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Abstract: Modeling the dynamic preferences of users is a challenging and essential task in a rec-
ommendation system. Taking inspiration from the successful use of self-attention mechanisms in
tasks within natural language processing, several approaches have initially explored integrating
self-attention into sequential recommendation, demonstrating promising results. However, existing
methods have overlooked the intrinsic structure of sequences, failed to simultaneously consider the
local fluctuation and global stability of users’ interests, and lacked user information. To address these
limitations, we propose LHASRec (Local-Aware Hierarchical Attention for Sequential Recommenda-
tion), a model that divides a user’s historical interaction sequences into multiple sessions based on a
certain time interval and computes the weight values for each session. Subsequently, the calculated
weight values are combined with the user’s historical interaction sequences to obtain a weighted
user interaction sequence. This approach can effectively reflect the local fluctuation of the user’s
interest, capture the user’s particular preference, and at the same time, consider the user’s general
preference to achieve global stability. Additionally, we employ Stochastic Shared Embeddings (SSE)
as a regularization technique to mitigate the overfitting issue resulting from the incorporation of
user information. We conduct extensive experiments, showing that our method outperforms other
competitive baselines on sparse and dense datasets and different evaluation metrics.

Keywords: sequential recommendation; local fluctuation; global stability; Stochastic Shared Embeddings

1. Introduction

In recent years, personalized recommendation tasks have become increasingly impor-
tant. As the volume of information grows on the Internet, providing accurate recommen-
dations based on changes in the user’s interests has become a challenge. To address this
challenge, researchers have regarded the user’s historical interaction behaviors as ordered
sequences, aiming to capture the dynamic changes in the user’s interests from these se-
quences and predict the next interactive item they may be interested in. This prediction is
crucial for providing personalized recommendations, which helps the platform better meet
user needs and improve user experience.

To model the user’s dynamic interests, researchers have explored various modeling
strategies and algorithms [1–3] for the sequential features of the user’s historical interaction
behavior. In the early stages, Markov chain models [1,4] were commonly used to capture
the transition of the user’s preferences from their interaction history with items. FPMC [5]
integrated the idea of matrix factorization with Markov chains, storing information about
user transition matrices in a three-dimensional matrix. With the popularity of deep learning,
Recurrent Neural Networks (RNNs) [6] and Convolutional Neural Networks (CNNs) [2]
have gradually been applied to the sequential recommendation. Compared to Markov
chains, RNNs can more effectively capture temporal relationships in the user’s behavior
sequences due to their inherent structural characteristics. CNNs can capture the user’s
interests from sequences with complex relationships. Additionally, some methods based
on self-attention mechanisms [3,7,8] introduced weight adaptive adjustment mechanisms
to model the importance of different elements in the sequence dynamically. These methods
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can more accurately capture changes and associations in the user’s interests, thereby
improving the accuracy and personalization of recommendation results.

In sequential recommendation, the user’s preferences are typically influenced by
a combination of long-term and short-term factors. Long-term preferences reflect the
user’s general interests, which are relatively stable and less prone to change within the
sequence. On the contrary, short-term preferences reflect the user’s transient “special”
interests that may deviate from their general interests and exhibit the relative fluctuation
within the sequence. For example, a user may prefer comedy movies as his/her favorite
genre. However, due to the influence of his/her friends, he/she may develop a temporary
fondness for art films for a certain period. However, traditional sequential recommendation
models often treat the user’s historical interaction sequence as a homogeneous entity,
lacking simultaneous consideration of the local fluctuation and global stability of the user’s
interests. This can potentially impact the model’s ability to learn the user’s preferences and
subsequently affect the effectiveness of recommendations.

Regarding the above issues, in this paper, we propose a Local-Aware Hierarchical
Attention recommendation system that combines the local fluctuation and global stability
of the user’s interests. This model enhances the model’s ability to model the user’s behavior
preferences, enabling the model to more accurately reflect the user’s personalized interests
and preferences. Consequently, it can more comprehensively understand the user’s behav-
ior patterns and provides users with more targeted recommendation results. Furthermore,
we also consider the user information from SSE-PT [7] and employ the Stochastic Shared
Embedding regularization technique to handle user and item embeddings in the input and
prediction parts, alleviating overfitting issues. In summary, our main contributions are
as follows:

• We comprehensively consider the local fluctuation and global stability of the user’s
interests to better capture users’ long-term and short-term preferences.

• We employ the Stochastic Shared Embedding regularization technique to handle user
embeddings and item embeddings in the input and prediction parts to alleviate the
overfitting problem.

• We conducted extensive experiments on the MovieLens, Steam, and Beauty datasets,
and the experimental results demonstrate that our model outperforms other competi-
tive baselines.

