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Abstract: Existing list recommendation methods present a list consisting of multiple items for
feedback recommendation to user requests, which has the advantages of high flexibility and direct
user feedback. However, the structured representation of state data limits the embedding of users and
items, making them isolated from each other, missing some useful infomation for recommendation.
In addition, the traditional non-end-to-end learning series takes a long time and accumulates errors.
During the model training process, the results of each task can easily affect the next calculation, thus
affecting the entire training effect. Aiming at the above problems, this paper proposes a Reinforcement
Learning List Recommendation Model Fused with a Graph Neural Network, GNLR. The goal of
this model is to maximize the recommendation effect while ensuring that the list recommendation
system accurately analyzes user preferences to improve user experience. To this end, firstly, we use
an user–item bipartite graph and Graph Neural Network to aggregate neighborhood information
for users and items to generate graph structured representation; secondly, we adopt an attention
mechanism to assign corresponding weights to neighborhood information to reduce the influence of
noise nodes in heterogeneous information networks; finally, we alleviate the problems of traditional
non-end-to-end methods through end-to-end training methods. The experimental results show that
the method proposed in this paper can alleviate the above problems, and the recommendation hit
rate and accuracy rate increase by about 10%.

Keywords: list recommendation; deep reinforcement learning; Graph Neural Network; Actor–Critic;
state representation module

1. Introduction

Recommendation systems [1], as a personalized service, can recommend information
and products (hereafter collectively referred to as ‘items’) of interest to users to relieve
information pressure. It is widely used in practical scenarios such as e-commerce, music
and movies, news recommendation, and social networks. List recommendation [2] is a
recommendation method that can be used to achieve diverse and complementary item
selection. To enable list recommendation systems to recommend items that are interesting,
diverse, and stable for users, several DRL recommendation methods that can recommend
lists containing multiple items have been proposed in previous work.

In existing list recommendation models, a single request from a user usually recom-
mends a list of items that can provide diverse and complementary choices to the user.
For list-based recommendation, we have a list-based space where each operation is a
collection of interdependent sub-operations (items). Existing reinforcement learning rec-
ommendation methods can also recommend lists of items. For example, Deep Q Network
(DQN) can compute the Q-values of all recall items and recommend a list of top-ranked
items. However, these methods recommend items based on the same state, ignoring the
connection between users and items, and the embedding vector is difficult to represent
unstructured data completely, making the data structured, which may lead to inaccurate
calculations of similarity between users and items, thus affecting the recommendation effect.
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In addition, the traditional non-end-to-end recommendation model has a long crosstalk
time as well as error accumulation and requires precise design; the result of each step in
the training process will have an impact on the next calculation; and when new nodes
are added, the training needs to be repeated, which increases the training complexity and
reduces the recommendation performance.

Graph Neural Networks (GNNs) [3] are a special class of deep neural networks that
can learn and make inferences on graph data. Compared with traditional deep neural
networks, GNNs have two advantages: graph structured representation capabilities and
end-to-end training capability. GNNs can perform graph structured representation on
graph data, i.e., vectorization of nodes and edges, thus capturing the structural information
between nodes and edges, making the feature representation of graph data richer and
more accurate. In addition, GNNs are capable of directly processing graph data, inputting
graph data into the network, and finally outputting the feature representation or prediction
results of nodes or edges after processing and learning by multilayer neural networks.

A Reinforcement Learning List Recommendation Model Fused with Graph Neural
Networks, GNLR, is proposed. In GNLR, firstly, a user–item interaction bipartite graph
is constructed, and GNNs are used to generate graph structure representations of users
and items. Secondly, through the reinforcement learning approach, the recommendation
system is considered as an agent and the user is considered as an environment, and a
list of items is recommended to meet the user’s needs. Based on a deep deterministic
policy gradient (DDPG) approach, a set of items suitable for recommending to the user is
derived by calculating the item scores. Lastly, based on the end-to-end training strategy,
it can effectively alleviate the shortcomings of traditional non-end-to-end methods and
eventually provide users with more accurate item recommendation lists.

