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Abstract: Industrial robots have been increasingly used in the field of intelligent manufacturing. The
low absolute positioning accuracy of industrial robots is one of the difficulties in their application.
In this paper, an accuracy compensation algorithm for the absolute positioning of industrial robots
is proposed based on deep belief networks using an off-line compensation method. A differential
evolution algorithm is presented to optimize the networks. Combined with the evidence theory, a
position error mapping model is proposed to realize the absolute positioning accuracy compensation
of industrial robots. Experiments were conducted using a laser tracker AT901-B on an industrial robot
KR6_R700 sixx_CR. The absolute position error of the end of the robot was reduced from 0.469 mm
to 0.084 mm, improving the accuracy by 82.14% after the compensation. Experimental results
demonstrated that the proposed compensation algorithm could improve the absolute positioning
accuracy of industrial robots, as well as its potential uses for precise operational tasks.

Keywords: absolute positioning accuracy; deep belief network; differential evolution algorithm;
industrial robot; off-line error compensation

1. Introduction

Industry 4.0 technologies are critical and indispensable tools to propel social and
technological innovation advancements. Previous research [1,2] noted that the use of In-
dustry 4.0 technologies can better sustain current resources, reduce labor costs, be better
sources of energy, and potentially produce higher-quality sustainable products. Examples
of Industry 4.0 technologies include, but are not limited to, machine learning, virtual and
augmented reality, IoT, artificial intelligence, big data, and robotics [3]. Ref. [4] found
Industry 4.0 technologies assist manufacturing companies’ sustainability and increase their
economic potential. Scholars have examined Industry 4.0 technologies in diverse industries
besides manufacturing. Ref. [5] implemented a systematic review to understand the use of
Industry 4.0 technologies in managing pandemics. The use of Industry 4.0 technologies to
meet the increasing demands of society is ubiquitous; applications include robotics [6], arti-
ficial intelligence [7], IoT [8], augmented reality [9], big data [10], and machine learning [11]
in food and agricultural sciences, to assist in more efficient and enhanced production,
which is needed to feed a growing world population. Ref. [12] investigated the use of
Industry 4.0 technologies in the manufacturing sector, as examined in 380 papers prior to
2020. Ref. [13] sought to understand the manufacturing patterns implemented based on
Industry 4.0 technologies.

Modern advanced manufacturing technology and key technologies demonstrate the
fundamental competitiveness of a nation’s manufacturing industry. Robotics is a sig-
nificant Industry 4.0 innovation that offers immeasurable possibilities in manufacturing
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disciplines [14]. An industrial robot is a complex system that succeeds in situations in-
volving cross-work environments, high repetition, and high-precision processing. The
current manual-based processing methods cannot meet all the requirements of a short
development cycle and high assembly precision [15], and the use of industrial robots for
processing is an excellent solution to this problem. The repeat positioning accuracy of
industrial robots during the actual work process is usually quite satisfactory [16], and is
typically 0.1 mm. However, the absolute positioning accuracy is poor, with an accuracy
range of only approximately 2–3 mm. The absolute positioning accuracy severely limits the
promotion and application of industrial robots in the manufacturing industry.

To address the problem of poor absolute positioning accuracy at the end of industrial
robots, scholars at home and abroad have proposed various solutions [17]. Kinematic
model-based control of robot joints makes it possible to compensate for absolute positioning
errors in industrial robots. However, the positioning accuracy of the robot is affected by
the size of the error of each kinematic parameter. The kinematic parameter errors can be
addressed using kinematic parameter identification. The resulting parameter errors can be
applied to the kinematic model to realize the adjustment of the model. This increases the
positioning accuracy of the robot in the actual working environment, and the generated
kinematic errors can be used to upgrade the kinematic model. This improves the positioning
accuracy requirements of robots in actual workplaces.

In addition to positioning errors caused by geometric factors, nongeometric factors,
such as gear gap, joint deformation, and temperature change, also affect the end positioning
accuracy of robots [18]. The error mechanisms affecting robot positioning accuracy are
complex and interconnected [19]. It is difficult to establish an accurate kinematic model that
can account for all sources of error. Researchers have begun to investigate the establishment
of a mapping relationship between the theoretical and actual position values.

