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Abstract: 6G targets a broad and ambitious range of networking scenarios with stringent and diverse
requirements. Such challenging demands require a multitude of computational and communica-
tion resources and means for their efficient and coordinated management in an end-to-end fashion
across various domains. Conventional approaches cannot handle the complexity, dynamicity, and
end-to-end scope of the problem, and solutions based on artificial intelligence (AI) become neces-
sary. However, current applications of AI to resource management (RM) tasks provide partial ad
hoc solutions that largely lack compatibility with notions of native AI enablers, as foreseen in 6G,
and either have a narrow focus, without regard for an end-to-end scope, or employ non-scalable
representations/learning. This survey article contributes a systematic demonstration that the 6G
vision promotes the employment of appropriate distributed machine learning (ML) frameworks
that interact through native AI enablers in a composable fashion towards a versatile and effective
end-to-end RM framework. We start with an account of 6G challenges that yields three criteria for
benchmarking the suitability of candidate ML-powered RM methodologies for 6G, also in connection
with an end-to-end scope. We then proceed with a focused survey of appropriate methodologies
in light of these criteria. All considered methodologies are classified in accordance with six dis-
tinct methodological frameworks, and this approach invites broader insight into the potential and
limitations of the more general frameworks, beyond individual methodologies. The landscape is
complemented by considering important AI enablers, discussing their functionality and interplay,
and exploring their potential for supporting each of the six methodological frameworks. The article
culminates with lessons learned, open issues, and directions for future research.

Keywords: 6G networks; resource management; end-to-end; network management and orchestration;
distributed machine learning; reinforcement learning; federated learning; pervasive AI; native
AI enablers

1. Introduction
1.1. Background and Motivation

It is expected that 6G will provide support for networking scenarios of unprecedented
breadth, ambition, and complexity. Relevant use cases encompass Industry 4.0, healthcare,
holographic communications, virtual reality and meta-verse applications, vehicular net-
works, and haptic communications, all of which present stringent and diverse requirements
in terms of bandwidth, latency, reliability, connectivity, security, and privacy while being
computationally intensive [1]. Moreover, the association of 6G with a paradigm shift to-
wards the combined provision of connectivity, computational capabilities, and ubiquitous
intelligence [1–3] creates an even more challenging landscape that calls for the ubiquitous
availability of a multitude of heterogeneous resources and means for their efficient and
coordinated management in an end-to-end fashion across various relevant domains or re-
source clusters with complicated dependencies [1,4]. Conventional algorithmic approaches
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fall short in handling the complexity, dynamicity, and end-to-end scope of the problem,
and solutions based on AI become necessary. In fact, it is envisaged that such AI-based
management solutions will be integrated with native facilities in the network architecture,
and this vision poses additional challenges, not only in terms of the required integration,
but also with respect to the structure of the AI models themselves [1,5,6].

Exploiting AI for network management in general and resources management (RM)
in particular is not a 6G novelty, as research in this direction has already made headway
in the context of 5G networks; see, e.g., [4,7–9] and references therein. Relevant examples
include AI-based solutions for spectrum management, power allocation, user association,
beamforming, mobility management, cache management, virtual network function (VNF)
placement, and end-to-end RM and orchestration. Various methodologies using ML have
been adopted, from supervised learning (SL) to reinforcement learning (RL), according
to learning frameworks exhibiting a varying degree of centralization. However, most
approaches proposed to date are tailored to particular use cases, frequently focusing on a
narrow set of resources and/or network domains, without regard for an end-to-end scope.
Also, many approaches employ representations/learning that cannot scale to address the
greater complexity, diversity, and sophistication of 6G. Finally, the current approaches
give little or no consideration to how they function in the context of network-native
AI-enabling facilities.

1.2. Contributions

In view of the shortcomings just mentioned, there is a need for reexamining and
reassessing AI-based methodologies for RM proposed in the literature, seeking new insight
along a combined viewpoint that jointly considers the following: the structure and effec-
tiveness of candidate AI-based solutions for RM; the suitability of these solutions for use
as building blocks towards managing resources end-to-end; the potential of the solutions
for addressing the greater challenges posed by the 6G vision; the degree to which the solu-
tions are capable for functioning in the context of emerging network-native AI-supporting
facilities. This is the approach we take in this survey article, with the aim of providing
a systematic demonstration that the 6G vision promotes the paradigm of employing ap-
propriate distributed ML frameworks that interact through native AI enablers in a highly
composable fashion towards a versatile and effective end-to-end RM framework.

We start with a concise account of 6G challenges in connection with RM, considering
aspects relevant to specific types of resources and network domains, as well as aspects of a
more general nature. The account of challenges gives rise to the formulation of three criteria
that can be used as benchmarks for the suitability of candidate AI-based RM methodologies
in the context of 6G and for their potential as parts of end-to-end RM mechanisms.

Subsequently, we exploit the gained insight in the course of a focused literature
survey on RM methodologies leveraging AI. We concentrate our attention on a subset of
methodologies that are more pertinent to the 6G vision based on their distributed decision-
making capability, a feature that matches with the disaggregated characteristics of 6G
networks and has an inherently greater potential for scalability. A second scope-defining
characteristic arises from the orientation of the article towards RM tasks and the associated
need for closed-loop control and automation [4], which naturally points to RL-based
methodologies. Furthermore, in the interest of introducing additional structure in the
survey, we classify the distributed RL-based methodologies in accordance with six distinct
distributed RL frameworks (two of which also employ federated learning (FL)) that exhibit
varying degrees of interaction between the decision-making units. By leveraging these
frameworks, the literature survey does not only identify the strengths and weaknesses (with
respect to the aforementioned three criteria) of the individual methodologies reviewed,
but also highlights the potential and limitations of the frameworks themselves, in terms of
managing different types of resources or managing resources end-to-end. The comparison
between frameworks brings forward certain trade-offs that are discussed.
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To complement the combined viewpoint targeted by the article, we then turn to
network-native AI enablers that are part of the 6G vision. Specifically, we consider three
complementary enablers: the AI plane that establishes AI workflows to manage data
collection and status monitoring and perform AI model training, planning, and AI model
deployment to the network [1,10]; knowledge reuse facilities that allow for model libraries,
model selection, and transfer learning [11]; and digital twin networks (DTNs), that will
enable network performance prediction and model training [12,13]. We describe how these
enablers support the function of AI models in general, but also, importantly, discuss the
potential of the enablers and the implications involved when they provide support for each
of the six aforementioned distributed RL frameworks. Finally, we exploit the insight gained
from all previous steps towards discussing lessons learned and identifying open issues and
promising directions for future research.

Recapitulating, the article makes the following contributions:

• It provides a concise account of 6G challenges that yields three criteria for bench-
marking the suitability of candidate ML-powered RM methodologies for 6G, also in
connection with an end-to-end scope.

• Through a focused literature survey, it reviews distributed RL-based methodologies for
RM, evaluating them with respect to the three criteria. The considered methodologies
are categorized into six methodological frameworks, and this approach invites broader
insight into the potential and limitations of the more general frameworks, beyond
individual methodologies.

• It considers three important network-native AI enablers that are part of the 6G vi-
sion, discussing their functionality and interplay and exploring their potential for
supporting each of the six methodological frameworks.

