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Abstract: Traditional open-pit mineral transportation systems are typically subject to manual com-
mand, frequently leading to vehicular delays and traffic congestion. With the advancement of
automation and electrification technologies, this study proposes a highly accurate scheduling method
for multiple autonomous trucks in an open-pit mine. This model considers micro-level temporal and
spatial factors to tackle the task of scheduling autonomous trucks within open-pit mines. The cost
function of the concerned scheduling problem is a comprehensive evaluation of energy consumption,
time, and output. Beyond the loading and unloading activities, the model also factors in the charging
requirements of autonomous trucks in mining regions. The scheduling model integrates a Voronoi
diagram search and optimal spatial path time matching, aiming to provide superior mission planning
and decision-making solutions for autonomous trucks in mining regions. For an efficient solution to
the scheduling problem, we propose an improved-evolution artificial bee colony (IE-ABC) algorithm.
This algorithm improves the global search and re-initialization processes and conducts algorithm
ablation experiments to closely examine their impact on optimization. Simulation results across
various algorithms, cost function definition strategy, and encoding strategy show that our method can
improve scheduling performance in energy consumption and time. Experimental results demonstrate
that the proposed model and algorithm can effectively solve the scheduling decision-making problem
in an unmanned open-pit mine.

Keywords: open-pit mine; autonomous truck; scheduling; artificial bee colony algorithm

1. Introduction

Open-pit mining presents benefits such as large-scale production, high resource re-
covery rates, and minimal environmental impact [1]. The complexity of the working
environment within the open-pit mining area and the low efficiency of manual mining
necessitate the introduction of autonomous mining systems [2].

In light of the rapid advancement of robotics, big data, artificial intelligence, and 5G
technology, we are now observing the emergence of intelligent unmanned dump truck
systems [3,4]. Given that around 50% of the gross operating costs in an open-pit mine
would be spent on material transport [5], it has been an obvious trend to deploy unmanned
transport tools to replace human labor [6]. Figure 1 illustrates that typical unmanned
transportation tools in an open-pit mine include unmanned dump trucks, excavators,
crushing stations, and charging piles. The excavator is used for mining ore, while the
unmanned dump truck is designated for ore transportation. The truck moves to the
location of the excavator for ore loading and then delivers it to the crushing station for
unloading. Positioned within the mining area, the crushing station primarily serves to
crush and pulverize the raw ore to meet the demands of further processing and utilization.
When the unmanned dump truck needs recharging, it navigates to the charging pile to
undergo the necessary charging process.
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Figure 1. Schematic on an unmanned transport system in an open-pit mine. 
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Figure 1. Schematic on an unmanned transport system in an open-pit mine.

Operating all of the aforementioned devices automatically is difficult because it re-
quires simultaneously considering the features, principles, and capabilities of all devices
when generating control commands, otherwise the automated control performance would
be worse than that of human laborers [7]. In this sense, dividing the entire control scheme
into multiple layers is a practical and feasible solution [8,9]. As shown in Figure 2, a
scheduling module first assigns a traverse order for each of the devices; a decision-making
module decides how two or more devices interact locally when their nominal trajectories
are conflicting [10,11]; a planning module generates a spatio-temporal curve for each device
to track [12,13]. This solution is inherently holding a decoupled strategy, i.e., the features,
principles, and capabilities of all devices are no longer considered in a simultaneous way.
Adopting such a decoupled strategy easily renders the loss of solution optimality, although
it reduces the computational burden. Herein, the scheduling module is particularly impor-
tant because a suboptimal decision made in the scheduling module would largely influence
the downstream modules so that there is no chance to achieve optimality in mining op-
erations. This analysis indicates that the scheduling module is important to guarantee
the solution quality of an autonomous operating system in an open-pit mine [14]. The
goal of this study is to propose a high-precision scheduling methodology with microscopic
factors of each device considered, especially temporal factors. Through this, the scheduling
method promises to coarsely find an ideal dispatch solution for the downstream modules
efficiently without loss of optimality.
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1.1. Related Work and Motivations

This subsection reviews the prevalent scheduling methods for dispatching multiple
devices (especially transport vehicles) in an open-pit mine or similar scenarios.