A co-kriging-based error compensation method [20] was suggested to improve the
positioning accuracy of the aerial drilling robot. A compensation method based on error
similarity and error correlation was proposed to increase the robot’s positioning accu-
racy [21]. First, the maximum working stiffness of the robotic drilling system in a specific
machining task was obtained. This was achieved by optimizing the mounting angle be-
tween the motor spindle and the robot end flange. This optimization laid the groundwork
for achieving high hole-processing accuracy. Second, the method for calculating the cor-
responding compensation value was introduced. This was undertaken according to the
position to be drilled. The method took into account the force deformation at the robot
end and the absolute positioning error of the robot [22]. Combining error similarity and a
radial basis function (RBF) neural network, Wang [23] developed a position error compen-
sation approach. The robot joint angle and position error were used to fit the experimental
semi-variance function. The bandwidth of the RBF neural network was modified using the
parameters of the semi-variance function. The position error of the target position was also
estimated using the RBF neural network. The estimated position error was used to modify
the target position to achieve the compensation effect. In precision manufacturing, Li [24]
introduced a synchronization estimation approach for the total inertia and load torque of
spindle-tool systems. The synchronization method was based on a novel double extended
sliding mode observer (DESMO), which synchronously tracked the total inertia and load
torque. The robustness of DESMO was enhanced by inserting a robust activator to reduce
the effect of coupling errors between the two expansion terms. This was critical to the
precision control of the spindle tool and directly influenced the control performance.

Long-term research has been carried out by Tian Wei’s team at the Nanjing University
of Aeronautics and Astronautics to increase the absolute positioning accuracy of indus-
trial robots. A robot positioning error compensation method based on a deep neural
network [25] was proposed to perform Latin hypercube sampling in Cartesian space. A
positioning error prediction model based on genetic particle swarm optimization and a
deep neural network (GPSO-DNN) was developed to predict and compensate for position-
ing error. Then, a practical positioning error compensation scheme for mobile industrial
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robots was proposed [16]. A binocular vision measurement method for robot positioning
was developed. A mapping model between theoretical and actual robot pose errors was
proposed based on deep belief networks (DBN), and the pose error estimation was realized.

A method for optimizing neural networks using the genetic particle swarm algorithm
was proposed. This was done to improve the positioning accuracy of robots [26]. The
aim was to model and predict the positioning error of industrial robots and achieve the
compensation of target points within the robot workspace. Tian [27] proposed an absolute
positioning error compensation scheme based on the DBN and error similarity. Relevant
scholars have conducted in-depth research. The accuracy and versatility of error prediction
can be further studied to improve the absolute positioning accuracy of the robot [28]. In
addition, there are many mathematical methods [29–32] that can also be used to study the
positioning accuracy of robots. Analytic methods such as fractional order have gained
more and more attention [33,34].

The DBN is simple in structure and is suitable for data training in industrial robots.
The training time of the DBN is short, thereby helping to improve the efficiency of the robot.
Meanwhile, the differential evolution (DE) algorithm is an optimization algorithm based
on the theory of swarm intelligence. It has been widely used in many fields because of its
simple principle, small number of controlled parameters, and strong robustness. Finally,
evidence theory can make experimental results more reliable.

Min [35] proposed a stable and high-accuracy model-free calibration method for un-
opened robotic systems, which can significantly improve the robot positional accuracy.
Ref. [36] proposed an adaptive hierarchical compensation method based on fixed-length
memory window incremental learning and incremental model reconstruction. Real-time tra-
jectory position error compensation technology that considers non-kinematic errors [37,38]
has also been proposed.

An absolute positioning accuracy compensation algorithm is proposed for industrial
robots based on the DBN. The DE algorithm is used to optimize the DBN. The number
of layer nodes, learning rate, momentum factor, restricted Boltzmann machine (RBM)
iterations, and DBN fine-tuning iterations improve the optimization effect based on six
dimensions and nine parameters. Combined with the evidence theory, the position error
mapping model of industrial robots is established to realize its absolute positioning accuracy
compensation. The technical process is shown in Figure 1.
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Combined with the off-line feed-forward compensation method, the prediction error
of the theoretical pose coordinates of the robot target is superimposed on the robot control
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instructions. The validity and superiority of the scheme are verified using a AT901-B laser
tracker on KUKA KR6_R700 sixx_CR. The absolute positioning error at the end of the robot
was reduced by 82.14%, from 0.469 mm to 0.084 mm. Future work can further consider
industrial robot load, motion speed, acceleration, ambient temperature, or other factors
that affect the absolute positioning accuracy of the robot.

The chapter arrangement of this paper is as follows: Section 1 serves as the intro-
duction, providing an overview of the absolute positioning accuracy of industrial robots
and the method proposed in this paper. Section 2 focuses on the robot positioning error
prediction algorithm based on DE and DBN. Section 3 presents supervised predictive opti-
mization based on evidence theory. Section 4 includes experimental setup, data collection,
model training, and result analysis. Finally, Section 5 presents the conclusion.

2. Robot Positioning Error Prediction Algorithm Based on DE and DBN
2.1. Principle of the DBN

The DBN is a probabilistic generative model proposed by Geoffrey Hinton [39] in
2006. It is composed of multiple RBM connections and a regression layer, and created by
fine-tuning the resulting deep network through gradient descent and back propagation
(BP) to form the best model.