2. Related Work

The user’s behavior is a time-ordered behavior sequence, and their interests also
dynamically change over time. Therefore, extracting temporal information from sequen-
tial data can provide valuable information. Early sequential recommendation models
utilized Markov chains (MCs) [9] to capture the correlations within the sequential data.
Shani et al. used the Markov chain [1] to mine the correlation between users’ short-term
behaviors, thus achieving a good recommendation effect. Rendle et al. combined the
idea of Matrix Factorization (MF) with Markov chains [5,10] by storing user transition
matrices in a three-dimensional matrix and explored the temporal information in the user’s
short-term behavior sequences by predicting the user’s interests in other items. How-
ever, due to the scalability issue of Markov chains, the time and space complexity of the
models significantly increase when dealing with longer sequences, leading to suboptimal
recommendation performance.

Compared to Markov chains, Recurrent Neural Networks (RNNs) [11,12], bene-
fiting from their distinctive structure, are more effective in handling sequential data.
B. Hidasi et al. first applied RNNs to sequential recommendation [6] and proposed the
session-based sequential recommendation model. It divided the user’s behavior into mul-
tiple sessions based on a certain time interval, modeled each session’s behavior using an
RNN, and predicted the next item the user interacted with. To further improve sequential
recommendation performance, Hidasi et al. introduced the parallel RNN session-based
recommendation model [13], which used RNN to find the dependencies between items
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in the session and parallel RNN to model other attribute characteristics of items in the
session, which improved the effect of sequential recommendation. Zhang et al. proposed
an RNN-based sequential search click prediction model [14] that not only modeled the
user’s click events but also incorporated features of users and items and the information of
the user’s dwell time after clicking an item, resulting in the improved predictive capability
of the model.

However, RNN models assume that any adjacent interactions in a sequence are mutu-
ally dependent, while in reality, there exist intricate and complex relationships among the
user’s consecutive actions. Linearly modeling the user’s historical behavior makes it diffi-
cult to capture their true interests within a sequence with complex relationships. As a result,
researchers have begun exploring the domains of CNN and self-attention mechanisms.
Tang et al. proposed Caser [2], a sequential recommendation model based on convolu-
tional embeddings, which applies CNN concepts to sequential recommendation. Caser
employed multiple convolutional filters with different weights to extract various sequential
pattern information from the sequence, thereby improving the accuracy of personalized
recommendations. Similarly, Yuan et al. extended the Caser model with a future-oriented
recommendation framework called NextItNet [15], utilizing dilated convolutions to cap-
ture more complex dependencies in the user’s behavior sequence. Kang et al. introduced
SASRec [3], a sequential recommendation model based on self-attention mechanisms, to
address the dependency issue of RNNs. Additionally, Li et al. proposed MIND [16], which
reflected a user’s multidimensional interests by using multiple vectors to represent each
user and predicted the match between the candidate items and the user’s interests in
each dimension.

Nevertheless, some existing models ignore the internal structure of the sequence, do
not consider the local fluctuation and global stability of the user’s interest simultaneously,
and lack user information. In our study, we first divide the user’s historical interaction
sequence into multiple sessions based on a certain time interval. By comprehensively
considering the weak correlation between sessions and the strong correlation among items
within each session, we accurately reflect the local fluctuation of the user’s interests. Next,
we combine the calculated weights of each session with the user’s historical interaction
sequence to achieve the influence of the local fluctuation on the global stability of the user’s
interests. Additionally, we introduce user information into the model and employ the
Stochastic Shared Embedding regularization technique to mitigate the overfitting problem
that may arise from incorporating user information.

3. Method

We propose a hierarchical attention-based sequential recommendation model, LHAS-
Rec. The model consists of an embedding layer, a local-aware layer, a global attention
layer, and a prediction layer. This section will describe how to construct this sequential
recommendation model. The architecture of LHASRec is illustrated in Figure 1.
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Figure 1. The overall framework of LHASRec. The model primarily consists of an embedding
layer, a local-aware layer, a global attention layer, and a prediction layer, and the input and output
of the global attention layer are handled using SSE regularization. (a) The target user’s historical
behavior sequence is combined with user information and divided into multiple sessions based on
time intervals. (b) Each session is individually processed by the local-aware layer to generate local
attention weights, which are then combined with the sequences containing item information and user
information to serve as the input for the global attention layer. (c) The SSE regularization technique is
applied to the input matrix. (d) The global attention layer captures the representation of the user’s
local and global preferences. (e) The output matrix is regularized using SSE. (f) Recommendations
are made based on the target user’s local and global preferences.

3.1. Sequential Recommendation Target

In the sequential recommendation task of this section, we define the user’s historical
behavior sequence as Hu = (Hu

1 , Hu
2 , · · · , Hu

|Hu |) , where u ∈ U, Hu
i ∈ I. During the model

training process, at time step t, the model predicts the next item the target user will likely
interact with based on the preceding t items. In other words, we use the user’s historical
behavior sequence (Hu

1 , Hu
2 , · · · , Hu

|Hu |−1) and the user’s information as inputs to the model,
with the expected output denoted as (Hu

2 , Hu
3 , · · · , Hu

|Hu |). The symbols used in our study
are summarized in Table 1.
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Table 1. Notation.