• It exploits the insight gained from previous steps towards discussing lessons learned
and identifying open issues and promising directions for future research.

1.3. Related Work

To the best of the authors’ knowledge, this is the first time that the combined consider-
ation of the issues targeted by the paper is pursued in its entirety and through a unified
perspective and methodology. Nevertheless, there are a few earlier works addressing some
aspects of end-to-end RM in conjunction with some notion of AI enablers, often coming
under the label of pervasive AI (PAI), and we now comment upon such related work.
Publication [11] discusses end-to-end RM in the narrower context of slicing, and transfer
learning is examined as an enabler for the application of ML in next-generation networks. A
taxonomy of AI methodologies is provided, together with a discussion of the applicability
and limitations associated with these methodologies. However, neither the interactions
between the operating infrastructure and a knowledge reuse mechanism nor other AI en-
ablers are discussed. Works [14,15] provide reviews of end-to-end distributed intelligence
from the “network-for-AI” viewpoint, targeting next-generation networks. This aspect of
distributed intelligence focuses on how the network technologies can support AI appli-
cations running on the network, as opposed to the “AI-for-network” viewpoint, adopted
here, that focuses on how AI can be leveraged for managing the network itself. However,
the notion of native AI enablers is common in both viewpoints, and these surveys provide
a complementary perspective to this article, discussing certain things, such as distributed
inference and computation and communication co-design. In [16], the interaction between
entities virtualizing the network and its users with pervasive intelligence is discussed.
DTNs are presented as an intermediate component between infrastructure operation and
network control powered by AI. Additionally, composability of AI solutions is discussed.
However, transfer learning and AI workflows are not considered as part of the framework.
Finally, publication [17] provides a very detailed examination of distributed algorithms in
the context of IoT applications and explores trade-offs relating to their applicability but
does not discuss the interplay with specific AI enablers.
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Differently from these previous works, we adopt a more holistic approach that ex-
ploits a review of 6G challenges in connection with RM, also considering an end-to-end
scope, towards formulating criteria for assessing the suitability of candidate AI-powered
methodologies for managing resources in 6G, as well as for narrowing down the space
of candidate methodologies. Moreover, when reviewing the methodologies in scope, we
proceed by classifying them in accordance with a few distinct methodological frameworks,
and this approach invites broader insight about the potential and limitations of the more
general frameworks, beyond the particular methodologies reviewed. Finally, this approach
is carried over to the consideration of the network-native AI enablers, which are treated
comprehensively, but also in connection with their potential for supporting each one of the
methodological frameworks.

A summary of the previous discussion on related work appears in Table A1 within
Appendix A.

1.4. Paper Structure

The rest of the article is structured as follows: Section 2 provides the account of 6G
challenges. Section 3 formulates the three benchmarking criteria, introduces the six method-
ological frameworks for the classification of the RM methodologies, and proceeds with the
review of the methodologies in scope. Different types of resources are treated in individual
subsections, always in association with the same set of methodological frameworks, while
another subsection explores unifying and distinguishing features across resource types
and domains and discusses relevant trade-offs. Section 4 considers the three AI enablers,
discusses their functionality and interplay, and explores their potential for supporting
each of the six methodological frameworks employed in the review. Section 5 exploits
all gained insight towards discussing lessons learned and identifying open issues and
promising directions for future research. Finally, Section 6 concludes. The main text is
supplemented with two appendices. Appendix A includes two tables, with one summa-
rizing the discussion about related work in Section 1.3 and the other briefly describing
the content of survey articles referred to in the text and addressing relevant aspects in a
different context. Appendix B contains a very brief account of ML preliminaries. Only
an elementary coverage is provided, with the sole purpose of making the article more
self-contained and accessible to a wider readership. For additional details and a deeper
coverage, the reader is directed to other sources of information.

2. Challenges Relating to RM in 6G

The 6G vision poses unique challenges to the management and operation of the net-
work infrastructure due to stringent application requirements, huge scale, high dynamics,
and an increasing tendency for disaggregation [3]. Indeed, challenging applications were al-
ready a driver in shaping 5G, giving rise to a classification into enhanced mobile broadband
(eMBB), ultra-reliable low-latency communication (URLLC), and massive machine-type
communication (mMTC). In 6G, the relevant challenges are expected to be significantly
greater [1]. For example, virtual reality applications will demand extremely high trans-
mission bandwidth and computing resources while operating in real-time [18]. Vehicular
networks will require high connectivity and reliability with their operation being informed
by AI technologies [18]. In general, computational capacity and intelligence provision
under conditions of low latency will be necessary for 6G applications. As a consequence,
computational resources and AI services (catering to the needs of applications) will be hard
to host in the core network or cloud and should be disaggregated towards the edge instead.
More generally, deployment and management of services over distributed resources across
the computing continuum will be required [19].

To cope with the so-called communication–computation convergence [1], heteroge-
neous resources from different domains will have to be jointly allocated and managed,
which is hard to model when considering the associated complex interactions. Part of the
difficulty is due to the increased problem space dimensionality when multiple domains
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are considered jointly. Another part stems from a higher requirement for the coordinated
collection of analytics and for detailed status exchanges across domains, both of which need
to be sufficiently frequent to accommodate the anticipated highly dynamic conditions, and
from the latency constraints associated with these operations. These factors increase the
complexity of RM, and appropriate network support will be required to manage resources
in a coordinated fashion. Equally importantly, complexity also arises due to the scale of the
network [3,20] and to new technologies that gradually become part of the infrastructure,
in addition to the heterogeneity and spatial distribution of resources. To deal with the
increasing complexity, it is generally accepted that AI will be used to manage the network
itself apart from being offered as a service to applications [1,3,21,22]. AI will become part
of the service-based architecture, being available at every level of the network hierarchy,
from edge to core. A new AI plane will be introduced [1,3,23], in addition to the user and
control planes, with the purpose of providing services to consumers, both applications and
network management entities. It is envisaged that 6G networks and AI technologies will
support the transition from connected things to connected intelligence [24].

Given this context, each combination of resource and domain has its own challenges
to consider. Radio resources in the radio access network (RAN) are distributed between
access points and are scarce, while at the same time having to satisfy stringent requirements
from all types of applications. In addition, new air interface technologies will present an
extremely dynamic environment, that, while providing higher capabilities, will be hard to
model and optimize [20]. Power allocation is coupled to Radio RM (RRM) and presents
additional challenges, such as energy efficiency for Internet of Things (IoT) devices [4,25].
Therefore, multiple potentially competitive objectives must be optimized concurrently in
the highly distributed RAN, and it is expected that AI algorithms will be the solution.
Data collection and online training are necessary for these to function and present new
challenges in terms of communication and computational costs. Caches at the edge are
also a scarce resource that must be smartly allocated. Additionally, privacy concerns arise
since user preferences must be collected and analyzed for models to make predictions.
Implementing proactive edge caching faces challenges associated with the distributed and
localized character of the edge network, where multiple edge servers must coordinate in
order to achieve better quality of experience (QoE) and reduced traffic [4].