RBM, as the basic component of the DBN [40], is a generative random artificial neural
network, which can learn probability distribution from the inputs. The structure of RBM
is shown in Figure 2. RBM consists of two layers: the visible layer v and the hidden layer
h. The visible layer is used to receive training data. In this study, the visible layer is used
to accept the desired position of the end in the robot coordinate system and the current
robot joint angle. The input of the hidden layer is the output of the visible layer, which
is used to extract features. The neurons of the two layers have intra-layer no-connection
and inter-layer full-connection relationships. Between the visible and hidden layers is the
weight matrix wp. v and h represent the visible-layer and hidden-layer vectors, respectively,
and bv and bh represent the biases of the visible and hidden layers, respectively.
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The multilayer RBM and the BP layer are stacked to form a DBN, as shown in Figure 3.
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The first layer of RBM consists of a visible layer v1 and a hidden layer h1. The visible
layer v2 of the second layer of RBM is the hidden layer h1 of the first layer of RBM, that is,
v1 = h1, etc. The DBN realizes its layer-by-layer learning by stacking multiple RBMs, so as
to extract the features of the data. The last layer of the DBN sets the BP network.

Unsupervised pretraining and fine-tuning are two processes of DBN training [41]. In
the pretraining process, the greedy algorithm is used. The result obtained by the previous
RBM training is used as the input of the next RBM until all RBMs are trained. The initial
parameters of each RBM are obtained at the same time. The energy function of RBM is
defined as follows:

E(v, h; θ) = −
m

∑
i=1

bivi −
n

∑
j=1

cjhj −
m,n

∑
i,j=1

wijvihj (1)

θ =
{

wij, bi, cj
}

(2)

where m and n are the number of nodes in the visible and hidden layers, respectively. vi,bi
are the biases between neurons in the visible layer. cj, hj are the biases between neurons in
the hidden layer. wij is the connection weight value between the i-th neuron in the visible
layer and the j-th neuron in the hidden layer. Based on the energy function, the probability
distribution can be obtained as:

P(v, h; θ) =
1

Z(θ)
exp(−E(v, h; θ)) (3)

where Z(θ) is the normalization factor expressed as:

Z(θ) = ∑
v,h

exp(−E(v, h; θ)) (4)

The state probabilities of the hidden and visible layers are:

P
(
hj = 1|v; θ

)
= ϕ

(
bj +

n

∑
i=1

wijvi

)
(5)

P
(
vj = 1|h; θ

)
= ϕ

(
bj +

m

∑
j=1

wijhi

)
(6)
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ϕ is the activation function, ϕ = 1
1+exp(−x) .

Fine-tuning refers to using the BP algorithm to train the entire network after pretrain-
ing [42], so that the entire DBN is in the best state, avoiding the disadvantages of critical
points and long training time. Supposing y and ŷ are the actual output and desired output
of the DBN, respectively, the loss function of the output layer is:

F(τ) =
1
2

N

∑
1
(ŷ− y)2 (7)

where τ is the number of iterations and N is the number of training samples.
The weights between the hidden and output layers of the last layer of the network are

iterated through an update function, and η is iteration rate of the DE algorithm:

wout(τ + 1)−wout(τ) = −η
∂F(τ)

∂wout(τ)
(8)

The DBN has strong robustness and fault tolerance because the information is dis-
tributed in the neurons in the network, and it can approximate any complex nonlinear
system. Therefore, it is suitable for dealing with the nonlinear problem of error compensa-
tion.

2.2. DBN Optimization Based on DE Algorithm

The parameters such as number of hidden layers, number of nodes in the hidden
layer, learning rate, momentum factor, number of RBM iterations, and the number of DBN
fine-tuning iterations of DBN determine the complexity of the network. These parameters
are important factors influencing the accuracy of the results of the prediction model. Other
parameters such as speed of training and performance can also influence the accuracy of
the results.

To achieve the best training effect, it is necessary to optimize the training parameters
to obtain the optimal parameters. The DE algorithm is an optimization algorithm based
on the theory of swarm intelligence. This algorithm was proposed by Rainer Storn and
Kenneth Price [43] in 1995. It has been widely used in many fields because of its simple
principle, small number of controlled parameters, and strong robustness.

