCBs results in a 5.2% increase in
classification accuracy compared with only using CNNs.

Keywords: printed circuit board; product inspection; Laplacian filter; convolutional neural network

1. Introduction

The key aspect of the fourth industrial revolution (i.e., Industry 4.0) involves the
automation of industrial processes to attain high product quality, precision, and reliabil-
ity [1]. Figure 1a shows the sequence involved in the automation of industrial processes,
and Figure 1b illustrates the process of inspecting manufactured goods using photographs
captured during the inspection stage.

(a)

(b)

Figure 1. Industrial process automation. (a) Automation of industrial manufacturing processes.
(b) Automated inspection process.
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The products that are inspected using cameras during the inspection stage include
printed circuit boards (PCBs); PCBs form an essential part in the manufacturing process
of electronics [2]. PCBs are used in nearly all electronic devices, including laptops, digital
watches, and smartphones. Moreover, PCBs function as a base to electrically connect
different components within electronic devices. Figure 2 presents an example of the PCB
images captured using cameras during the inspection stage; the presented image was
obtained from a publicly available PCB-image dataset (The Open Lab on Human Robot
Interaction, Peking University) [3].

Figure 2. Example of a printed circuit board (PCB) image.

Manufacturing companies have been employing manual visual-inspection methods
to detect defects in various products, including PCBs [4]. However, manual inspection
methods can cause detection errors owing to the involved subjective estimation by inspec-
tors [5]; moreover, they are expensive owing to the requirement of numerous inspection
specialists. With the advancements in the fields of integrated circuits and semiconductors,
PCBs have become smaller and more intricate [6], posing challenges for defect detection
during their mass-production [7].

Therefore, PCB production and inspection are automated (Figure 1). During an
automated PCB manufacturing process, the images captured using cameras are utilized
for automatic PCB-defect detection [8]. However, if these images are defective (Figure 3b),
the accuracy of PCB-defect detection via image inspection is compromised. Park et al. [9]
primarily focused on conducting PCB-defect detection without specifically classifying the
obtained images as defective and normal images. In cases where PCB-defect detection is
performed using a dataset of mixed normal and defective images, the detection accuracy
drops to 73.6%. Notably, studies have been conducted to classify collected images as
defective and normal images using convolutional neural networks (CNNs). However, cases
exist where normal images were incorrectly classified as defective images [10].

(a) (b)

Figure 3. Example of a normal and a defective PCB image. (a) Normal PCB image. (b) Defective
PCB image.

To address these issues, this study proposes a method that employs CNNs and a
Laplacian filter. The method involves first using a CNN to classify PCB images as normal
and defective images and then improving the accuracy of this classification using a Lapla-
cian filter. Although the ultimate goal is to increase the inspection accuracy of products
in camera-image–based industrial process automation, the objective of this paper is to
propose a method to filter out defective images and mitigate the accuracy reduction due to
defective images; notably, these images were not excluded in related works.
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The contributions of this study can be summarized as follows.

• The accuracy of PCB-defect detection is 11.87% higher when including defective-image
filtering than that obtained without defective-image filtering.

• The accuracy of classifying collected images into normal and defective categories is
significantly enhanced when utilizing both CNNs and Laplacian filters, compared
with using CNNs alone.

• Defective-image filtering allows for the identification of the underlying causes of defects.
• With regard to images of electronic products other than PCBs, the classification ac-

curacy obtained using our proposed method is 5.2% higher than that obtained using
only CNNs.

The remainder of this paper is organized as follows. Section 2 discusses related studies
on PCB-defect inspection and defective-image classification. Section 3 introduces our
method of detecting PCB defective images using a CNN and Laplacian filter. Section 4
discusses the experimental configuration for filtering defective images (The code and
data are contained at https://github.com/junhj14/pcb (accessed on 1 August 2023)) .
Section 5 presents the results of defective-image filtering for the proposed method based on
a confusion matrix and accuracy. Finally, Section 6 presents the conclusions of this study.

2. Related Works

This section provides an overview of the existing studies on PCB-defect inspection
and defective-image determination. As shown in Table 1, PCB-defect detection has been
studied with normal or defective images. Meanwhile, defective images have been detected
using filters or via deep learning.

Table 1. Existing works on printed-circuit-board (PCB)-defect detection and defective-image detection.