As mentioned earlier, computational resources will be vital for future applications, and
these resources are expected to be available both at the edge and core of the network [1,3,9].
VNFs and containerized network functions (CNFs) will provide processing capacity to
users. Generated tasks will need to be offloaded to the appropriate edge location to achieve
low latency and high resource utilization, while more computationally intensive tasks will
be sent to the core network, which creates a highly dynamic environment together with the
large number of tasks [4]. User mobility necessitates quick service migration and minimal
communication overhead to achieve high reliability in applications, such as vehicular
networks, while the heterogeneity of edge nodes and limited capacity complicates task
offloading further [26]. All these factors complicate the network management and orches-
tration (NMO) of edge VNFs/CNFs, which will have to make decisions in a decentralized
fashion to avoid large delays and traffic congestion while minimizing communication and
energy costs.

Apart from intra-domain RM, coordination and cooperation across domains is ex-
pected. Intelligent solutions to determine the best trade-off between performance, isolation,
and efficiency become necessary due to the scale of the network. Data governance will also
constitute a big challenge, as data need to become available within each domain and across
domains for consumption by management functions [1,4]. Finally, the AI plane will need
to be established for AI to be functional at every domain. The AI workflow set up by the
AI plane includes the planning, optimizing, deploying, monitoring, and maintaining of
AI models on the network infrastructure [1].
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In the next section, we exploit the insight gained from the consideration of the afore-
mentioned challenges towards a focused survey of candidate ML-powered RM methodolo-
gies and their assessment in terms of suitable benchmarking criteria.

3. Distributed ML for RM in 5G and Beyond
3.1. Overview, Benchmarking Criteria, and Methodological Frameworks

Research efforts on using AI for network RM problems have been increasing steadily
in the past few years, tackling problems from the RAN to the core. Relevant methodolo-
gies leverage both more conventional ML, as well as deep learning (DL). For an overall
account of employing such methodologies to network management and optimization tasks
and for the introduction of relevant concepts, the reader may consult, e.g., [7,25,27–30]
(Table A2 in Appendix A provides some further context about each of these references).
Here, our aim is to concentrate on a subset of methodologies that are more pertinent to the
6G vision, in alignment with the challenges discussed in the previous section. Specifically,
using as a starting point existing surveys, we examine the targeted subset of methodologies
and assess their suitability for 6G in terms of the following benchmarking criteria:

(a) Whether they are scalable to larger topologies [1] (scalability);
(b) Whether they can become a part of a larger end-to-end framework for RM [4,14,16]

(composability/modularity);
(c) Whether their accumulated knowledge can be extracted and reused [11] (transferability).

The criterion (a) addresses aspects relating to how much the communication costs
associated with training increase at larger scales, how much convergence is slowed down as
the scale grows, and whether the ML models of the methodology must be redesigned and
retrained from scratch to work with larger topologies. The criterion (b) assesses whether
the methodology can be aware of and operate jointly with other algorithms managing other
aspects of the system, either in other domains or in different parts of the same domain.
Finally, the criterion (c) examines whether the information from trained models (such as
collected experiences or neural network parameters) can be reused. As we will see later,
these criteria are also relevant to the potential of a methodology for operating in the context
of network-native AI facilities.

With respect to the targeted subset of methodologies, we focus our attention on
methodologies with a distributed decision-making capability, a feature that matches with
the increasingly disaggregated characteristics of 6G networks and has an inherently greater
potential for scalability (cf. criterion (a) above). Indeed, distributed methodologies provide
many benefits in the context of 6G, as agents may be installed in separate network nodes
and configure the network locally, allowing for distributed control. Compared to a fully
centralized unit that manages clusters of nodes, they provide low latency in decision
making and, in many cases, reduce communication costs by transmitting only processed
forms of data. Because they reduce the size of the control problem, convergence becomes
faster at a viable cost to optimality. When considering AI workflows (discussed in Section 4),
it is easier to replace an agent in control of a smaller area of the network (with a favorable
impact with respect to criterion (b)). Finally, they are more lightweight than centralized
models, so they can be hosted in hardware with limited capacity.

Another scope-defining characteristic arises from the orientation of the article towards
RM tasks and the associated need for closed-loop control and automation. This naturally
points to RL-based methodologies; however, using a combination of SL or unsupervised
learning (UL) in conjunction with a decision algorithm is also possible. Still, closed-looped
control that must account for the long-term impact of decisions is more amenable to RL
when compared to SL or UL. Moreover, when SL or UL are complemented by a decision-
making algorithm, the latter encapsulates a fixed set of rigid modeling assumptions, while
RL is model-free. In addition, such solutions rely on the stationarity of the data distribution,
being less suitable for a dynamic 6G environment. In general, the stationarity assumption
affects RL too, but given the focus on distributed methodologies, one considers multi-agent
RL (MARL), which can deal with non-stationary environments.
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In view of the aforementioned considerations, in the following we consider distributed
RL methodologies. FL is also examined, as it is a distributed approach orthogonal to RL
and can be combined with it, resulting in federated RL (FRL). For other types of approach,
the reader may consult, e.g., [4,7–9,31,32] (Table A2 in Appendix A provides some further
context about each of these references). Briefly, distributed RL methodologies introduce
multiple agents to manage the network resources, with each one performing actions on
the network to maximize a long-term reward in a cooperative or competitive fashion. FL
includes the following steps: models are trained on distributed nodes using local data and
each one communicates the learned model to a central entity. There, models are aggregated,
and the updated model is pushed back to the distributed nodes.

In the interest of introducing additional structure in the subsequent review, and moti-
vated by relevant considerations in [17], we classify the distributed RL-based methodologies
in the following six distinct frameworks, according to differences between methodologies
in their architecture, training, and execution model, as well as to how decision-making
units/agents collaborate:

1. Centralized training, decentralized execution (CTDE), where actors collect data from
the environment and a centralized critic is trained with the data collected. This may
allow for communication between agents, considering interactions explicitly. Often,
the critic is discarded after training, but this disables the potential for any further
online training. See Figure 1a.

2. Fully decentralized communicating agents (FDC). Agents are trained locally on each
node and information is exchanged in some form between agents, such as the state
and action of other agents or a global reward. Learned communication is another
variant, where agents learn what sort of information to transmit. See Figure 1b.

3. Fully decentralized independent agents (FDI). Agents do not exchange information
and each agent trains independently from the others. While this reduces communica-
tion costs, it does not consider interactions explicitly, which may lead to suboptimal
solutions. See Figure 1c.

4. Horizontal federated RL (HFRL) trains models that share the same state and action
space but that collect data from different nodes. It may allow for interactions between
agents. See Figure 1d.

5. Vertical federated RL (VFRL) can provide flexibility in state and action space structure.
Essentially, agents can be heterogeneous and have different action spaces. It may also
allow for interactions between agents. See Figure 1e.

6. Team learning (TeamL) allows for the formation of heterogeneous agents into teams
that complement each other by doing different types of tasks. Agents within a
team share information and reward signals. This allows for a certain degree of
composability. See Figure 1f.

For a brief summary of the interactions between entities in these frameworks, see also
the first two columns of Table 1 in Section 3.6.