Notation Description

U, I user and item set
Hu historical interaction sequence for the user u

td ∈ N division time interval
n ∈ N maximum sequence length
ns ∈ N length of each session
k ∈ N number of sessions
b ∈ N number of stacked temporal attention blocks
d ∈ N latent vector dimension of the model

di, du ∈ N latent dimension of item and user
MI ∈ R|I|×di item embedding matrix

MU ∈ R|U|×du user embedding matrix
Ŝ1, Ŝ2, · · · , Ŝk ∈ Rns×d input embedding matrix of local-aware layer

Ê ∈ Rn×d input embedding matrix of global attention layer
c1, c2, · · · , ck ∈ R fluctuation coefficient of each session

A ∈ Rn×d output of the self-attention layer
F ∈ Rn×d output of the point-wise feed-forward network

3.2. Embedding Layer

For the historical behavior sequence of the target user, denoted as (Hu
1 , Hu

2 , · · · , Hu
|Hu|−1),

we fix its length to a specific value n ∈ N to obtain the sequence, denoted as (h1, h2, · · · , hn),
where n represents the maximum sequence length. The rule for fixing the length sequence
is as follows: 

padding Hu
|Hu |−1 < n

unchange Hu
|Hu |−1 = n

cutting Hu
|Hu |−1 > n

(1)

It is worth noting that when the length of the original sequence is smaller than n, we
pad the left side of the sequence with zeros. When the length of the original sequence
is greater than n, we only consider the most recent n interactions. We construct the item
embedding matrix MI ∈ R|I|×di and the user embedding matrix MU ∈ R|U|×du , where
di, du ∈ N represent the latent embedding dimensions for items and users, respectively.
From these two embedding matrices, we retrieve the user information embedding for
the target user and the embeddings of each item in the user’s input sequence. These
embeddings are combined to obtain the input embedding E ∈ Rn×d, where d = di + du:

E =



[
MI

h1
; MU

u

]
[

MI
h2

; MU
u

]
· · ·[

MI
hn

; MU
u

]

 (2)

where
[

MI
hi

; MU
u

]
is the concatenation of the embedding vectors for item hi and user u. We

believe that when the time intervals between several user interactions are close, it indicates
that the user is selecting items of the same kind of interest, indicating a strong correlation
between these items. On the other hand, when the time interval between two adjacent items
is large, it may suggest a change in the user’s interest, resulting in a change in the selected
items’ category and indicating a weak correlation between these two items. In the user’s
historical behavior, the local fluctuation is generated with the change of the user’s interest.
To capture these fluctuations, we introduce a time interval threshold, denoted as td ∈ N,
and examine the time intervals between every two adjacent items. If the interval exceeds
td, we split the input sequence accordingly. Following this approach, we divide the input
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sequence E into k sessions, i.e., local interaction sequences. Within each session, the items
exhibit strong correlations, while there are weak correlations between items from different
sessions. As the divided sessions have different lengths, we apply the same fixed-length
rule for each session Si ∈ Rns×d to adjust its length to a specific value, denoted as ns ∈ N:

S1 =



[
MI

h
S1
1

; MU
u

]
[

MI
h

S1
2

; MU
u

]
· · ·[

MI
h

S1
ns

; MU
u

]


, · · · , Sk =



[
MI

h
Sk
1

; MU
u

]
[

MI
h

Sk
2

; MU
u

]
· · ·[

MI
h

Sk
ns

; MU
u

]


(3)

where MI
h

Si
j

∈ Rd represents the embedding of item hj in the i-th session. Since the self-

attention mechanism is unaware of the positional relationship of items in the sequence, we
introduced learnable position embeddings for each session:

Ŝ1 =



[
MI

h
S1
1

; MU
u

]
+ pS1

1[
MI

h
S1
2

; MU
u

]
+ pS1

2

· · ·[
MI

h
S1
ns

; MU
u

]
+ pS1

ns


, · · · , Ŝk =



[
MI

h
Sk
1

; MU
u

]
+ pSk

1[
MI

h
Sk
2

; MU
u

]
+ pSk

2

· · ·[
MI

h
Sk
ns

; MU
u

]
+ pSk

ns


(4)

where pSi
j ∈ Rd represents the embedding of the j-th position in the i-th session.

3.3. Local-Aware Layer

We employ hierarchical attention to capture the strong correlations among items
within each session, where each layer utilizes the self-attention mechanism [17] defined
as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

d

)
V (5)

where Q represents the query matrix, and K and V denote the key and value matrices,
respectively.

√
d is a scaling factor used to mitigate the problem of large inner products

when the dimension is high.
We feed each session of the user separately into different attention layers to avoid

mutual interference between items with weak correlations, ultimately obtaining the fluc-
tuation coefficient corresponding to each session, thereby capturing the local fluctuations
of the user’s interests. Specifically, for the i-th session, it is linearly projected into three
matrices, which are then fed into the i-th attention layer:

AS
i = HA(Ŝi) = Attention(ŜiW

Q
Si

, ŜiWK
Si

, ŜiWV
Si
) (6)

where WQ
Si

, WK
Si

, WV
Si
∈ Rd×d represent the projection matrices of Q, K, and V, respec-

tively, for the matrix Si. Due to the strong correlations among items within each session,
we consider that their sequential order can be ambiguous, allowing subsequent keys to
be connected to the current query to fully capture the representation power of the self-
attention mechanism.