In summary, the main contributions of this paper are as follows:

(1) A reinforcement learning list recommendation model incorporating GNN, GNLR, is
proposed to enhance state representation and improve recommendation accuracy by
generating graph-structured representations of users and items.

(2) An attention mechanism is introduced in GNLR to reduce the influence of noisy nodes,
a multilayer network is designed for training, and an end-to-end approach is used to
learn directly from the data, alleviating the drawbacks of traditional non-end-to-end
model training.

(3) The proposed model is shown to outperform other baseline algorithms in terms of
performance through reliable experiments on real-world datasets.

2. Related Work
2.1. Traditional Recommendation System

With the growing demand of the Internet, recommendation systems are developing
rapidly. In the past, recommendation systems mainly used single models, such as collabo-
rative filtering (CF) [4] and logistic regression (LR) [5]. With the emergence of combined
models such as factorization machine (FM) and gradient boosting decision tree (GBDT) [6],
the models of recommendation systems began to evolve. Starting from 2015, deep rein-
forcement learning recommendation models have rapidly evolved, and various new model
architectures have emerged. Since 2015, deep reinforcement learning recommendation
models have evolved rapidly, with various model architectures emerging. A recommen-
dation system is an information search task whose goal is to recommend the goods or
items that best match the user’s needs and preferences. Most existing recommendation
systems are built using supervised learning-based algorithms. Specifically, the task of a
traditional recommendation system consists of three steps: collecting user behavior data,
performing feature engineering, and implementing recommendation algorithms. Initially,
content-based recommendations were used to recommend items by considering the content
similarity between items. Later, CF was proposed and widely studied. The basic principle
behind CF is that users with similar behaviors tend to select the same items and have the
same ratings for similar items. However, traditional CF-based approaches tend to suffer
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from data sparsity, as similarity computed from sparse data is unreliable. The above two
problems are solved in matrix decomposition. Matrix decomposition can be intuitively
understood as the approximate decomposition of the original large matrix into the form
of multiplying two small matrices together. In the actual recommendation calculation,
instead of using the original large matrix, the decomposed two small matrices are used to
perform the calculation. Each user corresponds to a k-dimensional vector, and each item
corresponds to a k-dimensional vector. After multiplying the two matrices, the predicted
rating of any user for any item is obtained. Logistic regression and its variants treat recom-
mendation as a binary classification problem; however, logistic regression-based models
are difficult to generalize for feature interactions of training data. Factorization machines
model pairwise feature interactions as inner products of potential vectors between features
and have shown excellent performance. As an extension of FM, Field-aware Factorization
Machine (FFM) introduces the concept of a domain; i.e., for each feature, there is a domain
label in addition to the feature label, and this operation allows FFM to better capture the
strength of the contribution of the union of different features to the prediction. Recently,
deep learning models have been applied to model complex feature interactions for recom-
mendation. As a prominent direction, contextual multi-armed slots have also been used to
model interactions in recommendation systems. Li et al. [7,8] applied Thompson sampling
(TS) and upper confidence bound (UCB) to balance between exploration and exploitation.
Wang et al. [9] proposed a dynamic contextual drift model to solve the time-varying reward
problem. To combine item and user embeddings with some exploration, Zhao et al. [10]
combined matrix decomposition and a multi-armed slot machine. However, the above
approaches have two drawbacks. First, they consider the recommendation process as a
static process; i.e., the user’s preferences are assumed to remain constant, and the goal is
to know the user’s preferences as precisely as possible. Second, they ignore the long-term
benefits that recommendations can bring and focus only on maximizing immediate returns.