In the following subsections we review the application of distributed RL method-
ologies to RM tasks, in connection with different types of resources. By maintaining
associations with the aforementioned frameworks, the review does not only identify the
strengths and weaknesses of the individual methodologies considered, but also high-
lights the potential and limitations of the more general frameworks, in terms of managing
different types of resources or managing resources end-to-end.
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3.2. Radio Resources and Power Allocation

Resources available at the RAN are the spectrum and power, where the spectrum
resources are virtualized in such a way that they are easier to customize and assign ef-
ficiently. Additional tasks are closely associated with the management of the resources
just mentioned, such as channel state information (CSI) prediction, beamforming, inter-
ference management, or handoff management. We do not deal with such aspects here,
and instead concentrate on the core RM task. Readers interested in additional aspects are
referred to, e.g., [6–8,31,32].

In [33,34], the CTDE approach is followed, where in [33] spectrum and energy effi-
ciency are optimized concurrently, while in [34] user association and power allocation are
optimized. Benchmarks show that CTDE converges faster than a fully centralized algorithm.

The FDI approach is taken in [35], where agents correspond to base stations and each
of them trains its own policy targeting low latency. However, the training occurs offline
and there is no AI workflow associated with the models. This is a shortcoming because,
although the independent agents do not interact, there is still a need for a mechanism to
exercise pre-emptive control in case individual agents fail as a result of instability due
to changed conditions (a phenomenon that may become more likely due to the lack of
interaction between agents).

In [36], FDC agents optimize user association and power allocation, sharing observa-
tions with a fixed amount of neighbors and computing a global reward. Their performance
is close to conventional sophisticated centralized algorithms. In [37], FDC agents are used
to execute the task of user association and resource allocation in RANs, where the state
is shared between agents. Again, in both [36,37], the training is performed implicitly
offline, and no associated AI workflow is developed. The number of agents is hardcoded
into the problem description, and this creates difficulties when transferring knowledge
from models trained in smaller systems to larger ones. A more recent FDC approach [38]
includes a design for AI workflows in the context of O-RAN, including model construction,
training, deployment, inference, evaluation, and update. Multiple agents execute their
actions separately but optimize a global objective by sharing their rewards.

In [39], a team of heterogeneous RL agents is trained to optimize both power and
resource allocation in an O-RAN setting. Three types of training are compared, differing
in the sequence of agents’ actions and in the type of rewards (individual or team ones)
used for training. The algorithm designed according to the TeamL framework performed
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best. It is noted that this study considered the compatibility of agents but did not examine
scalability and transferability.

Another way to combine heterogeneous agents is examined in [40] using VFRL. This
approach was benchmarked against a central agent and two independent agents, and the
VFRL algorithm was shown to converge fast and perform comparatively well.

3.3. Edge Caching

The proper management of cache resources located at the edge is critical to avoiding
unnecessary traffic overloads between core and edge, while also providing low latency to
users [41]. To achieve this, user preferences must be predicted based on previous usage
patterns. This should happen within the edge, otherwise data will need to be transmitted
to the core for training, partially canceling the benefits of caching. In addition, privacy
concerns dictate that learning should happen as close to the end-devices as possible. Due to
the dynamicity of content in mobile networks, methodologies that allow for online learning
are desired. Again, in considering the problem, we focus on distributed RL methodologies.
For other approaches that are centralized or use SL, the reader may consult, e.g., [7,41].

FDC agents are used in [42], assuming an offline training phase, shared state, and
common reward. Edge caching in [43,44] is also treated with an FDC algorithm, sharing
a global state between agents, with the difference being that it is compressed through
learning in order to minimize communication costs. Again, it is assumed that the neces-
sary components are pre-trained, and no AI workflows are described. The model is also
sensitive to the number of agents, so the model cannot be reused as a starting point for
larger topologies.

By contrast, ref. [45] uses HFRL to train online and communicate a shared model
between base stations through an aggregating server, making it more scalable. However,
agents do not cooperate through the exchange of information. In [46], HFRL is used
again, but agents do exchange information, achieving faster convergence compared to
non-cooperating agents.

3.4. Edge and Core Computing

Edge and core computing need to coordinate and perform task offloading in the
most efficient and performant way, due to the edge being resource-constrained and the
core being associated with larger latencies. At the same time, VNFs need to be placed
at the appropriate location in order to serve incoming tasks. Works covering various
aspects of multi-access edge computing (MEC) planning, management, orchestration, and
optimization can be found in [9,47].

Centralized deep RL (DRL) is compared to HFRL in [48], where comparable per-
formance is achieved but with greatly reduced communication costs. In [49], both FDC
agents and a HFRL approach were used to offload tasks among small base stations (SBS)
representing vehicles, where both demonstrated superior performance compared to the FDI
agents and to more conventional algorithms. In fact, the independent learning algorithm
showed worse convergence properties compared to the two. However, the FDC algo-
rithm had increasing communication costs when scaled-up, while the HFRL algorithm was
associated with reduced costs. The models were able to tackle both performance and energy-
efficiency. The HFRL algorithm had the additional benefit of being more easily transferable,
since it is independent of the number of agents, at the cost of performance compared to
the FDC algorithm.

An FDC algorithm was also used in [50] for task offloading and compared to cen-
tralized DRL, an exhaustive approach, and a genetic algorithm. Centralized DRL had a
worse performance due to insufficient training. The conventional approaches performed
somewhat better than FDC agents but were much slower during inference.

In the context of non-orthogonal multiple access (NOMA)-assisted MEC, ref. [51]
examines the joint task of partially offloading tasks to edge servers while using minimal



Electronics 2023, 12, 3761 10 of 23

channel resources under FDI. While there are no extra communication costs when scaling
up, the convergence of the algorithm may not be sufficiently fast.

In [52], placement of tasks on an edge or fog environment is solved by applying a
modified distributed DRL algorithm that employs the CTDE paradigm. Convergence is
accelerated due to the actors exploring in parallel, but communication costs are expected to
increase when scaling-up. Interoperation with a cloud environment is not examined.

3.5. End-to-End

End-to-end management in the form of slicing has been widely researched in recent
years. Slicing is composed of several phases [53], but we focus on the end-to-end task of
allocating resources for each slice and the relevant runtime. Other aspects of end-to-end
management include fault management, performance monitoring, and others [26], which
do not fall under the category of RM. For a review of non-distributed RL methodologies on
end-to-end slicing, see [54], while for more general ML approaches, see [55].

In [56], a distributed heterogeneous DRL algorithm is applied, where each agent is
associated with a slice type and resource type, essentially following the CTDE paradigm.
Generalization was achieved by training under different kinds of network topologies
and leveraging the heterogeneity of agents. The algorithm showed superior performance
compared to a relatively simple empirical algorithm as the system was scaled-up. However,
as the number of slice types increases, as in the 6G vision, it is an open question as to how
fast the algorithm can reach convergence.

By contrast, a sophisticated architecture is presented in [57], where a combination of
prediction algorithms using FL and control algorithms using MARL is used to achieve
closed-loop control. The control part can use cross-domain input to make decisions, while
the prediction part leverages FL to dramatically reduce communication costs when transfer-
ring information from a local to global scope. Another mechanism is employed in [58,59],
where the FDC approach is essentially taken, and each agent coordinates with the others
by means of certain parameters enforcing the resource constraints or by sharing reward
and state space. Sharing more information improves convergence.

In [60], the FDI approach is followed, where each agent manages a subnetwork.
However, agents utilize transfer learning among them, allowing for faster convergence and
similar performance as algorithms trained from scratch.