In recent years, the scheduling problem in open-pit mines has received considerable
attention. Patterson et al. [15] constructed a unique mixed-integer linear programming
problem for multi-truck scheduling and used a Tabu Search algorithm to solve it, aiming
to minimize the energy consumption of trucks and excavators. Zhang et al. [16], Yuan
et al. [17], Wang et al. [18], Bastos et al. [19], Zhang et al. [20], and Bao et al. [21] employed
similar strategies to build a model. However, the optimization objectives in these formu-
lated problems only considered fuel consumption while ignoring factors such as consumed
time and output amount. Wang et al. [22] proposed a multi-objective optimization (MOO)
algorithm for truck scheduling, while Zhang et al. [23] proposed a decomposition-based
constrained dominance genetic principle algorithm (DBCDP-NSGA-II) to solve the multi-
objective intelligent scheduling problem for trucks in open-pit mines. Ahumada et al. [24],
Chang et al. [25], and Afrapoli et al. [26] also built a multi-objective scheduling model.
However, a common limitation of refs. [22–26] is that the formulated problem did not
consider the refueling or charging requirements of the trucks. Zhang et al. [27] proposed a
meta-heuristic search algorithm to solve a mixed-integer programming problem formulated
for the concerned multi-truck scheduling scheme and demonstrated by experimentation
that this approach improves the energy efficiency of the transport system in open-pit mines.
Smith et al. [28] proposed a time-discretized mixed integer programming (MIP) model
for the truck scheduling problem in open-pit mines, and a heuristic is used to quickly
generate high-quality feasible solutions. However, the proposed model ignored the path
planning between loading and unloading spots. Similarly, Zeng et al. [29], de Melo [30], and
Yeganejou et al. [31] did not consider the path planning between loading and unloading
spots either.

Most previous scheduling models focused on single-objective optimization, partic-
ularly energy consumption, and often overlooked the need for multiple optimization
objectives. Additionally, these methods focused solely on truck-carrying activities without
considering the refueling or charging requirements of the trucks. Path planning between
loading and unloading spots, a crucial aspect of scheduling, has also been largely ignored
in previous research. As a conclusion of this subsection, the prevalent scheduling methods
do not model the concrete dynamics/kinematics and other temporal constraints of the
operating devices; thus, they did not account for the actual complexity of operating an
open-pit mine.

1.2. Contributions

Following the motivations introduced in the preceding subsection, we summarize the
contributions of this paper and are as follows.

First, we propose a high-precision scheduling model with microscopic factors of
each device considered. The model incorporates the use of a Voronoi diagram for spatial
path estimation and velocity assignment. The diagram is used to enhance the scheduling
accuracy so that local factors are well considered.

Second, this paper proposes a novel structure to present each of the solutions, thus
enhancing the interpretability of the scheduling process and facilitating the solution gener-
ation process.

Third, a novel metaheuristic optimizer is proposed to search for a high-quality schedul-
ing solution based on the aforementioned model and solution structure. The proposed
optimizer is a special variant of the artificial bee colony (ABC) algorithm, which enhanced
the ability to quickly exploit feasible solution candidates.

1.3. Organization

In the remainder of this paper, Section 2 formulates the concerned scheduling problem
as a combinatorial optimization problem. Section 3 introduces the proposed optimizer to
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solve the formulated optimization problem together with a novel solution presentation
structure. Simulation results are reported and discussed in Section 4, followed by Section 5,
where conclusions are finally drawn.

2. Problem Formulation

This section formulates the concerned scheduling scheme as a combinatorial optimiza-
tion problem, which is focused on how to use unmanned dump trucks and excavators to
deliver mine materials efficiently in open-pit mining. The purpose of the combinatorial op-
timization problem is to minimize the consumed energies, maximize the mineral transport
capacity, and minimize the operation time.

In this work, unmanned dump trucks and excavators are the two types of machinery
operated in the concerned mining transport scheme. Given that the terrain of the open-pit
mine is not even, some parts of the terrain occupied by obstacles are not drivable; thus, the
uneven parts of the terrain are regarded as obstacles. Suppose that the number of deployed
unmanned dump trucks is Ntruck. This work assumes that each excavator is fixed at a
loading spot, a designated location where loading operations occur. The gross number
of loading spots is denoted as Nloading_spots. Similarly, we assume that the number of
unloading spots is Nunloading_spots. Before its battery is completely depleted, an unmanned
dump truck should visit a charging spot for battery recharging. The basic working states
of an unmanned dump truck include moving to the loading spot, loading, moving to the
unloading spot, unloading, and moving to the charging spot. Given that the excavators are
fixed, operating the devices in this open-pit mine means manipulating the Ntruck unmanned
dump trucks. Thus, the concerned scheduling task is about deciding the working states
and targets of each unmanned dump truck in a sequence for the next Nstep steps.

