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Abstract: A significant amount of research has been conducted on the segmentation of large-scale
3D point clouds. However, efficient point cloud feature identification from segmentation results
is an essential capability for computer vision and surveying tasks. Feature description methods
are algorithms that convert the point set of the point cloud feature into vectors or matrices that
can be used for identification. While the point feature histogram (PFH) is an efficient descriptor
method, it does not work well with objects that have smooth surfaces, such as planar, spherical, or
cylindrical objects. This paper proposes a 3D point cloud feature identification method based on an
improved PFH descriptor with a feature-level normal that can efficiently distinguish objects with
smooth surfaces. Firstly, a feature-level normal is established, and then the relationship between each
point’s normal and feature-level normal is calculated. Finally, the unknown feature is identified by
comparing the similarity of the type-labeled feature and the unknown feature. The proposed method
obtains an overall identification accuracy ranging from 71.9% to 81.9% for the identification of street
lamps, trees, and buildings.

Keywords: feature identification; feature extraction; machine vision; case-based reasoning; PFH;
point feature description; smooth surface; point cloud; LiDAR

1. Introduction

Light detection and ranging (LiDAR) technology is a relatively new method for ob-
taining high-quality three-dimensional spatial data and is considered an emerging earth
observation technology. One of the key advantages of LiDAR technology includes high data
density, accuracy, and strong penetration. As such, LiDAR systems have become increas-
ingly prevalent in many fields, such as terrain surveying [1], forest ecological research [2–4],
coastal zone monitoring [5], urban 3D reconstruction [6], urban change detection [7], urban
road detection and planning [8,9], robot environmental perception [10], and more.

However, while the hardware and acquisition technologies for LiDAR systems have
rapidly developed, research on the post-processing and application of point cloud data
has significantly lagged behind. Current 3D data processing methods face several issues,
such as low automation and heavy manual processing workload. Despite significant
efforts to develop data filtering, classification, and extraction algorithms for 3D point cloud
data, there are still limitations to these methods, and large amounts of data are not being
fully utilized. Additionally, there is a lack of robustness in current methods, and point
cloud feature automatic recognition research is limited compared to point cloud automatic
segmentation research.
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However, in the fields of surveying and computer vision, the goal of point cloud
processing methods is to achieve real-time or quasi-real-time automatic ground object
recognition. This technology will be able to achieve automatic classification and recognition
of ground objects in laser point cloud data like supervised and unsupervised classification
techniques and deep learning techniques used in remote sensing image processing which
can realize automatic identification [11]. Building on the early automatic segmentation
method [12], this research is focused on developing an improved method for 3D point
cloud feature identification, which addresses the expression of point cloud features in point
cloud data (description) and the automatic recognition of ground features (identification).

2. Related Work
2.1. General Process

Laser point cloud data consist of points obtained with a laser scanner, which contain
spatial coordinates, intensity information, and sometimes color information. In this paper,
the point cloud feature is defined as a set of laser-scanned points that represent a specific
entity, such as a tree, building, etc.

Hoffman and Jain [13] were the first to propose a complete processing process for laser
scanning point cloud data, which includes five steps: data collection, data preprocessing,
segmentation (or filtering classification), classification, and object modeling. Generally,
point cloud data are processed according to this process [13].

As significant research has already been conducted on the segmentation of point cloud
data [14], this paper will not cover segmentation algorithms in detail. Instead, the focus of
this paper is on methods for point cloud feature description, classification, and recognition,
based on the segmented point cloud.

2.2. Description Methods for Point Cloud Features

A single point or part of a point cloud feature is insufficient in representing the entire
shape of the feature. All the key points of the point cloud feature together form the whole
point cloud feature. The challenge lies in describing scattered points that do not have a
clear topological relationship with each other. Moreover, for the same ground object, the
position, quantity, and density of points in point cloud data collected at different times or
by using different instruments may vary, making it difficult to describe them accurately.