Method Existing Works

PCB-defect detection
Normal Image [3,11–15]

Defective Image [9]

Defective-image detection
Filter [8,16–18]

Deep learning [19–23]

2.1. PCB-Defect Detection

Huang et al. [3] utilized the PCB-defect dataset from Kaggle [24] to classify six types
of defects in PCB images—missing hole, mouse bite, open circuit, short, spur, and spurious
copper—using CNN. This approach could only identify types of defects within normal
images, not in defective images. Niu et al. [11] used the same dataset and classification
classes as used in [3], but employed the Regions with Convolutional Neural Networks
features (R-CNN) method to achieve an improved accuracy. In [13,14], the YOLO model
was employed to classify PCB defect types. In [15], the YOLOv5 model was employed to
enhance the classification of PCB defect types using the same dataset in [3]. Furthermore,
in [12], PCB images were classified as either defective or normal images based on the
ResNet method. This approach allowed them to distinguish between normal and defective
PCBs, in contrast to the method used in [3]. Niu et al. [11] used the ResNet50 method and
the Faster R-CNN method for further enhancement of the detection accuracy. All these
studies [3,11–15] exclusively used normal images during PCB-defect detection.

However, in PCB-manufacturing automation systems, various types of defective
images could be obtained. Suhasini et al. [9] used the same dataset as that used in [3].
However, in contrast to the method presented in [3], an additional class of normal PCB was
included, resulting in a total of seven classes for classification. This study expanded the
classification to include both defect types and normal PCB images. Additionally, the re-
search focused on the normal images as well as the defective images of PCBs. To enhance
the accuracy of PCB-defect detection in defective images, they employed a method to

https://github.com/junhj14/pcb
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inspect an enlarged specific area of the PCB image. For defect detection in only the normal
PCB image, a classification (normal or defective) accuracy of 98.3% was achieved, while
defect detection using a partial specific area of PCB images yielded an accuracy of 98.8%.
In addition, defect detection in only a defective PCB image achieved an accuracy of 71.9%,
while that using a partial specific area resulted in an accuracy of 73.6%. However, as the
accuracy of defect detection in defective images is still relatively low, we implemented a
method of detecting defects in filtered normal images and excluded the defective images.

2.2. Defective-Image Classification

Some studies have already used employed methods to classify images as normal or
defective images. Hsu and Chen [16] used the point spread function to numerically measure
image blurriness and classify such images as defective images. In addition, they set separate
threshold values of images that were uniformly blurry and those that exhibited partial
blurriness. In [17], a Laplacian filter was used to detect blurry regions in defective images
by analyzing the values of different parts of the image. Li et al. [8] used a Laplacian filter to
quantify the degree of blurriness in images. If the blurriness exceeded a certain threshold
in the entire image, it was classified as a defective image. This approach could classify
normal images and identify defects caused by focus or fast motion. In [18], the grad-CAM
method was introduced to classify defective images based on the weights of blurry regions.
Although these aforementioned studies [8,16–18] provided methods for classifying images
as defective, they did not provide information about the specific causes of defects. Some
other studies have focused on classifying images as normal or defective images using deep
learning techniques instead of filtering methods. In [22], a DNN was employed to classify
everyday images captured by a camera into normal and defective images. In [20], a CNN
was used to classify directly captured images into normal and defective images. Hendrycks
and Dietterich [23] employed ResNet50 for image classification. Furthermore, in [19,21], a
CNN was used to classify images as normal or defective images and identify the specific
causes of defects. In [21], four defect types—focus, Gaussian, haze, and motion—were
classified into four classes, and in [19], five defect types—lighting, focus, motion, file
conversion, and white noise—along with normal images were classified into six classes.
Unlike the filtering-based approaches, these studies [19–21] provided methods to classify
images and determine the causes of defects. However, the provided methods may, in some
cases, misclassify normal images as defective images.

3. Defective-Image Detection Using CNN and Laplacian Filter

We used both a CNN and Laplacian filter to filter defective images. This section intro-
duces our CNN and Laplacian filter, and presents a method for detecting defective images.

3.1. CNN

In the automation of PCB-defect detection, we used a CNN for classifying PCB images
as defective and normal images. Our CNN model was implemented using the Keras API
in TensorFlow 2.12.0. The main architecture comprises three convolutional, three max-
pooling, and two dense layers (Figure 4 and Table 2). Each layer utilizes the ReLU activation
function, and the final layer uses Softmax. In addition, the Adam optimizer was used in the
model, which accepts RGB images as input, with an input image size of 512 × 512 pixels.
The model was trained at a learning rate of 0.001 for a duration of 10 epochs. The output
presents the classification of images into five classes: normal and four defective images
(focus, motion, light, and noise).
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Table 2. Layers and parameters in the proposed convolutional neural network (CNN).