2.1. Cost Function Formulation

The concerned scheduling scheme is inherently a combinational optimization problem,
aiming to minimize overall energy consumption, maximize transport capability, and reduce
vehicle idle times, for Nstep tasks assigned to each of the Ntruck unmanned dump trucks.
The cost function of the combinational optimization problem, as described in Equation (1),
is a weighted sum of three terms: each truck’s transport capability, energy consumption,
and the total time spent when the last truck among all the Ntruck ones finishes its Nstep-th
task. The three terms are summed up after being multiplied by weighting coefficients w1,
w2, and w3:

Ntruck

∑
i=1

(
w1

Qi
+ w2 × Ei

)
+ w3 × T, (1)

where Qi denotes the gross transport capability of unmanned dump truck i after finishing
all of its Nstep tasks, Ei denotes the consumed energies of unmanned dump truck i after it
finishes all of its Nstep tasks, and T denotes the earliest moment that all of the Ntruck trucks
finish their Nstep tasks. Details behind these variables are defined as follows.

2.2. Transport Capability Composition

In Equation (2), Qi is defined as the product of the basic loading capability of the
truck i (i.e., Ci) and Nunloading, the steps among all of the Nstep ones that involve unloading
actions. Notably, Nunloading is determined according to a specific solution.

Qi = Ci × Nunloading. (2)

2.3. Energy Consumption Composition

Equation (3) shows that the energy consumption of each unmanned dump truck
is composed of the energy consumption during the on-road cruising process, the en-



Electronics 2023, 12, 3793 5 of 16

ergy consumption during the loading actions, and the energy consumption during the
unloading actions:

Ei = Ecruising + Eloading + Eunloading. (3)

Herein, Ecruising sums up the energy consumption of unmanned dump truck i during
its cruising process. Eloading sums up the energy consumption of unmanned dump truck i
during all of its loading actions. Eunloading sums up the energy consumption of unmanned
dump truck i during its unloading actions.

Ecruising consists of two components: energy consumed by the drive system and that
of the accessory system [32]. According to the classical vehicle dynamics principle [33], the
energy consumption of an unmanned dump truck is defined as

Ecruising = w4 × v3
i × Tcruising + w5 × vi × Tcruising, (4)

where Tcruising is the driving time of unmanned dump truck i to complete Nstep tasks,
which is determined as per a specific solution candidate. vi denotes the average speed of
unmanned dump truck i during cruising process. w4 and w5 are weighting parameters.

Equations (5) and (6) define the energy consumption during loading and unloading
actions, respectively:

Eloading = w6 × Tloading, (5)

Eunloading = w6 × Tunloading. (6)

Herein, Tloading is the loading time of unmanned dump truck i during loading tasks;
Tunloading is the unloading time of unmanned dump truck i during its unloading tasks. w6
is the coefficient that converts loading/unloading time to energy consumption.

2.4. Time Composition

In the process of completing Nstep assigned tasks, each unmanned dump truck encoun-
ters several stages, including a driving stage, a waiting stage, a loading stage, an unloading
stage, and a charging stage. Equation (7) defines the time for each truck to complete the
corresponding Nstep established tasks.

Ti = Tcruising + Tloading + Tunloading + Twaiting + Tcharging, (7)

where Ti is the total time of unmanned dump truck i to complete Nstep tasks; Tunloading is
the waiting time of unmanned dump truck i to complete Nstep tasks; and Tcharging is the
charging time of unmanned dump truck i to complete the scheduled Nstep tasks.

Equation (8) presents the total time taken by Ntruck unmanned dump trucks to com-
plete Nstep given tasks.

T ≡ max
{

T1, T2, T3 . . . TNtruck

}
. (8)

Equation (9) indicates that the driving time of unmanned dump truck i is related to
the task spots that need to be visited:

Tcruising =
Nstep

∑
j=1

TravelTime
(
taskspotj, taskspotj+1

)
. (9)

Herein, TravelTime(a, b) is a function that estimates the driving time from task spot a
to b. taskspotj denotes the task spot that the jth task of unmanned dump truck i is required
to visit.

Equation (10) defines the loading time of unmanned dump truck i during loading tasks:

Tloading = Nstep_load × Tload_p, (10)
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where Tload_p is the loading time for unmanned dump truck i loading at each loading spot.
Nstep_load is the number of loading tasks.