3.6. Unifying and Distinguishing Features across Resource Types and Domains

The insight from the review of the methodologies in the previous subsections is collec-
tively summarized into Table 1, classified in accordance with the respective methodological
frameworks. Moreover, each framework is assessed in terms of the criteria formulated
in Section 3.1, namely scalability, composability/modularity, and transferability. In addi-
tion to the elements included in the table, we now proceed with a discussion of further
noteworthy aspects.

RRM requires coordination between several different tasks, so more advanced architec-
tures become necessary that consider composability. Some of the reviewed works included
a management framework for AI models in the context of O-RAN, which aids composabil-
ity by providing interfaces to be exploited by end-to-end NMO. However, transferability
between topologies and different network sizes is not properly dealt with. This is because
interactions between agents introduce communication that increases both the costs and the
state space, decreasing the benefits of distributed learning. We will later examine promising
methodologies that allow for transferability while increasing scalability as well.

In edge caching, interactions between agents are desired, since content should be
duplicated as little as possible while maintaining low-latency decision making, so com-
municating decentralized architectures should be preferred. Again, interactions between
agents complicate the decentralization process. In addition, methodologies must deal with
optimizing different objectives, such as data offloading or delay, and being more scalable by
exploiting the spatial structure of wireless networks [61]. Similar arguments work for edge
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and core computing, since the state of each agent should consider neighbouring agents to
decide task offloading, while a centralized solution suffers from scalability issues.

Table 1. Distributed RL frameworks: features, potential, and related works.

Framework Communication Scalability Composability/
Modularity Transferability Related Works

CTE 1

(baseline)
Experience

Very low: convergence slows
down with state–action space,
and high communication
costs to collect data centrally.

No Low: features depend
on system size.

(Mentioning only
works that employ
CTE as baseline
for comparison
to distributed
RL schemes)
RRM: [33,34,40]
Compute: [48,50]
End-to-end: [57]

1-6 CTDE Experience

Low: reduced state space, but
communication costs are high
and no interactions between
agents during execution (high
potential for instability when
scaling up).

No High: agents have local
actions and state.

RRM: [33,34]
Compute: [52]
End-to-end: [56]

FDC State, action,
reward

Medium: reduced state space
and agents interact (good
stability), but communication
costs increase.

No
Medium: communication
may depend on number
of neighbors.

RRM: [36–38]
Caching: [42–44]
Compute: [49,50]
End-to-end: [58,59]

FDI None

Low: reduced state space and
no communication costs but
no interactions (high
potential for instability when
scaling up).

Yes
(at expense

of scalability)

High: agents have local
actions and state.

RRM: [35]
Compute: [49,51]
End-to-end: [60]

HFRL Model

Medium: reduced state space
and communication rounds
can be optimized but may
lack interactions.

No

Medium to high: agents
have local actions and
state unless they
include interactions.

Caching: [45,46]
Compute: [48,49]

VFRL Partial model

Medium: reduced state space
and communication rounds
can be optimized but may
lack interactions.

Yes

Medium: agents have
local actions and
state unless they
include interactions

RRM: [40]

TeamL Intra-team state,
action, reward

Medium: reduced state
space but has inter-team
and intra-team
communication costs.

Yes
Medium: depends
on the interaction
between teams.

RRM: [39]

1 Centralized training and execution: not a distributed RL framework; included as a baseline.

End-to-end slicing differs in nature from other RM problems because they are in-
herently cross-domain. Multiple types of resources must be allocated in tandem while
considering resource constraints, so the allocation of resources to different slices must be
considered jointly. Current methods assume a small number of slices that are centralized, so
their scalability in the 6G context may be limited. Also, the spatio-temporal distribution of
demands has not been fully accounted for [16]. More generally, the exact form of network
slicing is still a subject of research, with different efforts adopting different designs [62].
For example, a hierarchical approach may be taken, where a higher-level controller decides
on a more aggregate level for the slice allocations while lower-level controllers decide
exactly how resources are allocated to devices [54]. However, the appropriate level of
granularity for network management decisions at different levels in such a hierarchy is
an open issue [16], with a high impact on scalability. Finally, the behaviour of end-to-end
management and orchestration based on AI is as yet a largely unknown territory, and
rigorous mathematical tools should be used to understand it [63].

When examining the work on all the domains together, we make the observation that,
in general, composability is not yet a high concern in research efforts. A reason for this
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may be the need for introducing interfaces between agents and communication protocols.
These need to be standardized, something that takes time. Additionally, more composable
systems would tend to be associated with agents using larger state spaces and having
increased communication costs, which would complicate the balance between convergence
time and scalability.

Another observation is that there is no clear winner among the frameworks, as the
suitability of each depends very much on the problem conditions. For example, CTDE may
be suitable when deployed on similar but uncoupled network domains, while FDC may be
necessary when decision-making units are strongly coupled, as in the case of edge caching
and computing.

4. Supporting Distributed Frameworks with Native AI Enablers
4.1. Native AI Enablers and Their Functionality

We saw in Section 3 that introducing multiple local agents that control network
resources can be effective at a local level in achieving faster convergence by reducing the
state and action space while also reducing latency and communication costs, if the system
scope is small enough [40,46,49,50]. However, as more domains and tasks are added to
the system, interactions among agents proliferate and the state space increases for each
task. Increasing interactions increase communication costs and may require retraining
of the agent from scratch, while state space expansion increases convergence time. It is
important to find a balance between including all information when agents communicate
and keeping the agent state space small to boost scalability [17,64]. A similar balance is
required when considering the alternative of reducing interactions, as this could lead to
suboptimal performance and unexpected behavior.

To facilitate the generation of models with increased performance in a safe way, create
mechanisms that select appropriate models for each situation, and exercise effective pre-
emptive control in cases of failure, certain AI enablers have surfaced. The first of these is an
outward-facing interface provided by the AI plane, which sets up the processes managing
the lifecycle of AI models [1,23]. These processes monitor system performance, collect data
for training, schedule offline and online training of models, and finally replace models
either proactively or responsively, while also optimizing the runtime of AI models. By
doing so, they enable automation and establish closed-loop control. The second enabler
is a knowledge reuse system that undertakes the management of knowledge, consisting
of the storage and retrieval of collected data, maintenance of model libraries, and model
training. The third enabler is DTNs, which can be used to predict performance and
train new models.