After the self-attention layer, we employ two MLP layers to model the non-linear
relationships among items within the session to obtain the fluctuation coefficient ci corre-
sponding to the i-th session:

Li = AS
i WM

i + bM
i (7)
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ci = GELU
(
(Li)

TWc
i + bc

i

)
(8)

where WM
i ∈ Rd×1, Wc

i ∈ Rns×1, bM
i ∈ Rns×1, bc

i ∈ R are learnable parameters. Instead of
the ReLU function, we utilize the smoother GELU [18] function for activation.

3.4. Global Attention Layer

For each session, we utilize its fluctuation coefficient to reflect the local interest fluctu-
ation of the user, where there is a strong correlation among items within the same session.
However, no single session can fully represent the user’s global preferences, and there
may also exist connections between different local interests. Therefore, we combine the
local fluctuation coefficients with the overall input sequence to achieve global stability.
Specifically, for the input sequence E, we extract the fluctuation coefficients of each item
according to the fluctuation coefficient corresponding to the session in which the item
belongs, resulting in a local fluctuation sequence C = (ch1 , ch2 , · · · , chn), where chi is the
fluctuation coefficient corresponding to the session where item hi belongs. We introduce
the fluctuation coefficients as weights to combine the input sequence that incorporates item
and user information, along with learnable position embeddings, yielding a new input
embedding Ê ∈ Rn×d:

Ê =


ch1
[

MI
h1

; MU
u

]
+ P1

ch2
[

MI
h2

; MU
u

]
+ P2

· · ·
chn
[

MI
hn

; MU
u

]
+ Pn

 (9)

where Pi ∈ Rd represents the embedding for the i-th position.
Attention layer: We perform linear projections on the input embedding Ê to obtain

three matrices, then feed into the attention layer:

A = HA(Ê) = Attention(ÊWQ, ÊWK, ÊWV) (10)

where WQ, WK, WV ∈ Rd×d is the projection matrix. Similar to [3], we introduce a mask
to prevent any connection between Qi and Kj (j > i) to prevent subsequent items from
affecting the current item to be predicted.

Point-Wise Feed-Forward Network: To introduce non-linearity and consider inter-
actions among different latent dimensions, similar to [3,8], we apply the same two-layer
Point-Wise Feed-Forward Network (with shared weights) to A and use the ReLU activa-
tion function:

F = FFN(A) = ReLU(AW(1) + b(1))W(2) + b(2) (11)

where W(1), W(2) ∈ Rd×d, b(1), b(2) ∈ Rd represents the learnable parameters. As the num-
ber of parameters in the network increases, several issues may arise, including overfitting,
unstable training process (such as gradient vanishing), and longer training time. Similar
to [3,8], we employ layer normalization, residual connections, and dropout regularization
techniques after the attention layer and Point-Wise Feed-Forward Network to alleviate
these issues:

f (x) = x + Dropout( f (LayerNorm(x))) (12)

where f (x) represents the self-attention layer or Point-Wise Feed-Forward Network. The
definition of layer normalization is as follows:

LayerNorm(x) = α� x− µ√
σ2 + ε

+ β (13)
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where x is a vector containing all the features of the samples, µ and σ denote the mean and
variance, α is a learnable scale factor, and β is a bias term.

We merge one layer of the self-attention and one layer of the Feed-Forward Network
into one attention module. To capture the user’s preferences more accurately, we stack b
attention modules to learn more complex item transformations, ultimately obtaining the
representation of the user’s preferences.

3.5. Prediction Layer

After b attention modules, the model obtains the global representation of the target
user’s preferences. Using this representation, at time step t, we predict the next item that
the user may interact with:

rti = Ft

[
MI

hi
; MU

u

]
(14)

where rti represents the score of item hi given the previous t items, i.e., the possibility that
the next item is hi.

[
MI

hi
; MU

u

]
represents the combined feature embedding that incorporates

both item information and user information. At time step t, for each positive sample item
i = ht+1, we randomly sample a negative sample m /∈ Hu. Due to the faster weight update
rate of the binary cross-entropy loss function compared to the mean squared error loss
function, we use binary cross-entropy as the loss function:

− ∑
Hu∈H

∑
t∈[1,2,··· ,n]

[
log(σ(rti)) + ∑

m/∈Hu
log(1− σ(rtm))

]
(15)

where σ(·) is the sigmoid function. Because ADAM demonstrates greater robustness in
handling noise and outliers compared to the stochastic gradient descent algorithm (SGD),
we optimize the model using the ADAM optimizer [19]. The top-K recommendations for
the target user at time step t can be obtained by sorting the scores of all items, and the top
K items in the sorted list are the recommended items.