Equation (11) shows the unloading time of unmanned dump truck i during unloading tasks:

Tunloading = Nstep_unload × Tunload_p, (11)

where Tunload_p denotes the unloading time for unmanned dump truck i unloading at each
unloading spot. Nstep_unload is the number of unloading tasks.

Equation (12) indicates that waiting time includes the time waiting for loading, waiting
for unloading, and waiting for charging.

Twaiting = Twaiting_load + Twaiting_unload + Twaiting_charge, (12)

where Twaiting_load denotes the time that unmanned dump truck i spends on waiting
for loading during the completion of Nstep tasks; Twaiting_unload denotes the time that
unmanned dump truck i spends on waiting for unloading during the completion of Nstep
tasks; and Twaiting_charge denotes the time that unmanned dump truck i spends on waiting
for charging during the completion of Nstep tasks.

Equation (13) shows that the charging time depends on the residual capacity when
the unmanned dump truck reaches the charging spot for charging:

Tcharging ≡
Efull − Eremain

q
. (13)

Herein, Efull is the full electric quantity of unmanned dump truck i; Eremain is the
residual capacity when the unmanned dump truck i reaches the charging spot; and q
represents the charging efficiency.

The residual capacity of the unmanned dump truck depends on how many tasks are
completed and which loading and unloading spots are visited.

3. Methodology

In the scheduling problem formulated in the previous section, the solution candidates
differ from one another in their task scheduling sequences, thereby resulting in different
cost function values. This section introduces how to solve the formulated problem. To that
end, the first thing is to define an encoding principle so that all of the solution candidates
can be presented uniformly in such a solution space. Thereafter, an efficient solver should
be proposed to search for the optimal or near-optimal solution in the defined solution space.
The technical details are introduced in the next few subsections.

3.1. Principle of Solution Vector Encoding

The encoding strategy for the scheduling sequence is determined by the number of
loading and unloading spots in the environment. Concretely, if there are two loading spots
and three unloading spots, the serial numbers for the loading spots are designated as {1, 2}.
Meanwhile, the serial numbers for the unloading spots are set to {3, 4, 5}, and the serial
number for the charging spot is represented as {6}. As shown in Figure 3, suppose that there
are eight tasks to be scheduled for each unmanned dump truck. The scheduling sequence
for the unmanned dump truck #1 might be {1, 3, 2, 4, 2, 1, 2, 5}. In such a sequence, the
red part of the figure should be penalized for repeated selections of the loading spot while
the green part should not be penalized. As for the unmanned dump truck #2, the red part
of the figure should be penalized for repeated selections of the unloading spot while the
green part should not be penalized.
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3.2. Scheduling Problem Re-Formulation

In the previous section, Equation (1) defines the cost function. However, the cost
function does not adequately consider the establishment of the hard constraint. Therefore,
we redefine the cost function here to ensure that the feasibility of the solution vector is not
determined solely by the constraint, but also by the penalty function. This redefinition
is beneficial for the subsequent utilization of the optimization algorithm, which will be
discussed in detail later.

When allocating tasks to multiple unmanned dump trucks, it is vital to ensure that
the optimal task scheduling sequence prevents excessive idle time for any truck. Thus, the
variance of time taken by each unmanned dump truck to finish its tasks is incorporated
into the cost function as a penalty term. This inclusion promotes quicker identification of
the optimal task scheduling sequence, averting significant disparities in the completion
times among trucks. As a result, the revised cost function is defined as follows:

Ntruck

∑
i=1

(
w1

Qi
+ w2 × Ei

)
+ w3 × T + w7 × Npunish + w8 × Tvar, (14)

where Npunish is the number of repeated loading and unloading spots in the task scheduling
sequence. w7 is the weight coefficient of the penalty term for repeated spots. Tvar represents
the variance of the time taken by all unmanned dump trucks to complete the given task
according to the current task scheduling sequence. w8 is the weight coefficient of the
penalty term for variance.

3.3. Improved-Evolution Artificial Bee Colony Search Procedure

The artificial bee colony (ABC) algorithm is a heuristic optimization algorithm based
on bee behavior. It is used to solve complex optimization problems by simulating the
foraging behavior and information exchange of bees. The local search accuracy of the
conventional ABC algorithm is not satisfactory. The improved-evolution artificial bee
colony (IE-ABC) algorithm used in this paper is an improved artificial bee colony algorithm.
The search intensity is manipulated by adding an adaptive change multiplier to the global
search equation, and the traditional re-initialization process is improved by the overall
degradation strategy to obtain a better optimal solution.