Feature description methods are algorithms that convert point cloud feature points
into vectors or matrices that represent the dataset. The description method should be
stable and distinguishable to describe and identify features. Stability refers to the fact
that for the same object, the description results should be stable and have high similarity.
Distinguishability refers to the ability to differentiate different features, and the vectors or
matrices should have a high degree of heterogeneity.

Feature matching is the process of comparing two features to determine whether they
belong to the same category. The main process of feature description and feature matching
is as follows: First, key points of the model are extracted, then the key points are converted
to a descriptor array. Finally, the model and scene descriptor arrays are matched [15].

Salti and Tombari et al. propose a categorization of the main 3D description methods by
dividing the state of the art into signatures and histograms [15–17]. The signatures describe
the 3D surface neighborhood of a given point by defining an invariant local reference
frame [17]; histograms describe the points by encoding counters of local topological entities
into histograms according to a specific quantized domain [15].

Another descriptor named shape contexts proposed by Frome et al. [18] divides the
point set into a grid along three coordinate directions: radial, directional, and elevation.
The feature description vector is constructed by counting the number of points in the grid.
Although the descriptor is simple in operation, its adaptability is poor.

The point feature histogram (PFH) [19] and fast point feature histogram description
(FPFH) methods proposed by Rusu et al. [19–22] use a given point’s k-nearest neighbor
points and its normal to build a histogram vector. The PFH algorithm takes computational
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complexity and uniqueness into account and has strong robustness. The SIFT algorithm
proposed by Lowe et al. [23] extends the algorithm for two-dimensional color images to
three-dimensional space [24,25]. This algorithm maintains invariance for rotation, scaling,
brightness changes, etc., but has high descriptor dimensions and computational complexity.
The normalized aligned radial feature (NARF) algorithm proposed by Steder and Rusu
et al. [26] has rotational invariance, but the features on image edges are not obvious and
are sensitive to noise [27]. The spin image method proposed by Johnson [28] generates
description information of ground objects from different perspectives.

Overall, the current feature description algorithms have their own advantages and
disadvantages, and their universality is poor. According to the description methods,
there are mainly two methods for point cloud feature description: the signature method
and the histogram method. Salti and Tombari et al. summarize the taxonomy of 3D
descriptors [16,17] and methods’ category, unique local reference framework, and they
whether support color information.

The next step after computing the signature and histogram descriptors for segmented
point cloud data is to identify the point cloud features.

2.3. Identification Methods for Point Cloud Features

Point cloud feature identification refers to the process of matching unknown features
with known ones to classify features. In recent years, there has been a growing number
of automatic classification methods that use deep learning for spatiotemporal data, such
as remote sensing images, laser point clouds, SAR, and others [29–34]. These methods are
mainly based on the supervised classification of statistical learning data, which requires
learning sample data in advance to determine model parameters and then using the
obtained model to classify sub-data. Valuable references for machine-learning-based
automatic ground object classification and filtering of ground point cloud data have been
provided by Anguelov et al. [35], Triebel et al. [36], and Munoz et al. [37–39]. Charles, R.Q.
et al. proposed the PointNet method for deep learning on point sets for 3D classification
and segmentation [40], while Luis A. Alexandre performed a comparative evaluation on 3D
point clouds, exploring both object and category recognition performance and describing
existing feature extraction algorithms in a publicly available point cloud library [41]. Li,
J. et al. applied the OFDV Net to standard public exterior large-scale point cloud dataset
segmentation [33] and achieved good extraction effects. Pritpal Singh et al. provided a
quantum-clustering optimization method for COVID-19 CT scan image segmentation [42]
and a type-2 neutrosophic-entropy-fusion-based multiple thresholding method for brain
tumor tissue structure segmentation [43]. However, these algorithms are mainly aimed at a
certain type of data, such as airborne LiDAR data, LiDAR and image fusion data, or vehicle-
borne LiDAR data. Currently, there are automatic or semi-automatic data segmentation and
classification methods applied in actual production, but these methods need continuous
improvement in terms of data extraction correctness, accuracy, efficiency, applicability,
automation, and dependency on human experience.