Layer (Type) Output Shape Parameters

conv2d (Conv2D) (None, 510, 510, 32) 896
max_pooling2d (MaxPooling2D) (None, 255, 255, 32) 0

conv2d_1 (Conv2D) (None, 253, 253, 64) 18,496
max_pooling2d_1 (MaxPooling2D) (None, 126, 126, 64) 0
conv2d_2 (Conv2D) (None, 124, 124, 128) 73,856
max_pooling2d_2 (MaxPooling2D) (None, 62, 62, 128) 0
flatten (Flatten) (None, 492,032) 0
dense (Dense) (None, 128) 62,980,224
dense_1 (Dense) (None, 5) 645

Total params: 63,074,117
Trainable params: 63,074,117
Non-trainable params: 0

Figure 4. Architecture of our convolutional neural network (CNN).

3.2. Laplacian Filter

A Laplacian operator is defined as a scalar differential operator for scalar functions.
In 2D images, the Laplacian operation [25] can be performed using Equation (1). The Lapla-
cian operator highlights areas within the vicinity displaying rapid intensity changes, facili-
tating edge detection and the detection of strong transitions at boundaries in digital image
processing [26]. By utilizing this principle, we can identify regions with considerable blurri-
ness above a certain threshold. These areas can then be used for detecting defective images.

Laplacian( f ) =
∂2 f
∂x2 +

∂2 f
∂y2 (1)

∂2 f
∂x2 = f (x + 1, y) + f (x− 1, y)− 2 f (x, y) (2)

Laplacian( f ) = ∇ · ∇ f = f (x + 1, y) + f (x− 1, y) + f (x, y + 1) + f (x, y− 1)− 4 f (x, y) (3)

The application of a Laplacian filter is equivalent to using the Laplacian operator; it
helps in achieving an image with a Laplacian mask. Herein, a 3 × 3 mask was utilized;
it comprised a basic mask with a zero corner element, a positive central element, and the
remaining elements as −1 (Figure 5) . The 3 × 3 mask was used to perform the Laplacian
operation and obtain the difference between the central pixel and its four neighboring
pixels in all directions. In addition, the x-direction partial derivative was computed using
Equation (2). Similarly, for obtaining a partial derivative in the y direction, Equation (3)
was used. To satisfy Equation (3), the central pixel in the 3 × 3 mask was multiplied by 4,
and the surrounding pixels were set to −1 (the sign being opposite to that of the central
pixel). By setting the surrounding pixels to −1, we obtained the mask depicted in Figure 5.
Figure 6 shows a pseudo code of our Laplacian filter. When an image is passed into the
function Laplacian_ f ilter, it returns the image with the Laplacian filter applied.
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Figure 5. Laplacian mask.

Figure 6. Pseudo code of our Laplacian filter.

3.3. Defective-Image Detection

Even after classification using a CNN, normal images may be misclassified as defective
images or vice versa. To address this issue, this study proposes a method utilizing both
the CNN in Section 3.1 and the Laplacian filter in Section 3.2. First, a CNN classifies
PCB images into normal and defective images. Then, a Laplacian filter enhances the
classification accuracy. Subsequently, defective PCBs are determined based on the analysis
of the classified normal images. The process of defective-image detection via Laplacian
filtering involves the following steps:

(1) Apply the Laplacian mask to the target image to obtain an image applied with the
Laplacian filter.

(2) Calculate the squared values of each pixel in the obtained image.
(3) Use Equation (4) to calculate the variance V(X) of each pixel by considering its

surrounding pixels.
V(X) = E(X2)− E(X)2 (4)

(4) Set the pixel values to 0 (indicating a defective region) if they are below the threshold
value, and set them to 1 (indicating a normal region) if they are equal to or above
the threshold.

(5) Calculate the proportion of the normal regions in the whole image, and use the
obtained value to determine the severity of defects.

Figure 7 presents the result after the five-step procedure was applied. As shown,
the pixel values below the threshold are labeled as 0 (defective region) in black color
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and those above or equal to the threshold are labeled as 1 (normal region) in white color.
In Figure 7a, the result (the lower image) of processing a normal PCB image (the upper
image) shows that the normal (1) region occupies 78% of the image. Figure 7b presents the
result (the lower image) of processing a defective PCB image (the upper image), indicating
that the normal region occupies 36% of the image. The difference in the proportion of
the normal region between Figure 7a,b is used to classify the image as a normal or a
defective image.