4. Experiments

In this section, we will present our experimental setup and show the results of our
experiments. The experiments conducted aim to answer the following research questions:

RQ1: Can our proposed method outperform the state-of-the-art baselines?
RQ2: Does the choice of different time interval values for sequence dividing affect the

model’s ability to capture the local fluctuation of the user’s interests?
RQ3: How do parameters such as maximum sequence length and the number of

attention blocks impact the model’s performance?

4.1. Datasets

We evaluated LHASRec on four datasets. These datasets cover different domains,
sizes, and sparsity levels, and all of them are publicly available:

Movielens: https://grouplens.org/datasets/movielens/ (accessed on 25 August
2023) This dataset is sourced from the GroupLens Research project at the University of
Minnesota. It is a widely used benchmark dataset. We utilized the Movielens-1M version,
which consists of 1 million ratings from 6040 users on 3900 movies.

Amazon: http://jmcauley.ucsd.edu/data/amazon/ (accessed on 25 August 2023) We
utilized the users’ purchase and rating dataset from the e-commerce platform Amazon,
which was collected by McAuley et al. [20]. To enhance the usability of the dataset, the
researchers divided it based on high-ranking categories on Amazon. Specifically, we
selected the “Beauty” and “Video Games” categories for our study.

Steam: https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data (accessed on
25 August 2023) It originates from the popular digital game distribution platform, Steam.

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
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The dataset captures users’ behaviors, such as game purchases, game ratings, and game
social interactions on the Steam platform.

These four datasets all include timestamps of users’ interactions. We followed the
methods described in [3,7] to preprocess the data. Firstly, we sorted the user–item inter-
actions in ascending order based on the timestamps. To ensure the validity of the data,
we excluded those cold-start users and those with less than three user–item interactions.
Similar to the approach in [3], we used the last item in the interaction sequence (i.e., the
most recent item interacted with by the user) as the test set, the second-to-last item as the
validation set, and the remaining items as the training set. Through these preprocessing
steps, we reduced redundant information while preserving the data’s original meaning, fa-
cilitating further research and algorithm evaluation in the recommendation system domain.
Table 2 provides an overview of these datasets, highlighting their characteristics. Among
them, Movielens-1M is the densest dataset, with fewer users and items. On the other hand,
the Steam dataset is the sparsest, containing relatively fewer interactions.

Table 2. Dataset statistics.

Dataset Users Items Avg. Sequence Length Sparsity

MovieLens-1M 6040 3706 163.6 95.58%
Beauty 22,363 12,101 6.88 99.94%
Games 24,303 10,672 7.54 99.92%
Steam 144,051 11,153 3.49 99.97%

4.2. Compared Methods

We compared LHASRec with various methods, including the classic recommendation
approach (BPR) and recommendation models based on different techniques. Among
them, we considered methods based on first-order Markov chains (such as FMC, FPMC,
TransRec), transformer-based methods (such as SASRec, SSE-PT, TiSASRec), convolutional
neural network-based methods (Caser, TARN), fusion model-based methods (BAR), and
multilayer perceptron-based methods (FMLP-Rec).

BPR [21]: Bayesian personalized ranking model (BPR) is a traditional recommendation
method that employs matrix factorization for the recommendation.

FPMC [5]: Factorizing personalized Markov chains model (FPMC) amalgamates
matrix factorization with the initial-order Markov chain technique, enabling the model to
encompass both users’ long-term preferences and the dynamic transitions of items.

TransRec [22]: Translation-based recommendation model (TransRec) represents a first-
order sequential recommendation approach, where items undergo embedding within a
transformational domain, while users are depicted as translation vectors that encapsulate
shifts from the present item to the subsequent one.

SASRec [3]: Self-attentive sequential recommendation model (SASRec) is the first
transformer-based model that extracts context from all past interactions like recurrent
neural networks while making predictions based on a limited number of interactions,
similar to Markov chains.

SSE-PT [7]: Sequential recommendation via personalized transformer model (SSE-
PT) integrates the embedding vector of the user ID and employs a novel regularization
approach.

TiSASRec [8]: Time interval aware self-attention for sequential recommendation
model (TiSASRec) leverages the advantage of attention mechanisms to handle items at
different ranges in different datasets adaptively and adjusts the weights based on different
items, absolute positions, and time intervals.

TARN [23]: Neural time-aware recommendation network (TARN) simultaneously
captures users’ static and dynamic preferences by fusing a feature interaction network with
a convolutional neural network.
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BAR [24]: Behavior-aware recommendation model (BAR) integrates behavioral infor-
mation into the representation module and employs the innovative module across diverse
backbone models.

FMLP-Rec [25]: Filter-enhanced MLP model (FMLP-Rec) is a pure MLP architecture
model that encodes user sequences using learnable filters.