3. Methodology
3.1. Overview of the Proposed Framework

The overall technical approach is as follows:
1. Point cloud segmentation: In our recent work [12], we proposed an improved

DBSCAN method with automatic Eps estimation for point cloud segmentation and use
it in this research for point cloud segmentation. In the improved DBSCAN method, the
average of k-nearest neighbors’ maximum distances is used to fit a curve to estimate the
important radius parameter ε in the DBSCAN method which can segment different types
of LiDAR point clouds with higher accuracy in a robust manner.

2. Point cloud feature description and expression: Based on the point cloud data
segmentation results, the 3D grid sampling method is used to remove the noises in the
feature’s point set. Then, the feature descriptor is computed using the improved PFH and
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FPFH methods. The 3D grid sampling method divides 3D point cloud data into multiple
small 3D grids based on point cloud density. The closest point to the center point is retained
in all grids, while other data within the grid are ignored.

3. Case-Based Reasoning database establishment: Firstly, we label the point cloud
feature histogram descriptors and establish a Case-Based Reasoning database as known
cases. Then, we use the correlation coefficient to design the retrieval and matching method
of the case library.

4. Point cloud feature identification: By using the retrieval and matching method in
the database, we can identify the type of the unknown point cloud features.

The technical approach of this paper is shown in Figure 1.
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3.2. PFH and FPFH Descriptor
3.2.1. PFH Descriptor

Rusu et al. [19] proposed the point feature histogram (PFH) method that contains a
set of methods for building feature point representations. The PFH method is used for
accurately labeling points in a 3D point cloud, and the representation is based on the
k-neighborhood points and their surface normal [19,20,44]. Detailed theoretical primer can
be referred to in [19,20,44].

For a query point Pq, Figure 2 presents an influence region of Pq for computing PFH
features. The final PFH descriptor is computed as three tuples 〈α, ∅, θ〉 for pairs of points
in the neighborhood, and its computational complexity is O

(
k2) [19,45].

The final PFH representation for the query point is created by binning the set of all
three tuples 〈α, ∅, θ〉 into a histogram [20,44]. When 5 binning subdivisions are used, the
final histogram result is 125-dimensional vectors (53) with float values.

3.2.2. Fast PFH Descriptor (FPFH)

To simplify the computation of PFH histogram features, fast PFH (FPFH) is performed
on the query point to its neighbors but not all pairs of its neighbors [22] as shown in
Figure 3. The FPFH reduces the computational complexity to O(nk) and retains most of the
discriminative power of the PFH [22].
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3.3. Improved PFH Method
3.3.1. Disadvantage of PFH

The original PFH method relies on the fitting surface at a given point P to determine the
method vector of the point. However, this approach may not be effective in distinguishing
objects with smooth surfaces, such as cylinders, planes, and spheres.

To highlight this difference, we selected 3D basic shapes, including corners, edges,
cones, planes, cylinders, and spheres, for comparison (as shown in Figure 4). The PFH
descriptors are calculated using the method explained above, resulting in a 125-dimensional
vector array which is compressed to 25 dimensions for presentation purposes (as shown in
Figure 5).
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As shown in Figure 5, the vector values for corners, edges, and cones are evidently
dissimilar, underscoring a high level of heterogeneity. However, the same cannot be said
for cylinders, planes, and spheres, for which all vector values are identical, resulting in
a value of 100 at the 13th dimension and 0 for all other dimensions. Consequently, the
PFH descriptor is unable to distinguish between 3D objects such as cylinders, planes, and
spheres, as their surface curvatures are relatively smooth. In the process of binning vector
values to histograms, the small differences in surface curvature are insufficient to create
separate bins for these objects. As a result, the PFH method cannot effectively distinguish
among smooth surfaces.

3.3.2. Improvement of PFH

To address the issue of distinguishing smooth surfaces, we propose an enhanced
version of PFH which is capable of distinguishing objects with smooth surfaces. For
points ps, pm and their normals ns,nm, as shown in Figure 6, the improved PFH process is
as follows.
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First, we establish the normal nm original point and the feature’s middle point pm, and
the direction is from pm to the farthest point to pm in the feature’s point set.