The DE algorithm mainly includes four operations: initialization, mutation, crossover,
and selection [44]. The population of DE is generated by random steps. The population size
is N. The dimension of the search space is D. The dimension is the number of parameters to
be optimized in this paper. The population initialization can be expressed as:

xi,j(0) = xj,min + rand[0, 1] ·
(
xj,max − xj,min

)
(9)

where i ∈ [1, 2, · · · , N], j ∈ [1, 2, · · · , D], x(0) represents the 0th generation individual.
rand[0, 1] denotes uniformly distributed random numbers in [0, 1]. xj,max and xj,min indicate
the upper and lower bounds of the j-th chromosome, respectively.

After initialization, three different individuals are randomly selected from the popula-
tion for mutation:

vchild
i = xra + F · (xrb − xrc) (10)

where F is the zoom factor, which can be set according to the actual situation.
A crossover operation is required to increase the diversity of the population. The new

individual is generated by dimensionally crossing for each individual in the contemporary
population and the new individual obtained from its mutation. The specific cross-operation
process is defined as follows:

uj
i,G =

{
vj

i,G, rand[0, 1] ≤ CR or j = jrand

xj
i,G, otherwise

(11)
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where CR is a crossover factor with a value range of [0, 1]. uj
i,G is a new individual generated

by the crossover strategy.
After the crossover is completed, the DE algorithm selects each individual of the

current population and the crossover individual. It keeps the best individual among the
two as the next-generation population individual:

xj
i,G+1 =

{
uj

i,G, i f f
(
ui,j
)
≤ f(xi,G)

xj
i,G, otherwise

(12)

The mean square error (MSE) between the expected output of the DBN and the actual
output of the data is used as the fitness function of the DE algorithm:

F f itness =

n
∑

i=1

m
∑

j=1

(
ŷij − yij

)2

N
(13)

where N is the number of training sample data sets. m is the dimension of the network
output. ŷij refers to the expected output of the sample. yij refers to the actual output of the
network.

The DE algorithm is known as an efficient global optimizer with the advantages of
convergence speed and high precision. The fitness function of the DE algorithm is related
to the DBN, and the smaller the fitness function value, the better the optimization result.

The principle of the DE algorithm is shown in Figure 4.

Electronics 2023, 12, 3718 8 of 22 
 

 

 
Figure 4. Flow chart of the DE algorithm. 

The DE algorithm starts searching from a group, that is, multiple points instead of 
the same point [45]. This is the main reason why it can find the overall optimal solution 
with a greater probability. The evolution criterion of the DE algorithm is based on fitness 
information [46] with the help of other auxiliary information. It has inherent parallelism, 
which is suitable for large-scale parallel distributed processing [47]. The DE parameter 
settings are shown in Table 1. 

Table 1. Parameters optimized by the DE algorithm. 

Parameter Symbol Value 
Dimensions of the objective function n_dim 9 

Maximum number of iterations max_iter 200 
Population size size_pop 30 

Mutation probability prob_mut 0.8 
Crossover probability Crossp 0.7 

The DBN input layer has nine channels. They are the theoretical position coordinates 
of the robot and the angles of the corresponding six joints ( )1 2 3 4 5 6, , , , , , , ,x y z θ θ θ θ θ θ . The 
output layer of DBN is three channels, which are the position error ( ), ,x y ze e e  of the ro-
bot. 

The maximum number of hidden layers of DBN nodes is set to four layers. The range 
of nodes in the hidden layer is (10, 101). The initial learning rate is 0.01. The momentum 
factor is 0.8. The activation function is Sigmoid, and the MSE is used as the loss function. 
The hyperparameters that need to be optimized are the number of hidden layers of the 
DBN, number of hidden-layer nodes, learning rate, momentum factor, RBM iterations, 
and DBN fine-tuning iterations. The hyperparameters are shown in Table 2. 

  

Figure 4. Flow chart of the DE algorithm.

The DE algorithm starts searching from a group, that is, multiple points instead of
the same point [45]. This is the main reason why it can find the overall optimal solution
with a greater probability. The evolution criterion of the DE algorithm is based on fitness
information [46] with the help of other auxiliary information. It has inherent parallelism,
which is suitable for large-scale parallel distributed processing [47]. The DE parameter
settings are shown in Table 1.
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Table 1. Parameters optimized by the DE algorithm.

Parameter Symbol Value

Dimensions of the objective function n_dim 9
Maximum number of iterations max_iter 200

Population size size_pop 30
Mutation probability prob_mut 0.8
Crossover probability Crossp 0.7

The DBN input layer has nine channels. They are the theoretical position coordinates
of the robot and the angles of the corresponding six joints (x, y, z, θ1, θ2, θ3, θ4, θ5, θ6). The
output layer of DBN is three channels, which are the position error

(
ex, ey, ez

)
of the robot.