2.2. Deep Reinforcement Learning-Based Recommendation Systems

Some preliminary work has been carried out before the rise of DRL; however, due
to data sparsity and shortcomings in computational power, these works only used deep
neural networks to downscale high-dimensional input data to facilitate its processing
by traditional RL algorithms. Riedmiler et al. [11] were the first to use a multilayer per-
ceptron to approximate the Q-value function and proposed a neural fitted Q iteration
(NFQ) algorithm, and Lange et al. [12] combined deep learning models and reinforcement
learning methods to propose a deep auto-encoder (DAE) model; however, DAE is only
applicable to control problems with visual perception as the input signal and small state
space dimensions. Abtahi et al. [13] used a deep belief network as a function approximator
in traditional RL, which greatly improved the learning efficiency of the agent and was
successfully applied to a license plate image character segmentation task. The Deep Fitted
Q-learning (DFQ) algorithm was further proposed by Lange et al. [14] and applied to
vehicle control. Koutnik et al. [15] combined the neural evolution (NE) method with the RL
algorithm and applied it to a video racing game to achieve the automatic driving of a car.
Because of the high time complexity of model-based DRL techniques in recommendation
scenarios, most researchers have turned to model-free RL techniques. These model-free RL
techniques can be divided into two categories: policy-based and value-based. Q-learning
is a value-based approach that provides action guidance through Q-tables but only for
scenarios where the state and action space is discrete and not high dimensional. For high-
dimensional continuous state and action spaces, Q-tables will become very large and
difficult to maintain and find. In 2013, the Google DeepMind team [16] tried to output
Q-values by fitting using functions, i.e., inputting a state and giving Q-values for different
actions. Since deep learning performs well in complex feature extraction, deep learning
combined with reinforcement learning was used to implement DQN. In 2015, DQN was
well refined, which included improvements in experience replay techniques and fixed Q
target techniques to improve the stability and efficiency of the algorithm. In the Atari
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game, DQN showed amazing real-world results and a series of improved [17] and Dueling
DQN [18], etc. Chen et al. [19] applied DQN to item list recommendation and proposed
a RecSys algorithm. Each step of item list recommendation requires recommending a list
of items, which is a combination of all items in a huge search space with a large number
of locally optimal solutions. The RecSys algorithm uses a Transformer rather than a re-
current or convolutional neural network to encode embeddings to capture context-aware
information in the user history, fuse these embeddings into aggregated features, and train
the model using Double DQN technique and experience replay technique. Xie et al. [20]
from the Tencent WeChat department proposed a hierarchical reinforcement learning based
on the Actor–Critic model for recommendation systems, which is called HRL-Rec. The
modeling integrated recommendation as list recommendation, which contains two RL
agents. The bottom agent is a channel selector, which generates personalized channel lists
based on users’ channel-level preferences; the top agent acts as an item recommendation,
recommending specific heterogeneous items under the constraints given at the channel
level. And a new set of reward functions is designed to measure the accuracy and diversity
of the task, combining the supervised loss and unsupervised similar loss at the bottom and
top levels to achieve fast and stable training. For the previous work related to list recom-
mendations, one of these methods is DQN, which calculates the Q-values of all the recalled
items and selects the top items with Q-values to form a list. Typically, three alternative
models can be used for recommendation systems: the Actor–Critic model and two deep
Q network models. The input of the first DQN model [21] contains only states, and the
output is the Q-value corresponding to all actions. The input of the second deep Q-network
model [22] contains both states and actions, and the output is the corresponding Q-value.
Obviously, the first DQN model finds it difficult to handle scenarios with large action space
or dynamics, while the second DQN model needs to calculate the Q-values of all actions
and therefore has higher time complexity. Therefore, in this paper, we use the DDPG
algorithm, which is a variant of the Actor–Critic model, and compared with the traditional
Actor–Critic model [23], the DDPG algorithm has more advantages in dealing with the
continuous action space problem. Sun et al. [24] proposed a sequential recommendation
model called BERT4Rec, which uses deep bidirectional self-attention to model a sequence
of user behaviors. The bidirectional representation model learns to make recommendations
by having each item in the user’s historical behavior incorporate information from both the
left and right sides. Chen et al. [25] proposed a novel model-based reinforcement learning
framework for recommender systems and developed a novel Cascading DQN algorithm to
obtain a combined recommendation strategy that can efficiently handle a large number of
candidate items and can explain user behavior better than other models.

3. Preliminaries

This section gives the basic description of the problem in detail, introducing the basic
definitions as well as the Markov decision process.