Next, we compute the fitting plane and normal for each point in the point cloud.
In the third step, we calculate difference between normal ns and nm for each point ps

in the feature’s point set and its corresponding fitting plane normal.
Finally, we bin the results into tuple 〈α, ∅, θ〉 arrays and generate histograms.
To compare the differences between various 3D basic shapes, we compute their de-

scriptors using the improved PFH method, which utilizes feature-level normal information.
The results, shown in Figure 7, demonstrate that cones, corners, and edges remain distinctly
recognizable, while cylinders, planes, and spheres are also well distinguished from one
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another. Additionally, the peaks of each object differ significantly not only in size but also
in dimension. Therefore, the improved PFH method helps to overcome the limitations of
PFH, which cannot accurately distinguish between objects with smooth surfaces, such as
cylinders, planes, and spheres.
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It can be observed from Figure 7 that cones, corners, and edges are still clearly distin-
guishable, while cylinders, planes, and spheres are also well distinguished.

3.4. Identification Method
3.4.1. Point Cloud Feature Descriptor Database

The point cloud feature, which serves as the fundamental research unit for object
recognition, can be described using the following database structure:

PointCloud Case = {
Name,
Class,
Overall-Descriptor,
Detailed-Descriptor
}

1. The Name field includes a feature’s name, ID, corresponding file name, and other
descriptive information.

2. The Class field provides category information for the feature, defining its place within
the wider set of point cloud features.

3. The Overall Descriptor provides an overview of the feature, including spatial bound-
ary range, length, width, height, and volume—where the volume is calculated from
the minimum bounding cube of point cloud features.

4. The Detailed Descriptor contains the statistical histogram’s peak values calculated
using the improved PFH or FPFH method, providing more specific information about
the feature.

3.4.2. Identification Method

To compare the similarity between the elements of a point cloud, two types of spatial
geometric form information, namely the overall descriptor and detailed descriptor, are
used. These descriptors are utilized in a similarity calculation model constructed as follows:

SimilarityCase(i,j) = w1 × Sr(Case(i,j)) + w2 × Sa(Case(i,j)) (1)
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where SimilarityCase(i,j) is the similarity coefficient of point cloud feature i and j; Sr(Case(i,j))
is the overall similarity coefficient of feature i and j; Sa(Case(i,j)) is the detailed similarity
coefficient of feature i and j; w1 and w2 are the weight coefficient for overall and detailed
descriptor, respectively. w1 and w2 can be determined based on the type of feature object.
The sum of w1 and w2 is 1.

The formulas for Sr(Case(i,j)) and Sa(Case(i,j)) are shown in (2) and (3).

Sr(Case(i,j)) = 1−
∣∣Vi −Vj

∣∣
Max

(
Vi, Vj

) (2)

where Vi and Vj are the volumes of feature i and j, respectively. In this study, the overall
descriptor of the point cloud feature is calculated as the volume of the minimum bounding
cube. This method is relatively simple and easy to implement.

The correlation coefficient method is used for the detailed similarity coefficient Sa(Case(i,j))
calculation.

Sa(Case(i,j)) =
1

n− 1

n

∑
i=1

(
Xi − X

σX

)(
Yi −Y

σY

)
(3)

In Equation (3), n represents the set of dimensions where the peak values of feature

are i and j. Xi−X
σX

, X, and σX are the standard score, sample mean, and sample standard
deviation, respectively.

To ensure accurate calculation of the correlation coefficient, it is necessary to discard the
dimensions with all peak values at 0, and the set of dimensions is dynamically selected with
peaks between two scenarios to participate in similarity calculation. This is because having
most of the peaks at 0 may lead to an inaccurate calculation of the correlation coefficient.

The identification process involves establishing a sample library of known feature
types and calculating the similarity between the unknown feature type and each sample in
the library. Finally, the resulting similarity values are sorted, and the feature type with the
highest similarity score is determined as the unknown type.