The maximum number of hidden layers of DBN nodes is set to four layers. The range
of nodes in the hidden layer is (10, 101). The initial learning rate is 0.01. The momentum
factor is 0.8. The activation function is Sigmoid, and the MSE is used as the loss function.
The hyperparameters that need to be optimized are the number of hidden layers of the
DBN, number of hidden-layer nodes, learning rate, momentum factor, RBM iterations, and
DBN fine-tuning iterations. The hyperparameters are shown in Table 2.

Table 2. Parameters and optimization range of the DBN.

Parameter Symbol Range

Number of hidden layers of DBN nlayer (1, 4)
Number of nodes in DBN hidden layer 1 hidden_units [1] (10, 101)
Number of nodes in DBN hidden layer 2 hidden_units [2] (10, 101)
Number of nodes in DBN hidden layer 3 hidden_units [3] (10, 101)
Number of nodes in DBN hidden layer 4 hidden_units [4] (10, 101)

Learning rate of DBN learning_rate (0.01, 1)
Momentum factor of DBN momentum (0.8, 1)

Iterations of RBM epoch_pretrain (1, 100)
Fine-tuning iterations of DBN epoch_finetune (1, 200)

3. Supervised Predictive Optimization Based on Evidence Theory

The evidence theory is used as a supervised approach for assessing the uncertainty of
DBN predictions. In order to assess the credibility of the DBN prediction, the uncertainty
of the DBN prediction is evaluated [48]. This approach is taken to prevent the model from
making mistakes due to overconfident performance and to improve the reliability of the
prediction system. Evidence theory is a mathematical reasoning method with the charac-
teristic of clearly expressing uncertainty. At present, in most cases, the basic probability
assignment function is obtained by referring to expert experience and knowledge [49,50].

3.1. Evidence Theory

Evidence theory, also known as the Dempster–Shafer (DS) theory [51], is an uncertain
reasoning theory widely used in the fields of information fusion and uncertain reasoning.
The evidence theory can fuse evidence with comprehensible composite rules without
prior probability. It can effectively deal with cognitive uncertainty in various engineering
fields [52]. It can describe the corresponding fluctuation range of the system output through
two boundary values: the belief function and the likelihood function. The fusion framework
of the evidence theory usually consists of three parts: representation of evidence, fusion of
evidence, and decision making of evidence [53].

The evidence theory is built on a framework of identification (FD) [54], usually repre-
sented by a nonempty set Θ, Θ = {θ1, θ2, · · · , θn}. θ represents independent elements of a
collection. The identification framework has 2n subsets in total. Each subset A corresponds
to a possible outcome of a proposition, that is, the proposition

{
θi, θj

}
indicates that at

least one of the two basic events is true. The confidence interval is usually used to describe
events due to the lack of subjective knowledge.
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The confidence interval is a closed interval composed of a belief function (Bel) and a
likelihood function (Pl), which is used to indicate the degree of support for event θ [55].
Bel(A) is the sum of the basic probability distributions of all subsets of A, which indicates
the degree of trust in A. It is expressed as:{

Bel(A) = ∑
B⊆A

m(B)

A ⊆ Θ
(14)

Pl(A) is the sum of the basic probability assignments of all subsets intersecting with
A. It indicates the degree of non-denial to A. It is expressed as:{

Pl(A) = ∑
B∩A 6=∅

m(B)

A ⊆ Θ
(15)

Let the finite nonempty set Θ = {θ1, θ2, · · · , θn} be the identification framework, and
the function m:2n → [0, 1] be the basic probability assignment function on the identification
framework Θ. In this study, Bel and Pl represent the upper and lower bounds of the
reliability of the positioning accuracy of industrial robots. For the hypothetical conclusion
A in the identification framework, Bel(A) and Pl(A) form a confidence interval denoted
Bel(A), Pl(A).

This represents a propositional uncertainty, where the probability of the occurrence of
proposition A lies somewhere between Bel and Pl bounds. It is shown in Figure 5.
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3.2. Optimization of Position Error Based on Evidence Theory

This study evaluates the uncertainty of DBN prediction using the evidence theory. It
combines the evidence theory with the DBN model and achieves the fusion of evidence
through the basic probability assignment function and the Dempster combination rule. The
evidence theory does not rely on prior information [56] and is relatively more suitable for
situations where it is inconvenient to obtain prior probability and conditional probabil-
ity [57]. In the DBN prediction task, n feature vectors of the input sample are represented
as ϕ(x) = (ϕ1(x),ϕ2(x), · · · ,ϕn(x)). The identification frame Θ = {θ1, θ2, · · · , θk} can
be regarded as evidence corresponding to a subset in the identification frame. For each
category θk, evidence ϕj(x) can be considered to support either {θk} or {θk}, and the
specific support depends on the weight coefficient of the evidence ϕj(x):