3.1. Heterogeneous Information Network

As shown in Figure 1, a heterogeneous information network is defined, which con-
tains a user–item bipartite graph and a trust network. In heterogeneous information net-
works [26], nodes can represent different types of entities, such as people, items, places, etc.,
while edges represent relationships between different types of entities, such as users pur-
chasing goods, personnel relationships, etc. Heterogeneous networks can naturally fuse
not only different types of objects and their interactions but also information from hetero-
geneous data sources. In the era of big data where data from different sources capture only
partial or even biased features, heterogeneous graph networks can synthesize these data.
Thus heterogeneous network modeling becomes not only a powerful tool to address the
diversity of big data but also a major approach to width learning. Making full use of the
data in the heterogeneous information network and capturing the potential relationships
in it can improve the recommendation performance.
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Figure 1. Heterogeneous information network structure.

Define the heterogeneous information network K = (U, I, R, trust), where
U = {u1, u2, . . . , uk} denotes the set of users and I = {i1, i2, . . . , ik} denotes the set of
items. R denotes the set of relationships. If user uc clicks or buys item it, then the two are
connected by directed edges 〈uc, it〉 and 〈it, uc〉. For the trust network, a trust matrix is
defined as shown in Figure 1. If Tom trusts Bob, there exists a bidirectional edge connecting
the two, i.e., 〈Tom, Bob〉 = 1; otherwise, 〈Tom, Bob〉 = 0.

3.2. Problem Description

In this section, we consider analyzing the recommendation process from a reinforce-
ment learning perspective. In a recommendation scenario, the interaction between the
agent and the environment is the interaction between the recommendation algorithm and
the user.

At each time step t, given the state st of the environment (user), the recommendation
system intelligence selects an action (item) at according to the policy π, which is a mapping
from the state to the action probability distribution. As a result of this action, after this time
step, the agent receives an immediate reward rt+1 and the state is updated to st+1. The goal
of the agent is to learn the optimal policy π : S → A, thus maximizing the cumulative
reward throughout the interaction. This recommendation process satisfies the sequential
decision process, which can be modeled as Markov decision processes (MDPs), and usually,
MDPs can be represented by the quintuple (S ,A, R, δ, γ). Figure 2 illustrates a general
scenario of agent–user interaction in MDP.
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Figure 2. DRL schematic diagram.

3.3. Markov Decision Process

As mentioned earlier, the explainable recommendation tasks based on KG can be
transformed into a Markov decision process and solved using deep reinforcement learning
methods, where the MDP can be formulated by the (S ,A, R, δ, γ) quintuplet.

• S . S is defined as the state space. The state st ∈ S = {i1, i2, . . . , ik} is defined as the
user’s browsing history, i.e., the user has browsed n items before time t. The items in
st are arranged in chronological order.

• A. A denotes the set of actions; action a ∈ A is a continuous vector and has the same
dimension as item i. The ranking score of item i can be obtained by the inner product
of action a and item i.

• R. R is defined as the reward function S × A → R, where R(st, at) denotes the
immediate reward obtained by the agent for performing action at at state st.

• δ. δ denotes the state transfer probability function S ×A → R, where the next time
step state δ(st+1 | st, at) denotes the probability that the agent performs action at to
reach the next time step state st+1 at state st.

• γ. γ ∈ [0, 1] denotes the discount factor, weighing the importance of current and
future rewards.

4. GNLR Model

This section describes the details of GNLR and the training process of GNLR.

4.1. GNLR Algorithm Design

As mentioned earlier, some of the previous recommendation systems ignored the
importance of feature engineering and focused too much on how to process the models
efficiently. In addition, a non-end-to-end approach is taken, which makes model training
complex and leads to difficulty reducing recommendation accuracy. With the continuous
development and deeper research in the field of recommendation systems, people gradually
realize that feature engineering is not only simply transforming raw data but also plays
a key role in building efficient and accurate recommendation models. To address these
drawbacks, we propose a deep reinforcement learning model GNLR based on the DDPG
algorithm. As shown in Figure 3, an Actor network and a Critic network are carefully
designed. In addition, because both Actor and Critic networks have to take the user state as
input, it is very important for the design of feature representation, and a variant of Graph
Neural Network is adopted in this paper to structure the representation of users and items.
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Figure 3. GNLR Algorithm Framework.