Algorithm 1 uses the IE-ABC search framework to search for the optimal scheduling
scheme, which includes the initialization phase (lines 1–2), the employed bee phase (lines
4–12), the calculation of the probability index to prepare for the roulette selection strategy
(lines 13–20), the onlooker bee phase (lines 21–38), and the scout bee phase (lines 39–44).
trial(i) records the number of times an inefficient search is performed by the ith employed
bee or any onlooker bee that searches around the ith employed bee. trial(item)

trial(item)+trial(k) in
the fifth line is utilized as an adaptive change multiplier to regulate the search intensity.
The solution vector X represents the scheduling sequence, and Equation (14) represents
the objective function GetCostFun(). P represents the probability index. During the
scout bee stage, if the number of searches exceeds the limit, the position of the scout bee
is reinitialized.

The pseudo-code of the IE-ABC algorithm is given as follows.
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Algorithm 1. IE-ABC.

1. Set the population size PN, and maximum cycle number MCN; Set the inefficient trial time
counter trial(i)← 1 (i = 1, 2, . . ., PN/2);

2. Randomly initialize locations of PN/2 scout bees;
3. for iter = 1 to MCN do
4. for item = 1 to PN/2 do
5. Generate X∗item for the item-th employed bee to search according to

X∗item ← Xitem + rand(−1, 1)× (Xk − Xitem)×
trial(item)

trial(item)+trial(k) ;

6. X′item ← ChargeConstruct(X∗item) ;
7. if GetCostFun(X′item) < GetCostFun(Xitem) then
8. Xitem ← X∗item , and set trial(item)← 1 ;
9. else
10. trial(item)← trial(item) + 1 ;
11. end if
12. end for
13. for i = 1 to PN/2 do
14. if GetCostFun(Xi) ≥ 0 then
15. f itness(i)← 1

1+GetCostFun(Xi)
;

16. else
17. f itness(i)← 1 + |GetCostFun(Xi)| ;
18. end if

19. P(i)← ∑i
j=1 f itness(j)

∑PN/2
j=1 f itness(j)

;

20. end for
21. Set item = 0;
22. Set j = 1;
23. while item < PN/2 do
24. if P(j) > rand(0, 1) then
25. item← item + 1 ;
26. Choose the jth employed bee to follow, and then generate,

Yitem ← Xj + rand(−1, 1)× (Xk − Xj)×
trial(j)

trial(j)+trial(k) ;

27. Y′item ← ChargeConstruct(Yitem) ;
28. if GetCostFun(Y′item) < GetCostFun(Xj) then
29. Xj ← Yitem , and set trial(j)← 1 ;
30. else
31. trial(j)← trial(j) + 1 ;
32. end if
33. end if
34. j← j + 1 ;
35. if j > PN/2 then
36. Set j← 1 ;
37. end if
38. end while
39. for item = 1 to PN/2 do;
40. if trial(item) > Limit then
41. Re-initialize the location of the item-th employed bee;
42. Set trial(item)← 1 ;
43. end if
44. end for
45. Memorize the best solution;
46. end for
47. Output the best solution;

During the initialization phase, the sequence for scheduling is arranged based on
the loading and unloading order to streamline the search for the best solution. After
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establishing this sequence, the energy consumption required for the unmanned dump truck
to complete its tasks is assessed. This assessment subsequently informs when the truck
needs recharging.

Algorithm 2 identifies the best recharging moments, relying on the loading and
unloading order of the unmanned dump truck. The algorithm starts by accepting the
sequence of loading and unloading tasks as its input. In its third line, it estimates the
driving time between successive task spots, as dictated by the task sequence. The next line,
i.e., line 4, computes the truck’s residual energy, based on the calculated driving time. Then,
from lines 5 to 10, the algorithm discerns if there exists a need for recharging by considering
the leftover energy. If charging is deemed necessary, it then updates the task sequence to
accommodate this.

The pseudo-code for the ChargeConstruct algorithm is presented below.

Algorithm 2. ChargeConstruct

Input: X;
Output: X′;

1. Set i = 1;
2. while i < Nstep do
3. Tcruising ← TravelTime(Xi, Xi+1) ;
4. Eremain ← Energycost(Tcruising) ;
5. if Eremain < 0 then
6. Xi ← chargespot ;
7. X ← newX ;
8. Nstep ← new Nstep ;
9. i← 1 ;
10. end if
11. end while
12. X′ ← X ;
13. return.