ω=βϕj(x)+α (16)

where β and α are two weight parameters.
Assume that the evidence weights of {θk} and {θk} are the positive and negative parts

of ω, respectively. For each ϕj(x) and each category θk, two basic probability assignment
functions exist:

m+={θk}ω+
(17)

m−={θk}ω− (18)

where m+ represents ϕj(x) support for {θk}, and m− represents ϕj(x) support for {θk}.
The process of quantitative evaluation method for the uncertainty of DBN prediction

is mainly divided into two stages. The first stage is the construction stage of the evidence
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classifier. The appropriate DBN model is built according to the needs, and the training
samples are used to train the model to ensure that the model can meet the requirements of
high classification accuracy. The model is saved. The model parameters are loaded. The
parameters of the last hidden layer of the model are extracted. The extracted parameters
are converted into the basic probability assignment function. The Dempster synthesis rule
is used to combine and output the final basic probability assignment function.

The second stage is the uncertainty modeling of DBN prediction. The basic probability
assignment function is used as the decision index to predict the classification results. At
the same time, the basic probability assignment function is further calculated to obtain
the conflict value and uncertainty. The uncertainty of DBN prediction is quantitatively
evaluated using the uncertainty evaluation module. The uncertainty evaluation method
for DBN prediction is shown in Figure 6.
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The evaluation method proposed earlier is based on the evidence classifier. The
evidence classifier is modeled by extracting the parameters of the hidden layer of the
trained DBN model. During the modeling process, the modification of the training loss
function and the retraining of the DBN model are not required. Such characteristics mean
that the evaluation method can be applied to any pre-trained DBN model and has strong
scalability in the application of the DBN model.

4. Experiments
4.1. Experimental Setup and Data Collection

The experimental platform for compensating absolute positioning accuracy compen-
sation of industrial robots is shown in Figure 7. The industrial robot used for precision
compensation is KUKA’s KR6_R700 sixx_CR. It has a load capacity of 6 kg and a working
range of 700 mm radius. The volume of the working space is 1.36 m3, the position repeata-
bility is ±0.03 mm, and the absolute positioning accuracy is ±0.6 mm. A Leica AT901-B
laser tracker is used to measure the position error and the error is ±15 µm + 6 µm/m. The
error of the laser tracker increases with the increase in distance.

AT901-B uses an angle encoder to measure the angle and an absolute interferometer to
measure the distance. The absolute interferometer in the AT901 integrates a helium-neon
laser interferometer and an absolute range finder. The two lasers can work independently.
The laser beam emitted by the laser is directed to the target through the universal mirror.
The interferometer laser beam also serves as the collimation axis for the tracker. The
reflected laser light is measured using the tracker’s built-in dual-axis position detector. The
pulse generated by the position detector is processed by the processor of the tracker. The
output is then fed back to the servo motor, which drives the motor to track the target mirror
of the tracker in real time. Finally, the tracking distance measurement is realized, which is
used to measure the actual pose of the end effector of the industrial robot.
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Figure 7. Error compensation platform for laser trackers and industrial robots.

The control and communication diagram of the error compensation platform is shown
in Figure 8. The computer is used as the TwinCAT master, that is, the primary controller of
the control system. The TwinCAT master uses industrial Ethernet EtherCAT to communi-
cate with industrial robots. The laser tracker communicates with the TwinCAT master via
Ethernet (TCP/IP protocol).
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In this study, an off-line compensation method [58] is adopted, which uses a laser
tracker to obtain the actual position of the manipulator. The DBN based on the DE algorithm
is employed to perform the error compensation function.

Assuming that the measurement requirements of the laser tracker are met, the target ball
of the fixed tooling of the industrial robot is installed in the 240 mm × 240 mm × 200 mm
working space, and about 8000 sets of data are measured. For the universality and random-
ness of the experimental data, the random number module drand is used in TwinCAT3 to
randomly generate specific sampling data within a predetermined sampling space. In order
to obtain the real position of the robot and the laser tracker in steady state, each sampling
is divided into three steps. First, the robot arrives at the sampling point and remains there
for 2000 ms. Then, the laser tracker records the data for 1000 ms. Finally, the devices are
delayed for another 1000 ms in order to reset them. The theoretical position coordinates and
joint angles of the robot are the input of the model. The absolute position error of the robot
end constitutes the output of the model.

The data set is divided into the training set and the test set in a ratio of 0.3. The
8000 sets of collected data are divided into 5600 sets of training data and 2400 sets of
test data. As shown in Figure 9, the blue dots represent the training set and the red dots
represent the test set.
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4.2. Model Training and Result Analysis

According to the setting in Section 2.2, the input layer of DBN has nine channels, which
are the theoretical position coordinates and joint angles of the robot (x, y, z, θ1, θ2, θ3, θ4, θ5, θ6).
The output layer of DBN has three channels, which are the position error

(
ex, ey, ez

)
of the

robot. Figure 10 shows the loss function decline curve when the DBN is trained alone.
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Figure 10. Loss curves.