4. Materials and Experiments
4.1. Datasets

The dataset used in this paper is the segmentation results of our previous work that
used an algorithm based on the DBSCAN density clustering method [12]. The dataset,
acquired by using a mobile survey system, covers the study area of a 500 m long street and
encompasses trees, street lamps, buildings, and other objects, as depicted in Figure 8.
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4.2. Experiments and Analysis
4.2.1. Labeling the Point Cloud Features

We selected simple-shaped objects such as street lamps, complex-shaped objects such
as trees, and building facades as experimental objects. Representative entities from each
class were carefully chosen and labeled to construct the sample database. In addition,
unlabeled objects were selected to form a test database. The sample database comprised
19 trees, 22 street lamps, and 8 buildings, as illustrated in Figure 9, while the test database
contained 553 unlabeled objects, as demonstrated in Figure 10.
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4.2.2. Point Set Sampling

We performed feature point set sampling using the 3D grid sampling method on the
segmented point cloud features to enhance the representativeness of the point set, reduce
data redundancy, and remove noises, thereby improving the calculation speed of the feature
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descriptor. The average distance between points was calculated using the distance between
k-nearest points and its range d ∈ (0.354, 2.040). For point set sampling, we chose a radius
of r = 0.5 for the 3D grid sampling method. The resulting point set samples for street
lamps, trees, and houses are displayed in Table 1.

Table 1. Point set sampling.

Type Original Point Set Sampled Point Set

Street Lamp
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4.3. Feature Description

Following point set sampling, a point cloud feature descriptor database is generated
by organizing the name, class, overall description, and detailed description for each feature
in the sample database. The overall description is obtained by computing the minimum
bounding cube of point cloud features, while the detailed descriptor is calculated using
the improved PFH and FPFH methods. For detailed description calculation, the radius for
normal estimation is set to rn = 0.9, and the nearest neighbor search radius is set to rl = 0.9.
The structure of the feature descriptor database is illustrated in Figure 11.
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The PFH and FPFH descriptors for representative features are presented in Table 2.
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Table 2. PFH description of partial samples.

ID Point Cloud Feature Improved PFH Descriptor Improved FPFH Descriptor

S1
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lamps exhibit three higher peaks near dimensions 5, 10, 16, 23, and 30, respectively. For a 
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From Table 2, it is evident that when using the improved FPFH method, the street 
lamps exhibit three higher peaks near dimensions 5, 10, 16, 23, and 30, respectively. For a 
single tree, high peaks are observed near dimensions 2, 4, 10, 16, 21, 29, 30, and 31. Build-
ing facade 1 shows high peaks in dimensions 0, 5, 16, 22, and 27, whereas building facade 
2 exhibits high peaks in dimensions 0, 5, 16, and 22. Building facade 3 displays high peaks 
in dimensions 0, 5, 10, 16, 22, and 33. The histograms of different features vary signifi-
cantly, and buildings of different forms within the same category have both similarities 
and differences. For instance, the position and number of peaks in the histograms of street 
lamps, single trees, and building facades are markedly different. While building facades 
2 and 3 have similar peak positions, the value of building facade 3 in the 10th dimension 
is substantially higher than that of the other two building facades. Therefore, different 
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We calculated the improved PFH and FPFH descriptors for the test database and 
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Upon analyzing the result table, we observed that the street lamp exhibited peak
values near the 60th dimension and relatively smaller peaks near dimensions 15, 38, 88,
and 115. The tree, on the other hand, had two or three higher peaks close to dimensions
15, 38, and 115 and two higher peaks at dimensions 62 and 88. The building facade
demonstrated high peaks in dimensions 15, 38, 62, 88, and 115. This observation indicates
that the histogram features of different features exhibit distinct peak positions, values, and
numbers. Nevertheless, in building facades 2 and 3, although the peak positions are similar,
the number of peaks at each position varies, allowing for distinction between the two.