In more detail, the first enabler, the AI plane (or Network Intelligence (NI) plane as is
alternatively referred to) establishes the AI workflows necessary for AI models lifecycle
management and closed-loop control. Based on recent work (see [10,65] and references
therein), the management of Network Intelligence, essentially a composition of AI models
achieving a shared goal, will be organized in small parallel control-loops responsible for
inference, offline and online training. These control-loops are broken into steps that can be
expressed in terms of the so-called monitor–analyze–plan–execute based on knowledge
(MAPE-K) framework (depicted in Figure 2, which is described in detail later in this
section, when discussing the interplay of the three enablers). Crucially, NI should be able
to coordinate with other NI instances towards promoting composability, in alignment with
the respective criterion of Section 3. However, a trade-off between creating manageable
end-to-end workflows and achieving scalability arises, since NI must operate within a
certain timeframe and network scope that constrains the amount of time and information
available for training. Training will be triggered either by a new phase of planning, in order
to deploy updated models, or when a failure occurs or is predicted to occur.
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The second enabler, namely knowledge reuse, is used to store knowledge in various
forms, grow model libraries, and select the appropriate model for the current state of the
environment [13]. By managing a model library that is continually enriched offline with
data collected from the live environment and simulations (see Figure 2) and dynamically
employing appropriate models from the library through the said selection mechanism,
knowledge reuse plays an important role in model maintenance and significantly enhances
the viability of AI algorithms. There are various ways to store knowledge, including
as trained models, collected experience, or exploration strategies in the context of RL,
organized by associated task. Mapping functions from source tasks to target tasks can even
create learner models that are able to execute tasks jointly [11]. Knowledge reuse will be
embedded into AI workflows, and its data collection intervals and storage will be controlled
by the AI plane. However, this knowledge should either be stored and consumed close to
its production, or it should be transmitted at large time intervals to prevent excessive usage
of network resources.

Knowledge reuse requires system resources for data collection/storage and for compu-
tation, and also needs to conduct training with respect to multiple environments. Although
AI workflows can assist with the data collection and various steps of model maintenance,
there is also a need for a safe environment that can be used for training and predicting
future performance. The third enabler, DTNs [12,13], undertake this crucial task, as DTNs
can learn to mimic system behavior and provide the capability of experimenting by means
of “What If” scenarios without impacting real-network performance. In addition, different
digital twins with different scopes enable performance predictions in reasonable time
frames and for a broad spectrum of targets, from end-to-end performance to more localized
tasks at the packet-level. In this manner, DTNs are valuable also for striking the right
balance between obtaining precise models at the required level of granularity and making
efficient use of the system resources mentioned in the paragraph’s beginning. Note that, in
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order to further promote system efficiency, DTNs should be hosted close to the devices they
simulate, with larger DTNs existing closer to the core where data can be centrally collected,
and resources are more abundant [66].

Figure 2 depicts the interaction between the three enablers and the network. As
mentioned earlier, workflows follow the MAPE-K framework and evolve in accordance
with a number of steps, governed by the AI plane with support from knowledge reuse.
These steps are as follows: monitoring the network; analyzing the collected data; planning
the deployment of models based on the analysis; executing the plan and applying the
effects to the network (the block corresponding to the last step consists of a high-level part
for executing the plan and a low-level “effector” part for enforcing the actions associated
with the plan through the actual network controllers). Three types of workflow are relevant
(see the legend in the figure), as follows:

• Inference, which makes network control decisions and monitors model performance,
taking steps to ensure it is acceptable. By monitoring, analyzing, and planning,
inference can choose to deploy updated models (made available through online or
offline learning, discussed next) to the live environment. Model updates are triggered
when a potential for performance enhancements is detected, or when performance
drops during inference or is predicted to drop by the online learning workflow.

• Online learning, which improves operating models. By collecting monitoring data
from a digital twin and analyzing them, the system may plan to update these models
while they are operating. The employed digital twin is connected to the live environ-
ment (see the DTN at the bottom of the figure) and enables the training of models
under conditions as close as possible to the current ones, while also avoiding the risk of
negatively impacting the actual network performance. If the online training workflow
detects that the updated model has the potential for improved network performance,
a replacement of the model currently used for inference may be triggered. Contrarily,
if performance is predicted to drop beyond acceptable levels, a replacement of the
inference model will again be triggered, this time selecting the new model among
models made available through offline learning.

• Offline learning, which is managed by the knowledge reuse system. It is responsible
for processing and organizing monitoring data, model libraries, and scheduling the
training of new models. It takes input from analysis to determine how and which
models to train. It also coordinates with planning to provide new models upon request
or prompt the replacement of models with new ones. The DTN (topmost in the figure)
employed in offline learning may be configured to explore scopes of different breadth.

In terms of the criteria set in Section 3, it may be seen that the aforementioned model
training and deployment processes create a potential for producing more scalable and
composable/modular models. Indeed, through the associated DTNs, the knowledge reuse
system explores the ML model space in gradually larger and diverse scopes, keeping the
most scalable and composable candidates. For a more concrete example, consider the prob-
lem of determining the appropriate size of the input in models that employ communication
between multiple agents. Increasing the input size improves composability, since agents be-
come more aware of the global state. However, this comes at the expense of scalability due
to increased costs for the communication between the agents. By maintaining and utilizing
previous knowledge, this trade-off may be balanced optimally. As another example, con-
sider the adoption of larger models, which can learn more detailed representations of the
environment, so that they can generalize over more diverse conditions and, thus, be more
scalable to larger network topologies. However, larger models require more training time
to reach convergence, so early deployments would lead to decreased performance instead
of an improvement. The knowledge reuse system enables the deployment of larger models
by collecting data and maintaining a model library, so that transfer learning techniques can
be applied systematically, and model training can be sped up. In order to best exploit this
ability of the knowledge reuse system, it is important to adopt model families that have
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a greater potential for transferability, so that they may generalize more flexibly over the
number and heterogeneity of agents.

To summarize, setting up the associated workflows as previously described enables
the exploration of the model space in a way that balances scalability with composability.
By leveraging DTNs, exploration can be performed in a safe manner, while the knowledge
reuse system, together with input from analysis and planning, organizes and accelerates
the exploration. The AI plane orchestrates the cooperation of the knowledge reuse system
with the management and operation of the actual network.

4.2. Interactions between the Distributed RL Frameworks in Table 1 and AI Enablers

The six methodological frameworks, that were discussed in Section 3 and summarized
in Table 1 differ in their interactions with AI enablers, as depicted in Table 2. The evaluation
is based on the MAPE-K framework steps. For the AI plane, we examine how easy it is to
plan/deploy each framework as an initial step and how easy it is to replace units when
operation fails. For the DTN, we examine the smallest possible size of the digital twin
required for performance predictions. For knowledge reuse, we examine the amount of
knowledge needed in terms of decision-making units.

Table 2. Frameworks and their footprint on each AI Enabler.

Framework AI Plane Digital Twin (Size) Knowledge Reuse

CTDE Easy to plan/hard to replace Small Simple, a single unit
FDC Hard to plan/easy to replace Large Simple, a single unit
FDI Easy to plan/easy to replace Small Multiple units, depending on the environment

HFRL Easy to plan/hard to replace Large Simple, a single unit
VFRL Easy to plan/hard to replace Large Simple, a single unit

TeamL Planning depends on inter-team
interactions; easy to replace teams. Large Depends on the size of the team

In the CTDE framework, there is a single central learner and multiple actors/executors
that are copies of each other. During planning, the single central model is selected and
deployed by copying to multiple network locations, which is simple to perform. However,
when performance fails, all actors/executors fail together and need to be replaced at the
same time, potentially having a big impact on performance since they affect multiple
locations or multiple resources. The digital twin may be composed of a single agent for the
central learner, and the only knowledge necessary is the single unit that is copied.

In FDC, multiple agents communicate, cooperate, and train independently at different
network locations and may manage different resources. During planning, many agents
at different locations or in charge of different resources need to be deployed together, be
initialized, and establish cooperation, which is a complex task. By contrast, if failure occurs,
only the single failed agent needs to be replaced and, since the agents are more independent
than in CTDE, this is a simpler task. The digital twin must be composed of many agents
in order to learn communication. Finally, assuming convergence has been reached for all
agents, knowledge is a single unit.