(a) (b)

Figure 7. Detection of the normal area ratio. (a) Normal region occupying 78% of the total region in a
normal PCB image. (b) Normal region occupying 36% of the total region in a defective PCB image.

4. Experiments

Herein, we conducted the following two experiments. Experiment 1 was conducted
to enhance the accuracy of PCB-defect inspection by filtering defective images using our
method (i.e., using a CNN and Laplacian filter). Experiment 2 was conducted to expand
on Experiment 1 by applying the same approach to the images of computer components
used in the automation of manufacturing processes to improve the classification accuracy
by employing our method.

4.1. Dataset
4.1.1. Public PCB Dataset

This study utilized the PCB-defect dataset from Kaggle [24] (Table 3). There exist
10 types of PCBs (Figure 8). The defect-inspection dataset comprises six classes: Short,
Open_circuit, Missing_hole, Spurious_copper, Mouse_bite, and Spur. Figure 9 presents the
six types of defective PCB images.

Figure 8. Cont.
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Figure 8. Ten types of normal PCB images.

(a) (b) (c) (d)

(e) (f)

Figure 9. Six types of PCB defects. (a) Short. (b) Open_circuit. (c) Missing_hole. (d) Spurious_copper.
(e) Mouse_bite. (f) Spur.

Table 3. PCB dataset from Kaggle [24].

Normal
Images

Defective PCB Images

Short Open_Circuit Missing_Hole Spurious_Copper Mouse_Bite Spur

10 116 116 115 116 115 115

For each PCB defective type, one image was selected from each type of PCB image in
Table 3 and 10 images were captured in total. Thereafter, the corresponding defective images
were augmented for training our CNN model and evaluating the model, resulting in a total
of 10 × 10 × 6 = 600 images (Table 4). For defective-image augmentation, image-processing
techniques were applied. Four types of defective images were created considering focus
blur (focus), tremors caused by motion (motion), the effects of light (lighting), and noise
defects. Figure 10 displays one normal image and four defective images. The focus image of
Figure 10b was created using the cv2.GaussianBlur function. The motion image presented
in Figure 10c was created by applying the cv2.filter2D function using a kernel that replaces
each pixel with the weighted average of its neighboring pixels, thereby imparting a motion
effect. The light image of Figure 10d was prepared after adjusting the value channel
(“v”) of the image using the HSV color space, thereby manipulating the brightness values
of individual pixels. The noise image of Figure 10e was prepared after applying noise
generated with np.random.normal and subsequently adding it to the image using cv2.add.

In addition, five levels of image processing were applied, resulting in 5 × 5 = 25
normal images and 4 defective images. Figure 11 illustrates examples of the five levels of
image processing. The dataset was created using 10 normal PCB images from Table 3 and
40 different defective PCB images from Kaggle [27], resulting in a total of 50 images. Com-
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bining the four defective images and normal image and the five levels of image processing,
a dataset of 50 × 5 × 5 = 1250 samples was generated for training the CNN model.

Table 4. Defective PCB-image dataset augmented with the defective PCB images (Table 3).

PCB Defect Type All Short Open Missing Spurious Mouse Spur
_Circuit _Hole _Copper _Bite

Normal Image (N) N D N D N D N D N D N D N DDefective Image (D)

Normal 60 60 10 10 10 10 10 10 10 10 10 10 10 10
Defective Focus 60 60 10 10 10 10 10 10 10 10 10 10 10 10

image Motion 60 60 10 10 10 10 10 10 10 10 10 10 10 10
type Light 60 60 10 10 10 10 10 10 10 10 10 10 10 10

Noise 60 60 10 10 10 10 10 10 10 10 10 10 10 10

Total 600 100 100 100 100 100 100

(a)

(b) (c) (d) (e)

Figure 10. Normal and defective images of a PCB in Experiment 1. (a) Normal Image. (b) Focus.
(c) Motion. (d) Light. (e) Noise.

(a)

(b) (c) (d) (e) (f)

Figure 11. Examples of the five levels of image processing for Experiment 1. (a) Normal Image.
(b) Focus blur state 1. (c) Focus blur state 2. (d) Focus blur state 3. (e) Focus blur state 4. (f) Focus
blur state 5.
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4.1.2. Experiment 2: Dataset

In Experiment 2, we used the Computer Parts dataset of Roboflow [28]. Industrial
automation utilizes images of both PCBs and computer components. The Roboflow Com-
puter Parts dataset comprises images, specifically captured under controlled conditions,
with a consistent white background. Similar to the method used in Experiment 1, 50 data
were experimented at 25 stages for each normal data, thus totaling 1250 data.