The energy consumption of the unmanned dump truck is related to the working time.
The driving time of the unmanned dump truck between the loading spots, unloading spots,
and charging piles is proportional to the path length. The planning space is modeled by
using the Voronoi diagram, and the optimal path is obtained by combining the A* search
algorithm [34], so as to estimate the optimal path length.

The Voronoi diagram is a fundamental geometric concept used to divide a plane based
on a discrete set of spots. The diagram ensures that the distance from any spot in a given
region to its corresponding spot in the discrete set is smaller than the distance to any other
spot in the set.

Assuming that the set of discrete spots D = {d1, d2, d3 . . . dn}, the mathematical
expression of the Voronoi diagram is as follows:√

(x− xi)
2 + (y− yi)

2 <
√
(x− xj)

2 + (y− yj)
2, i 6= j (15)

where (xi, yi) and (xj, yj) represent the coordinates of any two discrete spots di and dj in
the set D, respectively. (x, y) represents the coordinates of any spot on the plane.

By satisfying Equation (15), the set of spots (x, y) forms the Voronoi region for the
discrete spot di. Consequently, the plane can be divided into n polygons, where each
polygon contains only one discrete spot di.

Furthermore, the spots lying on the edges of the Voronoi polygon satisfy specific constraints.
√
(x− xi)

2 + (y− yi)
2 =

√
(x− xj)

2 + (y− yj)
2√

(x− xi)
2 + (y− yi)

2 <
√
(x− xk)

2 + (y− yk)
2

, i 6= j 6= k (16)
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where (xi, yi) and (xj, yj) represent the coordinates of adjacent discrete spots di and dj,
respectively. (xk, yk) represents the coordinates of any other discrete spot dk.

The planning space is segmented into multiple Voronoi regions based on the placement
of obstacles within the environment. Recognizing that obstacles can vary in size and shape,
their boundaries are discretized using a method that employs numerous discrete spots
to encapsulate these boundaries. The Delaunay triangulation algorithm constructs the
Voronoi diagram from this. To enhance this representation, virtual nodes are placed near
pivotal areas, including loading spots, unloading spots, and charging spots. These nodes
are then integrated with the original Voronoi diagram, yielding the final representation.

The A* algorithm operates on a traversal search principle, leveraging a heuristic
function. This function gauges the cost of moving from any location to the destination,
steering the search towards the most viable routes. By adopting the Voronoi diagram as the
model for the planning space, the A* algorithm’s search is limited to traversing only the
nodes within the diagram, substantially enhancing its efficiency. After identifying the best
path, the algorithm can then estimate its length.

4. Simulation Results and Discussion

This section reports the simulation results, together with our in-depth discussions.
Concretely, the simulation experiments will be conducted in three aspects. First, com-
parative experiments will be performed using various optimization algorithms. Second,
comparative experiments will be carried out with different cost function definition strate-
gies. Third, comparative experiments will be performed using different encoding strategies
for the solution vector.

4.1. Simulation Setup

Simulations are implemented in a MATLAB platform and executed on an Intel(R)
Core(TM) i7-7700 CPU with 16 GB RAM that runs at 8 × 3.6 GHz.

Critical parameters are listed in Table 1. In order to increase the diversity of unmanned
dump trucks, two kinds of unmanned dump trucks are set up, which have different load
capacities and loading and unloading times, respectively. Each unmanned dump truck has
two average speeds during cruising.

Table 1. Parametric settings for simulations.

Parameter Description Setting

Ntruck Number of unmanned dump trucks 4

Nstep Number of tasks to be completed per unmanned dump truck 20

Nloading_spots Number of loading spot 2

Nunloading_spots Number of unloading spot 3

w1, w2, w3 Weight coefficient in Equation (1) 100, 2.7 × 10−7, 0.01

w4, w5 Weight coefficient in Equation (4) 0.925, 430

w6 Weight coefficient in Equation (5) 4000

Ci The load capacity of unmanned dump truck i 1 t, 2 t

vi The average speed of unmanned dump truck i during cruising 10 m/s, 15 m/s

Tload_p Loading time of unmanned dump truck i at loading spot 10 s, 20 s

Tunload_p Unloading time of unmanned dump truck i at unloading spot 10 s, 20 s

Efull Full electric quantity of unmanned dump truck i 0.25 kWh

q Charging efficiency 3 × 104 J/s

w7, w8 Weight coefficient in Equation (14) 1, 0.0001
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4.2. Simulation Results