4.3. Implementation Details

We implemented the LHASRec using PyTorch, with the same number of transformer
encoding blocks as SASRec and SSE-PT (i.e., b = 2). To optimize the model, we chose
ADAM as the optimizer with a learning rate of 0.001 and a momentum decay rate of
β1 = 0.9, β2 = 0.98. The batch size was set to 128. For the Movielens-1M dataset, we set
the dropout rate to 0.2, while for the other three datasets, it was set to 0.5. Regarding the
maximum length of the sequences, we set it to 190 for the Movielens-1M dataset and 50 for
the other three datasets. Additionally, to further enhance the effectiveness of personalized
recommendations, we fine-tuned two parameters of the SSE to improve its performance.

4.4. Evaluation Metrics

To assess the effectiveness of all the models, we employed HR@N and NDCG@N as
evaluation metrics [26], defined as follows:

HR@N =
1
M

M

∑
i=1

hits(i) (16)

NDCG@N =
1
M

M

∑
i=1

1
log2(pi + 1)

(17)

where M is the number of users, hits(i) indicates whether the item interacted with by the
i-th user is present in the recommendation list of length N, and pi represents the position
of the item interacted with by the i-th user in the recommendation list. In our experiments,
we set the length N of the recommendation list to 10. To evaluate the performance of the
recommendation algorithms, we employed HR@10 and NDCG@10 as the two metrics.
Specifically, we appended 100 negative samples [27] randomly after each user’s actual
items and calculated the metric values based on the rankings of these 101 items. It is worth
noting that higher values of HR@10 and NDCG@10 indicate better model performance.

4.5. Recommendation Performance (RQ1)

Table 3 presents the recommendation performance of various methods on the four
datasets (RQ1). For the dense dataset, TiSASRec outperforms other baseline methods. Its
advantage lies in the effective utilization of attention mechanisms, and it can dynamically
adjust the weights according to different items, absolute positions, and time intervals to
adapt to variations in dataset ranges. For the sparse dataset, FMLP-Rec demonstrates
superior recommendation performance compared to other baseline methods. Replacing the
complex Transformer architecture with MLP layers in the frequency domain effectively ad-
dresses the overfitting issue caused by insufficient available information in sparse datasets.
Neural network-based methods (Caser) excel at capturing long-term sequential patterns,
thus performing well on dense datasets. In contrast, methods based on Markov chains
(such as FMC, FPMC, and TransRec) focus more on item transitions, resulting in better
performance on sparse datasets. Furthermore, the TARN approach, which concurrently cap-
tures both users’ dynamic and static preferences, achieves superior performance compared
to the SASRec technique, which focuses solely on a single type of preference, across all the
datasets. Moreover, the BAR technique demonstrates superior performance compared to its
underlying model, SASRec, across all datasets, highlighting the effectiveness of segregating
the user’s historical interaction sequence into item sequence and behavior sequence as a
productive modeling strategy.
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Table 3. Recommended performance. We have bolded the best-recommended method in each row
and underlined the second-best-performing approach in each row.

Methods
Beauty Games ML-1M Steam

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

BPR 0.3775 0.2183 0.4853 0.2875 0.5781 0.3287 0.7061 0.4436
FMC 0.3771 0.2477 0.6358 0.4456 0.6983 0.4676 0.7731 0.5193

FPMC 0.4310 0.2891 0.6082 0.4680 0.7599 0.5176 0.7710 0.5011
TransRec 0.4607 0.3020 0.6838 0.4557 0.6413 0.3969 0.7624 0.4852

Caser 0.4264 0.2547 0.5282 0.3214 0.7886 0.5538 0.7874 0.5381
SASRec 0.4663 0.3080 0.6843 0.4602 0.8285 0.5982 0.7867 0.5108
SSE-PT 0.4963 0.3159 0.6955 0.4677 0.8346 0.6163 0.7885 0.5369

TiSASRec 0.4981 0.3329 0.7080 0.467 0.8359 0.6156 0.8053 0.5523
TARN 0.4979 0.3324 0.6996 0.4698 0.8325 0.6139 0.7985 0.5476
BAR 0.4995 0.3336 0.7073 0.4704 0.8351 0.6192 0.8039 0.5492

FMLP-Rec 0.5029 0.3351 0.7091 0.4773 0.8291 0.5333 0.8031 0.5470
LHASRec 0.5150 0.3402 0.7359 0.5072 0.8396 0.6197 0.8218 0.5611

LHASRec outperforms the leading benchmark techniques in recommendation perfor-
mance across all the datasets. This achievement can be attributed to two key factors. Firstly,
in the case of sparse data, the introduction of user information embedding enhances the
correlation between users and items, thereby improving data representation. This enables
LHASRec to capture the user’s preferences better and achieve more accurate personalized
recommendations. Secondly, the model considers both the local fluctuation and global
stability of the user’s interests, demonstrating the ability to model the user’s behavior
accurately. This comprehensive modeling approach helps capture users’ long-term and
short-term preferences more accurately.