According to the MDP definition, the goal of GNLR is to train the recommendation
intelligence to obtain a policy π such that the maximum expected discount cumulative
reward can be obtained by recommending items to user u at any time step t.

Ht , max
πθ

Eπθ

T

∑
j=0

γR
(
st+j, at+j

)
(1)

As shown in Figure 3, GNLR carefully designed an Actor network and a Critic network
based on the DDPG algorithm. In addition, a state representation of the user project and a
target network are constructed.

4.1.1. Actor Network

Actor networks are called policy networks and can generate actions based on the
current state. A good recommendation system should recommend the items that are of most
interest to the user. Positive items represent key information about the user’s preferences,
i.e., which items the user likes. We first combine the current state St =

{
S1

t , . . . , SN
t
}

mapping to a list of weight vectors

fη : st → Ωt (2)

where fη is a function parameterized by η that maps from the state space to the weight rep-
resentation space, and we use a deep neural network as the generating function, assuming
that the weight vector is linearly related to the embedding ei from the i-th item in the item
space, which does not affect our generalization that

score i = Ω1
t eT

i (3)

After calculating the scores of all items, the recommendation system intelligence
selects an item with the highest score as a sub-action ak

t of action at. Finally, the top K
ranked items are recommended to the user.

4.1.2. Critic Network

Critic network Q(st, at) is used as a state–action value function to map to a real value
using the state st and action at at the current time step t as input. The Actor then updates its
parameters in the direction of improving performance to generate the appropriate action
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at the next time step. The optimal action value function Q∗(st, at) is utilized in many
applications of reinforcement learning, following the Bellman equation:

Q∗(st, at) = Est+1 [rt + γ max Q∗(st+1, at+1) | st, at] (4)

In real situations, the state and action space is huge, so it is not feasible to estimate
the Q value of the action value function for each state–action pair. In addition, some
state–action pairs may not appear in the real trajectory. Therefore, a neural network in
deep learning is used as an approximation function to estimate the action value function.
In this paper, a series of loss functions L(θζ) are minimized by using neural networks with
parameters θζ as function approximators, such as:

L
(

θξ
)
= Est ,at ,rt ,st+1

[(
yt −Q

(
st, at; θξ

))2
]

(5)

where yt = Est+1

[
rt + γQ′

(
st+1, at+1; θξ ′

)
| st, at

]
is the target of the current iteration, θξ ′

is the trainable parameter, and Q′ denotes the target network value. The loss function is
optimized by the stochastic gradient descent method.

4.1.3. State Representation

In deep reinforcement learning, in order to train Actor and Critic networks, the user’s
state needs to be used as input. Therefore, it is crucial to design an effective state represen-
tation model.

As shown in Figure 3, GNLR uses the graph attention approach of GNN to design a
state representation model to structurally represent users and items. This approach can
tap into the potential relationships between users and items, users and users, and allow
the intelligences to pay selective attention based on the different characteristics of the
target users and items (Algorithm 1). In addition, the model is able to model sequential
information in states to improve the accuracy of recommendations. In using the graph
attention approach, users and items are first mapped into a low-dimensional space vector
in which eu ∈ Rd and ei ∈ Rd represent the original node features of user u and item i in
the heterogeneous information network, respectively. The graph attention representation is
applied to a subgraph with the user as the central node or project as the central node to
generate a graph-aware au and ai . The method can aggregate neighborhood information
to generate its own feature vector.

In order to reduce the influence of noisy nodes that trust their neighbors but are not
similar, an attention mechanism is used in the graph attention representation module to
assess the trustworthiness of neighbor nodes based on the feature vectors of the user and
the user’s neighbor nodes, and weights are assigned based on this. Ideally, irrelevant
neighbor nodes will be assigned smaller weights, while important neighbor nodes will
be assigned larger weights. Users and items are represented structurally using subgraphs
rather than constructed using the whole information, thus avoiding repetitive training
without nodes and information transfer, reducing training complexity and improving
recommendation accuracy.