The conventional ABC and the proposed IE-ABC are used to solve the proposed
scheduling problem. The results are shown in Table 2. The cost function value obtained
by IE-ABC is 10.31, while the cost function value obtained by ABC is 10.43. The cost
function value obtained by IE-ABC is 0.67% lower than that of ABC. Additionally, the
energy consumption and time required for the solution obtained by IE-ABC to complete the
task are 8.93 × 106 J and 620.0 s, respectively. On the other hand, the energy consumption
and time required for the solution obtained by ABC to complete the task are 9.18 × 106 J
and 624.9 s, respectively. Consequently, the solution obtained by IE-ABC reduces the energy
consumption and time required to complete the task by 0.23% and 0.93%, respectively,
compared to ABC. The improved algorithm has achieved steady advantages in terms of
both energy consumption and time. The scheduling Gantt chart of the solution obtained by
IE-ABC is shown in Figure 4.

Table 2. Simulation result of different optimization algorithms.

Algorithm Cost Consumed Energy (J) Time (s)

IE-ABC 10.31 8.93 × 106 620.0
ABC 10.43 9.18 × 106 624.9
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It can be seen from Figure 4 that the effectiveness of the scheduling scheme is guaran-
teed. The obtained scheduling sequence can arrange the loading and unloading tasks of
the unmanned dump truck in an orderly manner, and the charging tasks are interspersed
among them to ensure the coordination and sustainability of the tasks. As shown in
Figure 4, the Gantt chart of the scheduling scheme for 20 tasks is arranged for the four
unmanned dump trucks, respectively. Different colors represent the unmanned dump
trucks working at different task spots, among which No. 1 and No. 2 represent the loading
spots, No. 3, No. 4, and No. 5 represent the unloading spots, No. 6 represent the charging
spot, red represents the unmanned dump truck driving stage, and purple represents the
unmanned dump truck waiting stage.

It can be seen from the figure that the unmanned dump truck #1 first travels to the
No. 2 loading spot to complete the loading task, and then travels to the No. 4 unloading
spot to perform the unloading task. The unmanned dump truck #2 reaches the No. 2
loading spot later than the unmanned dump truck #1, so the unmanned dump truck #2
waits for the unmanned dump truck #1 to complete the loading task at the No. 2 loading
spot, and then performs the loading task at the No. 2 loading spot.
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In order to explore the influence of different factors on ABC optimization, ablation
experiments are carried out. The ablation experiment results are shown in Figure 5. Com-
pared with the conventional ABC, IE-ABC mainly changes two factors. One is to add
an adaptive multiplier to the global search equation to manipulate the search intensity,
and the other is to implement the traditional re-initialization process through the overall
degradation strategy. In Figure 5, AE-1 only changes the first factor compared with the
conventional ABC, and AE-2 only changes the second factor. It can be seen from the results
in the figure that changing these two items has promoted the optimization search, and
changing the second factor has a greater impact on the early optimization.
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In order to explore the impact of different cost function definition strategies on solving
the scheduling problem, a cost function considering energy consumption, time, and output
is established. This function is compared against a cost function that disregards time and
only considers energy consumption and output. The experimental results are presented in
Table 3. The cost function value of the optimal solution obtained using the cost function
considering energy consumption, time, and output is 10.31. In comparison, the cost
function value of the optimal solution obtained ignoring time and only considering energy
consumption and output is 10.63. The former is 3.1% lower than the latter. With the time-
incorporated cost function, the energy consumption and time for the optimal solution to
complete the task are 8.93 × 106 J and 620.0 s, respectively. Using the cost function without
time, the energy consumption and time required for the optimal solution to complete the
task are 9.00 × 106 J and 652.9 s, respectively. Compared to the latter, the former reduces
energy consumption and task time by 0.78% and 5.04%, respectively.

Table 3. Simulation result of different cost function definition strategies.