Figures 12 and 13 present the images of a cooling fan, a component of computers.
The cooling fan images were the subset of the Roboflow Computer Parts dataset. Figure 12
shows examples of normal and defective images obtained by considering factors such as
light, focus, motion, and white noise. Figure 13 presents examples of focus-related defective
images created by applying a five-level blurring effect to the normal images. The tech-
niques employed for creating these images are consistent with the methods elucidated for
Experiment 1.

(a)

(b) (c) (d) (e)

Figure 12. Examples of defective images caused by various factors in Experiment 2. (a) Normal
Image. (b) Focus. (c) Motion. (d) Light. (e) Noise.

(a)

(b) (c) (d) (e) (f)

Figure 13. Examples of the five levels of image processing for Experiment 2. (a) Normal Image.
(b) Focus blur state 1. (c) Focus blur state 2. (d) Focus blur state 3. (e) Focus blur state 4. (f) Focus
blur state 5.

4.2. Experimental Environment

We executed two experiments. Experiment 1 measures the defect-detection accuracy
in PCB images. Experiment 2, which extends Experiment 1, applies our method to the
images of computer components.
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4.2.1. Experiment 1

Experiment 1 was executed in the Google Colab environment. First, the images
were classified using our CNN model (Table 2 and Figure 4). To create the CNN model,
the dataset with 1250 images was split into training and test data in a 4:1 ratio
(i.e., 1000 images for training data and 250 images for test data). After classifying the
images as normal and defective images by using our CNN model, the Laplacian filter in
Figure 6 was applied. Next, we calculated the threshold V(x) using Equation (4) with
the largest difference in the area ratios between the normal and defective images. In this
experiment, a threshold of 100 was used, thus resulting in a normal-image ratio of 65–80%
and a defective-image ratio of 20–45% after the application of the Laplacian filter. Based
on these values, images predicted as defective by the CNN with a normal-image ratio
of ≥65% were classified as normal images, whereas images predicted as normal images
with a normal-image ratio of ≤45% were classified as defective images.

4.2.2. Experiment 2

This experiment was also conducted in the Google Colab environment. First, the im-
ages were classified using the CNN (Table 2 and Figure 4). To create the CNN model,
the dataset was split into the training and test data in a 4:1 ratio (1000 images for training
data and 250 images for test data, similar to Experiment 1). The experiment was performed
for 50 epochs. After classifying the images into normal and defective images using our
CNN, the Laplacian filter in Figure 6 was applied. Next, we calculated the threshold
V(x) using Equation (4) with the largest difference in the area ratios between the normal
and defective images. For example, for the cooling fan image shown in Figures 12 and 13,
a threshold of 100 was used, thus resulting in a normal-image ratio of 60–85% and a
defective-image ratio of 10–35%. Based on these values, images predicted as defective
images by the CNN with a normal image ratio of ≥60% were classified as normal images,
whereas images predicted as normal images with a normal-image ratio of ≤35% were
classified as defective images.

5. Evaluation and Analysis
5.1. Results of Experiment 1: PCB-Defect Detection

The defect inspection was performed using the ResNet50 model, which is a state-of-
the-art deep learning model [3,11], to compare it with our model. We used the dataset
presented in Table 4, which comprised 600 normal images. These images were organized
based on PCB and image defect types, with 10 instances for each combination of PCB and
image defect type. Figure 14 shows the PCB-defect detection accuracy before defective-
image filtering for all 600 images as well as for each defect type having 100 instances.
The accuracy was assessed by correctly discerning between the normal and defective PCB
classifications in a set of 100 images. Figure 14 shows the accuracies for each defect type:
84%, 88%, 84%, 87%, 86%, and 88% for Short, Open_circuit, Missing_hole, Spurious_copper,
Mouse_bite, and Spur, respectively. It demonstrates that the overall defect-inspection
accuracy before applying the defective-image filtering was 86.13% for all images.

Figure 15 shows the confusion matrix of the defective image classification using our
CNN on the same dataset in Table 4. The classification results using our CNN achieved an
accuracy of 98%.