4.6. Local-Aware Ability (RQ2)

When utilizing sequential models for handling the user’s historical interaction se-
quences, it is often prone to overlooking the impact of the local fluctuation of the user’s
interests on global stability. To delve deeper into this issue, we conducted a series of
experiments. We divided the user’s historical interaction sequences into multiple sessions
based on different division time interval values (td) between adjacent items and compared
the performance across four datasets. As shown in Table 4, selecting excessively small td
(resulting in numerous sessions) or tremendous td (resulting in too few sessions) led to a
certain degree of decline in the model’s recommendation capability. Specifically, when td is
too small, the model’s local-aware ability becomes excessively strong, focusing excessively
on the user’s short-term interests and disregarding the strong correlations among items
in the sequence, thus affecting the accuracy of recommendations. Conversely, when td is
too large, the model’s local-aware ability becomes weak, making it challenging to capture
the user’s short-term specific interests and failing to promptly reflect changes in the user’s
interests. We found that the model performed best on the Movielens-1M dataset when the
value of td was 30 min. For the Games, Beauty, and Steam datasets, the model achieved the
best recommendation results when the value of td was 15 min. In order to gain a deeper
insight into the factors influencing the model’s performance, we explored the possibility
that it might be due to the additional information used by the model. Consequently, we
modified the LHASRec by removing specific user attributes and compared the resulting
model with the baseline model. As shown in Table 5, it is evident that even after removing
specific user attributes, LHASRec maintains superior performance on the Beauty, Games,
and Steam datasets. While its performance on the MovieLens-1M dataset is slightly below
that of the optimal model, it still remains significant. This indicates that dividing the
user’s historical interaction sequence into a reasonable number of sessions is meaningful. It
allows for a comprehensive consideration of the user’s short-term special interests and the
strong correlations among items within sessions, thus better reflecting the local fluctuation
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of the user’s interests and laying a solid foundation for achieving global stability of the
user’s interests.

Table 4. Impact of different division time interval values on the recommendation performance of the
models across four datasets. We have bolded the best-recommended method in each row.

td (min)
Beauty Games ML-1M Steam

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

1 0.5052 0.3239 0.7214 0.4868 0.8214 0.5881 0.8141 0.5575
15 0.5150 0.3402 0.7359 0.5072 0.8242 0.5964 0.8218 0.5611
30 0.5137 0.3367 0.7310 0.5005 0.8396 0.6198 0.8116 0.5601
45 0.5086 0.3297 0.7258 0.4916 0.8235 0.5909 0.8075 0.5522
60 0.5059 0.3266 0.7218 0.4877 0.8225 0.5892 0.8001 0.5450

Table 5. Recommended performance. We removed specific user attributes from LHASRec and
compared the resulting model with the baseline model for analysis. We have bolded the best-
recommended method in each row and underlined the second-best-performing approach in each row.

Methods
Beauty Games ML-1M Steam

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

BPR 0.3775 0.2183 0.4853 0.2875 0.5781 0.3287 0.7061 0.4436
FMC 0.3771 0.2477 0.6358 0.4456 0.6983 0.4676 0.7731 0.5193

FPMC 0.4310 0.2891 0.6082 0.4680 0.7599 0.5176 0.7710 0.5011
TransRec 0.4607 0.3020 0.6838 0.4557 0.6413 0.3969 0.7624 0.4852

Caser 0.4264 0.2547 0.5282 0.3214 0.7886 0.5538 0.7874 0.5381
SASRec 0.4663 0.3080 0.6843 0.4602 0.8285 0.5982 0.7867 0.5108
SSE-PT 0.4963 0.3159 0.6955 0.4677 0.8346 0.6163 0.7885 0.5369

TiSASRec 0.4981 0.3329 0.7080 0.467 0.8359 0.6156 0.8053 0.5523
TARN 0.4979 0.3324 0.6996 0.4698 0.8325 0.6139 0.7985 0.5476
BAR 0.4995 0.3336 0.7073 0.4704 0.8351 0.6192 0.8039 0.5492

FMLP-Rec 0.5029 0.3351 0.7091 0.4773 0.8291 0.5333 0.8031 0.5470
LHASRec 0.5092 0.3387 0.7280 0.4996 0.8354 0.6167 0.8166 0.5556

4.7. Stochastic Shared Embeddings

In the process of stacking self-attention modules and incorporating user informa-
tion, the model is prone to overfitting. To alleviate this issue, we conducted a series of
experiments with various regularization methods and compared their performance on the
MovieLens-1M dataset (Table 6). Through the analysis of Table 6, we found that Stochastic
Shared Embeddings (SSE) is a more effective regularization method compared to existing
techniques such as Dropout and weight decay. Specifically, we investigated the recommen-
dation performance when using Dropout and L2 regularization alone and their combination.
The results showed that in the LHASRec, the overfitting problem was mitigated to some
extent by adopting the SSE regularization method, which randomly replaces embedding
matrices. Compared to Dropout or L2 regularization alone, the recommendation perfor-
mance of the LHASRec on the MovieLens-1M dataset improved by approximately 3% and
8%, respectively. Overall, considering the results of our experiments, the combination
of SSE, Dropout, and weight decay is the optimal choice for regularization. This com-
prehensive approach effectively reduces the risk of overfitting and improves the model’s
performance in recommendation tasks. Therefore, we recommend adopting this combined
regularization strategy in practical applications for better recommendation results.
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Table 6. Impact of different regularization methods on the recommendation effect on the MovieLens-1M.
We have bolded the best-recommended method in each row and underlined the second-best-performing
approach in each row.