From Table 2, it is evident that when using the improved FPFH method, the street
lamps exhibit three higher peaks near dimensions 5, 10, 16, 23, and 30, respectively. For a
single tree, high peaks are observed near dimensions 2, 4, 10, 16, 21, 29, 30, and 31. Building
facade 1 shows high peaks in dimensions 0, 5, 16, 22, and 27, whereas building facade 2
exhibits high peaks in dimensions 0, 5, 16, and 22. Building facade 3 displays high peaks in
dimensions 0, 5, 10, 16, 22, and 33. The histograms of different features vary significantly,
and buildings of different forms within the same category have both similarities and
differences. For instance, the position and number of peaks in the histograms of street
lamps, single trees, and building facades are markedly different. While building facades
2 and 3 have similar peak positions, the value of building facade 3 in the 10th dimension
is substantially higher than that of the other two building facades. Therefore, different
individuals in the same category can be distinguished.

4.4. Feature Identification Results

We calculated the improved PFH and FPFH descriptors for the test database and measured
the similarity between the test database and sample database. When SimilarityCase(i,j) ≥0.8,
features i and j are labeled as the same class. The identification results are shown in Table 3.

Table 3. Identification results.

Descriptor Class Total
Original Method Improved Method

Correct Accuracy Correct Accuracy

PFH

Street lamp 83 65 78.31% 74 89.10%

Tree 190 143 75.26% 167 87.90%

Building 13 8 61.54% 10 84.60%

Average - - 71.70% - 87.20%

FPFH

Street lamp 71 51 71.83% 58 81.70%

Tree 177 125 70.62% 140 79.10%

Building 10 6 60.00% 8 80.00%

Average - - 67.48% - 80.27%

A total of 83 street lamps are identified using the improved PFH method with detailed
descriptions. After manual judgment, nine of them are identified as noise or recognition
errors, resulting in an accuracy of 89.1% while the original method has an accuracy of
78.31%. A total of 190 individual trees are identified, and 167 are correct, while the rest are
noise and incorrect ones, resulting in an accuracy of 87.9% while the original method has
an accuracy of 75.26%. A total of 13 houses are identified, resulting in an accuracy of 84.6%
while the original method has an accuracy of 61.54%. The incorrect recognition occurred
when rows of trees are identified as houses. The average accuracy of the improved PFH
method is 87.20% compared to the original method which has an accuracy of 71.70%.

For the improved FPFH method, a total of 71 street lamps are identified. After manual
judgment, 13 of them are incorrect and are identified as noise, resulting in an accuracy of
81.7%. A total of 177 trees are identified, and 140 are correct with an accuracy of 79.1%
while the original method has an accuracy of 70.62%. For buildings, the accuracy of the
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improved method is 80% while the original method has an accuracy of 60% The average
accuracy of the improved FPFH method is 67.48% compared to the original method which
has an accuracy of 80.27%.

From the identification results, it can be seen that the accuracy of the improved
PFH and FPFH methods is higher than the original ones. When calculating PFH, the
relationship between adjacent points was taken into account, leading to more detailed
descriptions but also requiring a larger initial calculation. The improved method was
simplified, resulting in reduced calculations while maintaining a high recognition accuracy.
In practical applications, the selection of detailed description methods should be based on
the actual situation. The matching results are shown in Figures 12 and 13.
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5. Conclusions

Upon comparing the difference in PFH descriptors for 3D basic shapes, such as corners,
edges, cones, planes, cylinders, and spheres, we discovered that the PFH method cannot
differentiate between shapes with smooth surfaces, such as planes, cylinders, and spheres.
To compensate for this deficiency, we improved the PFH method by including the feature-
level normal. Our experiments for identifying street lamps, trees, and buildings showed
that the identification method, which compares the similarity of PFH or FPFH descriptors
and volumes, has the capability to identify point cloud features.

Future work may focus on improving the computation method for similarity, such as
using deep learning methods. Additionally, to obtain more accurate results, we may need
to increase the number of samples.
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