The DE algorithm is utilized to determine the number of hidden layers of the DBN,
number of nodes in the hidden layer, learning rate, momentum factor, number of iterations
of RBM, and number of iterations of DBN fine-tuning. Figure 11 shows the fitness decline
curve of the DE-optimized DBN, which is reduced by 60.7% from 0.387 to 0.152. After
150 iterations of training, the optimal fitness iteration number can be found at the end of
the 92nd iteration, and the optimal parameters of the DBN can be output.
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The DE algorithm is utilized to determine the number of hidden layers of the DBN,
number of hidden-layer nodes, learning rate, momentum factor, number of iterations
of RBM, and number of iterations of DBN fine-tuning. The fitness of each particle is
calculated according to the fitness calculation conditions. When the training error reaches
the allowable value or the number of iterations reaches the maximum value, the DE
algorithm iteration terminates.

Finally, the DBN hyperparameters determined according to the DE algorithm are
shown in Table 3.

Table 3. Optimal parameters of DBN.

Parameter Symbol Optimal Value

Number of hidden layers of DBN nlayer 4
Number of nodes in DBN hidden layer 1 hidden_units [1] 7
Number of nodes in DBN hidden layer 2 hidden_units [2] 56
Number of nodes in DBN hidden layer 3 hidden_units [3] 62
Number of nodes in DBN hidden layer 4 hidden_units [4] 56

Learning rate of DBN learning_rate 0.9360
Momentum factor of DBN momentum 0.9618

Iterations of RBM epoch_pretrain 100
Fine-tuning iterations of DBN epoch_finetune 70

Supervised learning in machine learning essentially yields a series of training samples
and establishes a mapping relationship so that the fitting result is as close as possible to
the real output. The loss function is an important indicator for analyzing the quality of the
training results. In this paper, the DBN is analyzed using five indicators: MSE, root mean
square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE),
and R2. These five indicators are expressed as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (19)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 =
√

MSE (20)
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MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(21)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (22)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
= 1− RMSE

Var
(23)

where yi represents the true value of the data set. ŷi represents the predicted value of the
data set. yi represents the average value of the predicted value of the data set. n represents
the number of data sets. Var represents the data variance.

MSE is the mean of the sum of squares of the corresponding point errors between the
predicted data and the original data. RMSE is the square root of MSE, also known as the
fitting standard deviation of the regression system. MAPE is often used to measure the
accuracy of predictions. However, when the real data are equal to zero, the denominator
becomes zero and the formula is not available. The situation where the true value is zero
does not appear in this study. The MAE refers to the average value of the absolute value of
the deviation of each measurement value, which accurately reflects the size of the actual
prediction error. The closer the four indicators approach 0, the closer the predicted value
will be to the real value, indicating a better prediction effect.

R2 represents the coefficient of determination of the model. The best score is 1, indicat-
ing that the model perfectly predicts the real value. It may also be negative because the
model can be arbitrarily worse, that is, no mapping-fitting relationship exists between the
predicted data and the real data.

Table 4 shows the calculated MSE, RMSE, MAPE, MAR, and R2 from the DBN model.

Table 4. MSE, RMSE, MAPE, MAE, and R2 values.

x y z

MSE 0.0104 0.0017 0.0003
RMSE 0.1021 0.0412 0.0194
MAPE 0.1021 0.0412 0.0193
MAE 0.0824 0.0284 0.0900

R2 0.8701 0.9038 0.9582

The MSE, RMSE, MAPE, and MAE of the position error prediction value of the robot
end effector are all found to be close to 0 using the proposed position error prediction
model for industrial robots. The coefficient of determination (R2) of the predicted value
of the position error is shown in Figures 12–14. The figures show that the predicted value
(blue dot) is closely distributed around the real value (red line). In addition, R2 is close to 1,
indicating the correlation between the predicted value and the actual value. The higher the
value, the higher the fitting accuracy. Therefore, the proposed machine learning model has
good adaptability and robustness in the prediction of industrial robot position errors.