In FDI, agents do not communicate and instead manage their resources independently.
Agents are both easy to plan and replace, since they do not interact and can be replaced
independently of each other. The digital twin is the size of a single unit, but the knowledge
must be gained under different conditions, because agents do not collect the more diverse
set of observations that FDC agents collect and share via communication. To compensate,
FDI agents must be trained under a greater array of conditions. Potentially, the service
consumer is presented with different agents for each condition.

HFRL and VFRL share behaviors due to their federated nature, with both training in a
decentralized fashion. While the training occurs differently than in CTDE, HFRL and VFRL
still share knowledge at a central server, become synchronized, and share the same model,
so in this respect they are the similar to CTDE. Thus, they are easy to plan for but need to
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be replaced as one when failure is detected. The digital twin may be large, since training
requires many decentralized trainers. Knowledge stored is a single unit, representing the
aggregated model.

Finally, in TeamL each team is composed of heterogeneous agents that communicate,
so it is similar to FDC. It is moderate to plan for, depending on the size of the team and
inter-team interactions, and replacement in this case can be performed even within a team,
exchanging a single team member, as in the FDC scenario. Note that if there are multiple
teams, each team can act either as FDC or FDI depending on the information exchanged.
The digital twin may be large, and knowledge stored will depend on the size of the team.

It is remarked that, apart from the general characteristics of a given framework, which
determine the decision-making units and their interactions, the internal structure of the
agents for each specific methodology in the framework also plays a role and must be
considered. However, the degree to which a methodology can materialize the potential
benefits from utilizing the AI enablers mostly depends on the inter-agent structure and
interactions, which are determined by the framework in use. As an illustrating example
referring to the AI plane, independent agents will not be able to participate in adaptive
localized closed-loop controls, regardless of their internal structure, because they will be
unable to capture the non-stationarity of their environment.

5. Lessons Learned, Open Issues, and Future Directions

While AI enablers are necessary for the training and execution of AI models, the
structure of the considered methodological frameworks would also require modifications
to fully meet the benchmarking criteria set in Section 3. Scalability can be improved by
properly incorporating agent interactions. In the context of network intelligence, learned
communication, i.e., incorporating communication as part of the ML module in an agent,
would potentially increase system performance while minimizing communication costs in
a suitable timeframe related to the communication frequency between agents [63].

Another method of improving model performance is online learning, which is already
anticipated by the AI plane as envisioned in [65]. By adding more components and associ-
ated agents into the network, the system becomes more dynamic, and models need to adapt
faster to changing conditions. Scalability is then expected to improve by incorporating
online learning, which mitigates the so-called model drift.

Composability could be enhanced by adopting methodologies, such as team-learning
or VFRL, and, in general, heterogeneous MARL. This is necessary for network intelligence,
as locally communicating NI instances that are responsible for different tasks need to
coordinate. Such approaches require a certain degree of standardization between agents
that is non-trivial to achieve [1,10].

End-to-end composability necessitates trustworthiness of the network and the ability
to interpret AI model behavior using mathematically rigorous tools [63]. This is because
adopting AI solutions and composing them on such a large scale is expected to be very
challenging due to the statistical heterogeneity experienced in large-scale networks, which
directly affects the performance and convergence rate of these solutions. This issue is
particularly pronounced in highly dynamic environments, such as 6G networks.

Transferability can be increased by adopting new neural network architectures that
generalize over network structure and relations between decision-making units, namely
graph neural networks (GNNs). This also increases scalability because GNNs can generalize
over system size and topology [67]. GNNs have been used for performance prediction and
control [68–71] but considering that distributed control is a step further in complexity, there
is a lot of room for research.

Finally, it should be considered that the methodological frameworks themselves are
governed by parameters [72,73], such as frequency of communication between agents in
FDC, the aggregation interval or the weighting of each agent’s model in the FL-based
frameworks, and the values for these parameters also need to be optimally selected. On a
related note, additional improvements in FL-based frameworks can be made by introducing
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intermediate layers in a hierarchy towards aggregating models in more steps, such as in
fog learning [74].

6. Conclusions

By examining the 6G challenges pertaining to closed-loop control on RM, we nar-
rowed down the scope of relevant methodologies into distributed RL. We classified relevant
approaches into six methodological frameworks based on their structure and interactions
and analyzed them in terms of their scalability, composability/modularity, and transfer-
ability. Examining applications based on these methodological frameworks, certain trade-
offs between (i) scalability and convergence time, (ii) scalability and composability, and
(iii) end-to-end orchestration and scalability were exposed and examined. AI enablers
become essential to balancing these trade-offs, especially in view of the dynamic nature and
stringent requirements that will characterize 6G networks. The AI plane, knowledge reuse,
DTNs, and their interoperation were discussed and their potential to provide support for
the considered distributed RL frameworks was explored. In terms of further improve-
ments, future research points to promising directions, such as learned communication,
heterogeneous MARL, and graph neural Networks.
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Appendix A. Summary of Related Work and Brief Discussion of Surveys Treating
Relevant Aspects in a Different Context

Table A1. Summary of related work (discussed in Section 1.3).

Ref. Description Comparison to this Work

[11]

Focuses on end-to-end RM for the specific context of
network slicing. Provides a taxonomy of AI methodologies
and discusses aspects of a knowledge reuse system,
including the type of data stored and curated and
workflows for ML model training. Places emphasis on
transfer learning.

This work considers AI workflows and digital twin
networks in addition to knowledge transfer, conducts a
focused survey of distributed RL methodologies for RM
tasks of a much wider scope, organizes/abstracts the
surveyed methodologies in a number of frameworks, and
discusses how the AI enablers support each framework.

[14]

Focuses on distributed methodologies and network
technologies from an end-to-end network-for-AI viewpoint
and examines how network technologies support
distributed ML operation.

This work takes an AI-for-network approach.

[15]

Focuses on architectures of distributed networked ML from
an end-to-end network-for-AI-approach. Discusses
optimizations of the algorithm’s training process in each
architecture, such as communication efficient techniques
and asynchronous methods.

This work takes an AI-for-network approach.
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Table A1. Cont.

Ref. Description Comparison to this Work

[16]

Proposes virtualization of user demand using digital twins.
Discusses pervasive intelligence and categorizes it into
network management and service-oriented AI. Describes a
network architecture based on an interplay between AI and
virtualization supported by digital twins, but does not
consider other AI enablers or specify a scope of RM tasks.

This work considers digital twins integrated with AI
workflows and a knowledge reuse system, conducts a
focused survey of distributed RL methodologies for RM
tasks, organizes/abstracts the surveyed methodologies in a
number of frameworks, and discusses how the AI enablers
support each framework.

[17]

Focuses on pervasive AI
for highly heterogeneous networks with computational
facilities, such as IoT networks. Adopting a network-for-AI
viewpoint, it focuses on distributed AI architectures
and techniques, such as parallelization and model
splitting, and considers the optimization of training
and inference processes.

This work takes an AI-for-network approach.

Table A2. Surveys treating relevant aspects in a different scope.