Cost Function Definition Strategy Cost Consumed Energy (106 J) Time (s)

Regarded-time Strategy 10.31 8.93 620.0
Disregarded-time Strategy 10.63 9.00 652.9

As shown in Figure 6, the Gantt chart illustrates the optimal scheduling scheme
obtained using the cost function that disregarded time and only considered energy con-
sumption and output. The meaning of different colors and numbers in Figure 6 is the same
as that in Figure 4. Compared to the optimal scheduling scheme in Figure 4 found by
comprehensively accounting for energy consumption, time, and output in the cost function,
the time for each unmanned dump truck to complete its corresponding 20 tasks is increased.
This indicates that incorporating time into the cost function along with energy consumption
and output enabled optimization to find an improved solution.
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To investigate the impact of different vector encoding strategies on the solution of
the scheduling problem, we compared the solution vector encoding strategy proposed in
Section 3.1 with the binary encoding strategy. In the binary encoding strategy, the allocation
of tasks is represented by a binary string. For example, if there are two loading spots
and three unloading spots, the scheduling sequence {01001} represents that the unmanned
dump truck travels to No. 2 loading spot to load and then proceeds to No. 5 unloading
spot to unload.
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The comparative experimental results of the two encoding strategies are presented in
Table 4. The cost function value of the optimal solution obtained using the proposed en-
coding strategy is 10.31, compared to 10.61 for the binary encoding strategy. The proposed
encoding strategy’s cost function value is 2.83% lower than that of the binary encoding
strategy. The energy consumption and time for the proposed encoding strategy’s optimal
solution are 8.93 × 106 J and 620.0 s, respectively. In comparison, energy consumption and
time for the binary encoding optimal solution are 9.07 × 106 J and 636.2 s, respectively.
Compared to the binary encoding solution, the proposed encoding strategy’s solution
reduces energy consumption and task time by 1.54% and 2.55%, respectively.

Table 4. Simulation result of different encoding strategies.

Encoding Strategy Cost Consumed Energy (106 J) Time (s)

Proposed Encoding 10.31 8.93 620.0
Binary Encoding 10.61 9.07 636.2

Figure 7 shows the Gantt chart for the optimal scheduling scheme obtained through
binary encoding. The meaning of different colors and numbers in Figure 7 is the same as
that in Figure 4. Compared to the Gantt chart in Figure 4 using the proposed encoding
strategy, a larger time gap existed between the earliest finishing unmanned dump truck
#3 and the latest finishing unmanned dump truck #2 for their respective 20 assigned
tasks. Additionally, the total time is longer with the binary encoding strategy. This
indicates that the encoding strategy used in this study enabled obtaining an improved
scheduling scheme.
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4.3. Discussion

The developed scheduling algorithm is suitable for the unmanned dump truck schedul-
ing problem in a complex open-pit mine environment. First, for the complex terrain and
road network in the open-pit mine area, the algorithm can select the best path according
to the location and target of the unmanned dump truck to minimize energy consumption
and time cost. Second, the algorithm can intelligently allocate the driving route for the
unmanned dump truck according to the energy situation of the unmanned dump truck, so
as to avoid the occurrence of energy exhaustion. In addition, the algorithm can reasonably
arrange the driving sequence and work allocation of unmanned dump trucks according to
the location and task requirements between unmanned dump trucks, so as to maximize
the overall production efficiency. However, it is important to note that the algorithm may
face certain technical limitations in the open-pit mine environment. Factors such as terrain
changes and weather conditions can impact the algorithm’s performance.

5. Conclusions

This article has proposed a high-precision multi-vehicle collaborative scheduling
proposition model considering micro-space-time factors to solve the unmanned dump
truck scheduling problem in open-pit mines.

The optimization objective comprehensively considers energy consumption, time, and
output. In addition to the loading and unloading activities, the unmanned dump truck
also considers charging demand in the scheduling model. The model incorporates Voronoi
graph search and optimal time matching of spatial paths. It aims to provide a better task
decision planning solution for unmanned dump trucks in mining areas. To effectively
solve the scheduling problem, an improved artificial bee colony algorithm is proposed.
The original algorithm is enhanced in the global search process and the re-initialization
process. An ablation experiment is conducted to explore the impact of these improvements
on the optimization process. The ablation experiment result shows that changing these
two items has promoted the optimization search. In addition, comparative simulation
experiments are conducted using different algorithms, cost function definition strategies,
and encoding strategies. Comparative simulations indicate the proposal can reduce energy
consumption and time. Compared to the models utilizing ABC algorithms, cost function
strategy definition without considering time, and binary encoding strategy, the proposed
model and method achieved reductions of 0.67%, 3.1%, and 2.83% in the comprehensive
cost functions of energy consumption, time, and output, respectively. Moreover, simulation
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results demonstrate that the proposed model and method offer an effective solution for
scheduling decisions in mining areas.

There are numerous factors that impact the overall cost of the unmanned dump truck
scheduling problem. In the future, it is worth exploring the optimization of speed and
scheduling arrangements in the event of unmanned dump truck failures. These areas
present promising avenues for further research.
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