Figure 16 shows the confusion matrix of the defective-image detection using our CNN
on the dataset presented in Table 4. The classification results using our CNN achieved an
accuracy of 98%. And, in Figure 16, PCB-defect detection using our CNN and Laplacian
filters exhibited 99% accuracy. As shown in Figures 15 and 16, when a PCB image is
classified as a defective image, the defect cause is classified into one of the four causes
shown in Figure 10.
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Figure 14. PCB-defect detection accuracy before defective-image filtering using ResNet50.

Figure 15. Image-classification confusion matrix using our CNN.

Figure 16. Image-classification confusion matrix using our CNN and a Laplacian filter.

Figure 17 shows the accuracy for each defect type before and after defective-image
filtering. As the accuracy of the defect detection is low when defective images are present,
the accuracy can be improved by performing defect detection only on normal images after
filtering defective images. As a result, the accuracy for each defect type improved after
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filtering, compared with before filtering. The accuracy of inspecting the defects for all
images before the filtering process was 86.13%, on average. After filtering the defective
images, as shown in Figure 16, 51 images were classified as normal images. The accuracy
was assessed by correctly discerning between normal and defective PCB classifications
in a set of 51 images. When conducting defect-detection experiments on these filtered 51
defective images, the defect-detection accuracy improved to 98% on average. Moreover,
the filtering process resulted in an 11.87% improvement in the defect-inspection accuracy.

Figure 17. Accuracy of defect detection before and after filtering.

5.2. Results of Experiment 2: Classification of the Images of Computer Parts

In Experiment 2, we used the trained CNN model in Table 2 to predict 250 test data
samples. Figure 18 presents the confusion matrix, showing the predicted labels compared
with the true labels for the test data. The true labels represent the actual class, whereas
the predicted labels represent the predicted class. If the predicted class matches the true
class, the classification is considered to be correct. The confusion matrix provides a visual
representation of the model performance in classifying the test data. Figure 18 shows that
the achieved accuracy was 83.2%.

Figure 18. Image-classification confusion matrix using our CNN.

After CNN-based image classification, the misclassified images that were initially
classified as defective images were further processed using the Laplacian filter. As shown
in Figure 19, these misclassified images were correctly reclassified as normal images, thus
improving the accuracy. After applying the Laplacian filter and reclassifying six misclassi-
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fied normal images as defective images and seven misclassified defective images as normal
images, the accuracy of the defective-image detection improved to 88.4%, representing a
5.2% increase.

Figure 19. Image-classification confusion matrix using our CNN and a Laplacian filter.

5.3. Comparison

Table 5 provides a comparison between our method and other research methods in
terms of PCB-defect detection and defective-image classification. The table compares the
aspects of PCB-defect detection, including defective PCB images, image filtering, and the
ability to classify defective images. Table 6 presents a comparison between the accuracy
results of various methods used for classifying defective images and our method. Notably,
the accuracy was calculated by considering all four types of defective images as defective
and classifying normal images as normal.

Table 5. Comparison of the proposed method with other classification methods.

Type Method PCB-Defect
Detection

Inappropriate
PCB Images

Image
Filtering

Classification
of Images

PCB
Detection

Normal Image O X X X
[3,11,15]

Defective Image O O X X
[9]

Image
Classification

Filter X X O X
[8,18,25]

Deep
Learning X X O O

[19,20]

Ours O O O O

Table 6. Comparison of the proposed method with other classification methods.

Method Precision Recall Accuracy F1 Score

Laplacian [25] 74.13 84 91.2 78.75
DNN [29] 83.92 94 95.2 90.71
CNN [19] 96.07 98 98.8 97.02

Res-Net50 [21] 97.95 96 98.8 96.96
CNN + Laplacian (Ours) 98.03 100 99.6 99.00
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6. Conclusions and Future Works

This study proposed a method using a CNN and Laplacian filter for classifying PCB
images as normal or defective images, aiming to improve the accuracy of PCB-defect
detection in automated PCB-manufacturing processes. By incorporating the Laplacian filter
into the CNN model for image classification, we observed an improvement of about 12%
in the PCB-defect detection accuracy. Moreover, we demonstrated that the application
of the Laplacian filter can enhance the accuracy of defective-image detection in non-PCB
images, exhibiting a 5% improvement. These findings suggest the potential applicability of
Laplacian filters in enhancing defect-detection accuracies for PCB images, as well as for
other types of images.

In the future, we plan to study how to adopt two or more cameras for dual verification
and how to process classified defect images in industrial automation.
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