Methods Value NDCG@10 Hit@10

L2 0.0005 0.5049 0.7447
0.001 0.5083 0.7550

Dropout 0.4 0.5457 0.7990
0.6 0.5192 0.7770

SSE-SE - 0.5616 0.8035

L2+ Dropout

0.001 + 0.4 0.5523 0.8089
0.001 + 0.6 0.5418 0.7952

0.0005 + 0.4 0.5427 0.7980
0.0005 + 0.6 0.5382 0.7892

L2 + SSE-SE 0.0005 + SSE-SE 0.5600 0.7982
0.001 + SSE-SE 0.5641 0.8096

Dropout + SSE-SE 0.4 + SSE-SE 0.5512 0.8002
0.6 + SSE-SSE 0.5649 0.8103

L2 + Dropout + SSE-SE 0.001 + 0.4 + SSE-SE 0.5877 0.8243

4.8. Ablation Study (RQ3)

The influence of the maximum sequence length on the model: Considering the dif-
ferent average sequence lengths of the datasets, we set different maximum sequence lengths
based on the principle that each dataset’s average sequence length is roughly proportional
to the model’s maximum sequence length. Through experimental observations, we found
that the model’s recommendation results are notably influenced by the maximum sequence
length. Generally, a longer maximum sequence length leads to better recommendation
performance. However, when the maximum sequence length exceeds a certain thresh-
old, the recommendation performance of the model starts to decline. In the experimental
data shown in Figure 2, we illustrate the variation in recommendation performance of
the LHASRec under different maximum sequence lengths. The results indicate that the
recommendation performance of the LHASRec improves as the maximum sequence length
increases and reaches its optimum at a certain length (e.g., 190 for MovieLens-1M, 50 for
Beauty and Games datasets, and 30 for the Steam dataset). However, the recommendation
performance starts to deteriorate when the maximum sequence length surpasses this criti-
cal value. This is because an excessively long maximum sequence length may introduce
irrelevant noise to the recommendation task, affecting the model’s ability to utilize limited
information for recommendations effectively. In conclusion, the model’s recommendation
performance is notably affected by the maximum sequence length.

The influence of the number of attention blocks on the model: The number of atten-
tion blocks in the model has a significant impact on the recommendation results. Generally,
more self-attention blocks can improve the model’s ability to fit the data. However, when
the number of blocks is too low, the model tends to underfit, while an excessive number
of blocks increases the model’s complexity, resulting in a long time for fitting the data,
and may lead to overfitting, thereby reducing the recommendation performance. In our
experiments, we investigated the impact of using different numbers of self-attention blocks
in the LHASRec on the recommendation results across four datasets. Based on the experi-
mental data shown in Figure 3, we found that when b = 1, the model fails to fit the data
well, resulting in poor recommendation performance. When b = 2, the model achieves
the best performance and optimal recommendations. However, as the number of blocks
exceeds 2, the model gradually starts to overfit, and the performance declines. Based on
these experimental results, we select two self-attention blocks as the optimal setting across
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all datasets to balance the model’s fitting ability and complexity, thereby obtaining better
recommendation performance.
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Figure 2. Influence of maximum sequence length on ranking performance (NDCG@10).

1 2 3 4 5 6
0.493

0.510

0.527

0.544

0.561

1 2 3 4 5 6
0.54

0.56

0.58

0.60

0.62

1 2 3 4 5 6

0.285

0.300

0.315

0.330

0.345

1 2 3 4 5 6

0.42

0.44

0.46

0.48

0.50

Steam

N
D
CG

@
10

block

 SASRec  SSE-PT  TiSASRec  LHASRec

ML-1M

N
D
CG

@
10

block

Beauty

N
D
CG

@
10

block

Games

N
D
CG

@
10

block

Figure 3. Influence of the number of attention blocks on ranking performance (NDCG@10).

5. Conclusions

In this work, we propose a sequential model with local-aware ability (LHASRec). The
model comprehensively considers the local fluctuation and global stability of the user’s
interests to capture the long-term and short-term preferences more accurately. Meanwhile,
we enhance the user’s historical interaction sequences by embedding user information.
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Additionally, we employ the Stochastic Shared Embeddings regularization technique to
alleviate overfitting caused by embedding a large amount of user information in the
model. Through experiments conducted on sparse and dense datasets, we demonstrate
the superiority of LHASRec over various state-of-the-art baseline models. These results
highlight the effectiveness and superiority of our proposed approach.
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