The R2 of the robot end precision compensation error is around 0.87–0.95, and the
overall effect is good. As the DBN is trained and iterated in three dimensions, the charac-
teristics of the three dimensions interact and couple with each other. It is also disturbed by
nonlinear factors such as the accuracy of data acquisition and environmental conditions,
which makes some differences in the effect of robot end accuracy error compensation.
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A total of 50 random verification points were selected in the robot motion space
with a measurement space of 240 × 240 × 200 mm3. These are presented to verify the
effectiveness and improvement effect of the DBN optimization based on the DE algorithm.
The distribution of position errors before and after compensation in the x, y, and z directions
are shown in Figures 15–17, respectively. The compensation results revealed the following.
Before compensation, the errors in the x direction are basically evenly distributed above and
below 0. The errors in the y direction are also distributed around 0, but are more negative.
The errors in the z direction are basically negative. The error compensation technology
proposed in this study is used to optimize the DBN with the DE algorithm. The errors
in the three directions are basically distributed around 0 and fluctuate around ±0.2 mm,
±0.1 mm, and ±0.5 mm. The range of fluctuations is extremely small, indicating that the
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accuracy after compensation has high stability and that the accuracy of robot operation can
be improved.
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Table 5 shows the static statistical analysis results before and after the robot end po-
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The experimental platform for data acquisition and verification of the robot is the 
light industrial robot KR6_R700 sixx_CR. The error range is much smaller compared with 
that of the traditional heavy industrial robot. Hence, using the DBN for feature extraction, 
model training, and optimization is difficult. The network is optimized and combined 
with the evidence theory, and the position error mapping model of industrial robots is 
established. The comprehensive analysis of the compensation effect of the robot end ac-
curacy in three directions is shown in Figure 18. 
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Table 5 shows the static statistical analysis results before and after the robot end
position error compensation. The x, y, and z directions are improved by 65.56%, 55.22%,
and 49.12%, respectively.

Table 5. Statistical results of the positional errors.

Error Range Confidence Percent
Improvement

x error (mm)
Before [−0.674, 0.773] [−0.500, 0.345]

65.56%After [−0.130, 0.368] [−0.017, 0.017]

y error (mm) Before [0.133, −0.559] [−0.225, 0.063]
55.22%After [0.108, −0.201] [−0.047, 0.031]

z error (mm)
Before [0.003, −0.162] [−0.115, −0.026]

49.12%After [0.029, −0.054] [−0.021, 0.009]

The experimental platform for data acquisition and verification of the robot is the light
industrial robot KR6_R700 sixx_CR. The error range is much smaller compared with that of
the traditional heavy industrial robot. Hence, using the DBN for feature extraction, model
training, and optimization is difficult. The network is optimized and combined with the
evidence theory, and the position error mapping model of industrial robots is established.
The comprehensive analysis of the compensation effect of the robot end accuracy in three
directions is shown in Figure 18.

The method used in this study is compared with previous methods to verify the test
results [25,27]. The results are shown in Table 6. After off-line compensation, the minimum
value is reduced from 0.097 mm to 0.006 mm. The average value is reduced from 0.110 mm
to 0.083 mm. Therefore, the proposed DE-DBN method was successful in improving the
minimum and average values after the end error compensation of the robot.

Table 6. Comparison of data compensation on the results of previous models.

Error (mm) Max Min Average

Uncompensated 1.529 0.124 0.754
GA-DNN 0.965 0.017 0.284
PSO-DNN 0.519 0.172 0.333

GPSO-DNN 0.364 0.097 0.249
PSO-DBN 0.244 Null 0.110

Uncompensated 0.701 0.139 0.469
DE-DBN 0.255 0.006 0.083
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5. Conclusions

Based on deep belief networks using an off-line compensation method, a compensation
algorithm for the absolute positioning accuracy of industrial robots is proposed. It predicts
and compensates for the absolute positioning error of industrial robots based on the
DBN and DE algorithm. The number of hidden layers, hidden-layer nodes, learning
rate, momentum factors, RBM iterations, and DBN fine-tuning iterations are optimized.
The position error model of industrial robots is established. Combined with the off-line
feedback compensation method, the proposed method is verified experimentally using the
KR6_R700 sixx_CR industrial robot and the AT901-B laser tracker.

After compensation, the absolute positioning error of the robot end is reduced by
82.14%, from 0.469 mm to 0.084 mm. The absolute positioning accuracy of the industrial
robot is improved. This indicates the proposed approach is advantageous for performing
more precise operation tasks. The results of this paper can be used to improve the absolute
positioning accuracy of industrial robots, which is of great help in improving the motion
accuracy and force control performance of robots.

Considerations of the off-line compensation method include an experimental environ-
ment free of vibration, the allowable operating temperature of the robot, and the higher
accuracy of the laser tracker. Future work can further consider industrial robot load, motion
speed, acceleration, ambient temperature, or other factors that affect the absolute posi-
tioning accuracy of the robot. Deep learning can be integrated into the robot’s motion
control system. The training model can be deployed in the control algorithm. Realizing
the intelligent prediction and real-time compensation of robot errors is a direction of great
research value.
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