Ref. Description

[4]
Focuses on zero-touch management and categorizes ML applications by network domain, including distributed solutions.
Does not abstract overdistributed ML approaches and does not consider AI enablers. Discusses ZTM architecture in detail
and surveys extensively how ZTM may benefit from applications of ML.

[7]
Provides an extensive survey of ML applications to networking, categorizing them by network task (including RM) and ML
algorithm. Does not abstract over ML approaches, does not focus on distributed solutions, keeps the scope to 4G/5G and
does not consider AI enablers. Offers preliminaries on SL, UL, RL, and neural networks.

[8] Surveys RRM tasks in 5G, including distributed ML solutions. Does not abstract over ML approaches, does not include AI
enablers, and does not consider other types of resources. Compares ML approaches via simulation.

[9]
Focuses on edge/core VNF and CNF placement in 5G. Does not abstract over ML approaches, does not discuss AI enablers,
and does not consider other types of resources. Thoroughly classifies approaches by task, scenario, algorithm, and objective.
Includes non-ML approaches.

[25]
Focuses on 5G/6G technologies, surveys potential applications of ML to networking, and discusses the benefits of ML
compared to other approaches. Does not abstract over ML approaches, and does not focus on distributed solutions or AI
enablers. A brief introduction to SL, UL, RL, and neural networks is given.

[27]

Offers a detailed tutorial on SL, UL, and RL in the context of deep learning for wireless networks. Includes general theory,
the most relevant architectures, and training algorithms. Does not include a survey over specific ML applications to
networking, does not examine distributed AI architectures or 6G, does not focus on RM, and does not include AI enablers.
Discusses a possible cooperation between ML and conventional algorithms.

[28]
Provides a taxonomy of deep learning applications to networking, per network layer and type of task. Keeps the scope to
5G, does not consider AI enablers, does not focus on RM, and does not abstract oversurveyed approaches. Discusses deep
learning theory and compares DL frameworks.

[29]
Focuses on the integration of deep learning into the network, such as deployment of ML and specific ML implementations
tailored to networking. Keeps the scope to 5G, does not abstract over approaches, does not examine multi-agent systems,
does not include AI enablers, and does not focus on RM. Provides a brief introduction to DL.

[30]
Surveys deep RL for autonomous control in networks and proposes a reference architecture for DRL, including distributed
solutions. Keeps the scope to 5G, does not include AI enablers, does not focus on RM, and does not abstract in terms of
distributed architectures, focusing on network layers instead. Provides theory on advanced DRL algorithms.

[31]
Focuses on RRM tasks in HetNet scenarios. Keeps the scope to 5G, does not abstract over ML approaches, does not include
other type of resources, and does not include AI enablers. Discusses non-ML and ML approaches and examines many
aspects of each task/approach combination.

[32]
Focuses on RAN RM tasks and ML applications to RAN physical layer technologies. Keeps the scope to 5G, does not
abstract over ML approaches, does not consider other types of resources, and does not include AI enablers. Compares
non-ML approaches to ML.
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Appendix B. ML Preliminaries

ML is a discipline concerned with creating programs that are capable of learning a task
from data, in a way that the task can be performed on new problem instances. The programs
are usually called ML models. Learning is most often categorized into three flavors.

Appendix B.1. Supervised Learning (SL)

A training set is given, composed of samples that have features and associated labels.
The target of supervised learning is to learn the mapping function between features and
labels, i.e., to predict the labels from the features. The initial untrained model is a mapping
function selected from an appropriate function space, the structure of which usually entails
some kind of bias. One simple example is linear regression, where the label is assumed to
be a linear combination of the features.

Given the form of the mapping function/model, a training algorithm is applied, which
adjusts the model with the purpose of minimizing the value of an objective function that
quantifies the average difference between the labels predicted by the model given the
features and the actual labels, over all samples in the training set. Usually, the model is
updated by means of an iterative procedure, whose details and complexity vary depending
on the function space chosen for the model. Once certain target criteria are met, such as
reaching a maximum number of iterations or reducing the value of the objective function
below a threshold, the model is considered to be trained.

Many different function spaces and training algorithms exist. Widely employed
models include decision trees, k-nearest-neighbors, support vector machines, and neu-
ral networks. Applications related to networking encompass channel quality indicator
prediction and traffic classification. For these and other networking applications see,
e.g., [7,25,28,29]. For a thorough introduction to ML in general and SL in particular, the
reader may consult [75].

Appendix B.2. Unsupervised Learning (UL)

Again, a training set is given, but now each sample in the set consists only of fea-
tures, with no labels attached. The task of learning in this case is to determine the data
distribution that generates the samples. A common application is clustering, where data
samples must be grouped together in clusters, but applications can also relate to data point
generation, such as in image compression. As in SL, a model space is chosen and trained
via minimization of an objective, but now the objective quantifies the difference between
the predicted and actual distribution of samples, measured in various ways. Commonly
used function spaces are k-means and the so-called generative models. Applications in
networking include user association and mobility management. For these and other net-
working applications see, e.g., [7,25,28,29]. For more details on UL in general, Ref. [75] may
be consulted.

Appendix B.3. Reinforcement Learning (RL)

In RL, the training is not based on an a priori available sample set. Instead, the
interactions of an agent with its environment are considered. At each step, the environment
assumes a state within a predetermined state space. The agent observes the current state of
the environment and takes an action (from within a predetermined action space) based on
the agent’s policy (which may be deterministic or stochastic) and the observation. Each
such action results in a reward credited to the agent and in the transition of the environment
to a new state. Subsequently, the agent makes a new observation and the cycle repeats.
Training seeks to directly or indirectly determine the action-taking policy of the agent
that maximizes the long-term reward, i.e., the sum of rewards accumulated over a pre-
specified (often infinite) window of interactions. The terms in the sum are usually weighted
exponentially by means of a discount factor that prioritizes more recent rewards.

Since the agent must consider the long-term reward, taking the action with the highest
immediate reward is not optimal. For this reason, the agent does not always select an



Electronics 2023, 12, 3761 20 of 23

action on the basis of its current policy, but also exercises “exploration” with the purpose
of experiencing “previously unseen” combinations of state/action pairs. Exploration is
more frequent during the earlier stages of training. Convergence of the training process
is determined by checking the value of an objective that quantifies the extent to which
perturbations of the current policy would lead to further improvements towards the
(unknown) optimal. For more details on RL, the reader may consult [76].

Recent agent architectures often split the agent into separate actor and learner mod-
ules, referred to as an actor–critic pair, where the actor executes the policy and collects
observations, and the learner improves the policy by evaluating the taken actions. This
more advanced technique is discussed in [30], together with other relevant techniques.

The scenario of having multiple agents that act in the same environment is pertinent to
our scope. Each agent can exchange information with other agents as part of observing the
environment. Training of all agents may occur in conjunction or independently, depending
on whether the policy is somehow shared among agents. Each agent may train to maximize
its own reward, or a global reward shared between agents. Agents may be based on the
actor–critic architecture, where multiple agents share the same policy and a centralized
learner does the training, as in the CTDE framework in Section 3.

Applications of RL in networking include resource allocation/management, packet
routing, and many other tasks; see, e.g., [7,25,28–30]. In principle, virtually any decision-
making problem can be formulated in terms of RL, making this type of learning extremely
pertinent to networking.
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