Taking the generation of user features au as an example, all nodes of the subgraph
centered on user u are first assigned the corresponding weights by the attention mechanism,
i.e., the following equation.

αuc β =
exp

(
σ
(

WT
[
eu

c ⊕ e∗β
]
+ b
))

∑v∈N exp(σ(WT [eu
c ⊕ e∗v ] + b))

(6)

where W ∈ R and b ∈ R are trainable weights and biases, respectively,
⊕

denotes stitching
the vectors together, σ is the activation function, and N denotes all nodes within the
subgraph centered on user u including itself as well as its neighbors. Since the nodes
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within the subgraph may be users or items, ∗ denotes both cases. The appropriate weights
are assigned to the corresponding nodes by computing α. Finally, the final structured
representation is obtained by aggregation.

au = σ

(
∑

v∈N
αve∗v

)
(7)

Algorithm 1: GNLR framework training
Require: Actor learning rate λa, Critic learning rate λc, discount factor γ,

batch size N, state window size n, reward function R
1: Initialize the target networks π′ and Q′ using the weight parameters θ′ ← θ and

ω′ ← ω
2: Initialize the experience replay pool P
3: for session = 1 to M do
4: Initialize state s0 based on historical information
5: for t = 1 to T do
6: The current state st = f (Bt), where Bt = i1, i2, . . . , in
7: Find at = πθ(st) according to the current strategy using the ε-greedy strategy
8: Recommended items it according to action at by Equation (3)
9: Calculate the reward rt = R(st, at) based on the user’s feedback

10: The new state st+1 = f (Bt+1), where if rt is positive Bt+1 = i2, . . . , in, i1,
otherwise Bt+1 = Bt

11: Store (st, at, rt, st+1) in P
12: Sampling of (st, at, rt, st+1) using empirical playback techniques for N
13: Set yi = ri + γQω′(si+1, πθ′(si+1))
14: Update the Critic network by minimizing the loss function
15: Updating Actor Networks with Sampling Policy Gradients
16: Update the target network: θ′ ← τθ + (1− τ)θ′ and ω′ ← τω + (1− τ)ω′

17: end for
18: end for
19: return θ and ω

Heterogeneous information networks play an important role. A heterogeneous infor-
mation network is a complex network containing different types of nodes and connections,
such as users, projects, etc. In this section, heterogeneous information networks are used to
construct user-centric or project-centric subgraphs denoted as G(uc) and G(ij), respectively.
These subgraphs are extracted from the entire network where users are the central nodes or
items are the central nodes. In these subgraphs, the graph attention representation module
applies the graph attention method of Graph Neural Networks. This approach allows the
model to focus on the neighboring nodes of a specific node in order to quickly generate the
feature vector of the node.

Through this process, users and items can be given structured representations with
graph-awareness capabilities, such that the representations capture potential relationships
between users and items as well as user-to-user relationships. In constructing these struc-
tured representations of subgraphs, subgraph-level information is used while avoiding
construction over the entire heterogeneous information network. This helps to minimize
the interference of unarticulated points in training while reducing the complexity of infor-
mation transfer. In addition, in the graph attention representation module, an attention
mechanism is used to assess the trustworthiness of neighboring nodes and assign weights
based on this. This mechanism helps to reduce the influence of noisy nodes and ensures
that important neighbor nodes receive higher weights while irrelevant neighbor nodes
receive lower weights.
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4.1.4. Reward Function Setting

The reward R(st, at) is an evaluation of the quality of the recommended items. Specifi-
cally, we define the reward function as

R(s, a) = R0(s, a) + Λr(s, a) (8)

where R0(s, a) denotes the initial reward. We use the supervised learning model Proba-
bilistic Matrix Factorization (PMF) to predict user feedback (ratings) for recommended
items that have not been previously rated and normalize all initial rewards in the range
[−1, 1]. r(s, a) denotes the potential reward function. We use the Normalized Discounted
Cumulative Gain (NDCG) method based on ranking; i.e., we use the change in the NDCG
of the recommendation list as the r(s, a) when we add the recommended items to the recom-
mendation list at each time step. Since the training algorithm learns under the supervision
of the reward values of the model parameters, so defining the reward value based on the
evaluation metric of ranking can know that the training process achieves higher ranking
performance. Λ denotes the hyperparameter, which is used to balance the importance
of both.

5. Experiment

This section provides a comprehensive evaluation of the GNLR method using real-
world datasets. We first introduce the datasets and evaluation metrics used in the experi-
ments. Next, the baseline algorithms for comparison are introduced, and a quantitative
comparison between GNLR and baseline methods is made to demonstrate the effectiveness
of GNLR. The corresponding parameter settings in the experiments are then described.

5.1. Experimental Setup

In this paper, experiments are conducted using two publicly available datasets from
the real world, Ciao and LastFM, and the statistical information of each dataset is shown in
Table 1. The experimental environment used is Python 3.7, and the GPU is NVIDIA 3050ti
Laptop with CUDA version 12.0. Online evaluation is performed using these two datasets.
A heterogeneous information network is generated from the data in the datasets, and a
user-project interaction matrix is generated from the heterogeneous information network.

Table 1. Dataset statistics.

Dataset Ciao LastFM

#User 1874 7260
#Item 2828 11,166

#Relation 71,411 72,665
#Feedback 25,174 40,133

In this paper, we use HitRatio (HR) and NDCG to evaluate the performance of the
recommendation system. The higher the NDCG value, the higher the accuracy of the
recommendation. The size of the recommendation list is K, the i-th recommendation item
is ri. If it is clicked by the user, then ri = 1; otherwise, ri = 0. In the actual test, we consider
the recommendation items in the test set as the clicked items and the recommendation
items not in the test set as the unclicked items.

NDCG@K =
DCG@K

IDCG
(9)

In Equation (9), the higher the positive feedback item is ranked, the greater the DCG@K.
IDCG is the ideal value of DCG, which is the optimal value for the positive feedback item
to be ranked in the first place. NDCG@k takes into account the sorting order, and the
maximum NDCG@k has the value 1.
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In Equation (10) F(j) denotes the good ranked as j, c denotes the recommended user
number, only focusing on the top K items, and HR denotes whether the positive feedback
items of the tester appear in the list of the top K: if it appears, HR@K = 1; conversely,
HR@K = 0.

DCG@K =
K

∑
j=1

2ycF(j) − 1
log2(1 + j)

(10)

5.2. Baselines and Parameter Settings

The proposed GNLR algorithm is compared with some representative baseline meth-
ods. Random, BPR, NeuMF, DEERS and DRR are used, respectively. The Random method
randomly selects K items from the candidate set as the top-ranked recommendation items.
BPR is a Bayesian personalized ranking algorithm that learns vector representations of
users and items. NeuMF is a deep learning-based recommendation algorithm for handling
implicit feedback by combining neural networks and traditional matrix decomposition.
DEERS represents the state with both the positive and negative feedbacks by a recurrent
neural network under the DQN framework. DRR is an interactive recommendation algo-
rithm based on deep reinforcement learning, which carefully learns the user state to learn
the recommendation strategy.

In this section, GNLR is compared with the baseline algorithm and the results are
shown in Table 2. According to the given data table, it is found that the GNLR model
outperforms the other models on all datasets in terms of HR@10 and NDCG@10 metrics.
The results show that the overall performance of GNLR is due to other baseline algorithms,
which proves the effectiveness of our proposed method. NeuMF uses feedforward neural
networks for user and item embedding, and for sparse data, neural networks are prone
to overfitting problems, and the computational complexity of using neural networks for
prediction is high, so the training time can be long for large datasets. DRR is based on
user and item embedding for prediction; for long-tail items, a lack of interaction data
DRR prevents accurate predictions, and there is a need to calculate the embedding vector,
which will lead to high computational complexity, making it not suitable for real-time
recommendation systems. And these baseline methods simply connect item embeddings
to represent state s, which leads to information loss resulting in reduced recommendation
performance. The GNLR algorithm mitigates the effect of data sparsity by aggregating
neighborhood information using a heterogeneous information network of GNN and shows
optimal performance.

Table 2. Performance comparison of all methods on dataset.

Model
Ciao LastFM

HR@10 NDCG@10 HR@10 NDCG@10

Random 0.100 0.045 0.100 0.045
BPR 0.445 0.255 0.679 0.469

NeuMF 0.459 0.267 0.690 0.477
DEERS 0.329 0.221 0.678 0.445

DRR 0.360 0.222 0.682 0.471
GNLR 0.736 0.541 0.729 0.545

5.3. Embed Size d Analysis

This section analyzes the performance impact by the size d of the user and item
embedding vectors. The GNLR performance trends are examined by comparing when d
is 8, 16, 32, 64, 128, and 256, respectively. The results are shown in Figure 4, where the
recommended performance trend is first increasing and then decreasing. The recommended
performance reaches the maximum when d = 32 and GNLR has the best performance.
When the embedding size d is less than 32, the difference in structured representation is
too large to completely describe the features because the dimension is too small; when
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the size of d is too large, the dimension is too large, making the user and item features
have smoothing problems and unable to be adequately trained, leading to a decrease in
recommendation accuracy.

Figure 4. Embedding size d analysis.

5.4. Subgraphs and Sampling Analysis in Heterogeneous Information Networks

Only then GNLR used a subgraph approach to generate a structured representation of
users and items and took a random sampling order to draw P subgraph nodes to update.
This section investigates the effect of the sampling number P on the recommendation
performance. As shown in Table 3, the recommendation performance when P = 2, 5, 8, 10,
15 is investigated by fixing the subgraph size K = 1, respectively. The results show that the
best performance is achieved when P = 8. When P is too large, the attention mechanism
also cannot eliminate the noisy information brought by the nodes; when P is too small, it
cannot capture enough neighborhood information in the subgraph.

Table 3. Subgraph sampling analysis of heterogeneous information network.

P
Ciao LastFM

K = 1 K = 1

2 0.7415 0.7422
5 0.7491 0.7468
8 0.7606 0.7602
10 0.7396 0.7356
15 0.7295 0.7348

5.5. Ablation Experiment

In GNLR, a variant of the graph attention mechanism is used to pay selective attention
to neighborhood information and to learn directly from the data in an end-to-end manner.
In order to investigate the effect of these two points on GNLR, two variants of GNLR are
designed: the GNLR-A and GNLR-B. GNLR-A removes the graph attention mechanism
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and employs an averaging approach by assigning the same weight to each neighborhood
information. The GNLR-B employs a non-end-to-end model training approach.

The experimental results for GNLR as well as the two variants are shown in Figure 5,
where it can be observed that GNLR achieves optimal performance in the Last-FM and
Ciao datasets compared to the other two variants. Since GNLR-A removes the attention
mechanism, which makes it impossible to give more weight to neighborhood information
that is beneficial for decision making, subgraphs with more noisy nodes affect the graph-
structured representation of users and items. In addition, the non-end-to-end model
training approach used by GNLR-B leads to a decrease in model accuracy due to error
accumulation and other effects on the next computation.

Figure 5. Ablation experiment.

6. Conclusions

In this paper, an end-to-end deep reinforcement learning-based list recommendation
model (GNLR) is proposed. The approach models the recommendation process as a
Markov decision process and uses deep reinforcement learning to obtain the optimal
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policy. The user and item structured representations are trained in an end-to-end manner
and constructed using a heterogeneous information network with user–item bipartite
graph fusion, and the weights of the neighborhood information are adjusted according
to the attention mechanism. The results show that GNLR can effectively build user state
information and improve the training efficiency and recommendation accuracy of the model
using an end-to-end approach, and it can also reduce the training complexity. In future
work, we can consider improving the interpretability of the framework. In this paper, there
is a lack of solutions for model interpretability in our work. Improving interpretability
can help improve the trust of recommendations and meet the personalized needs of users.
In addition, considering the relationship between nodes enables users and items to obtain a
more accurate structured representation, which can be assisted by introducing a knowledge
graph with rich information, thereby improving the accuracy of recommendation.
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