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Abstract: Virtual power plants are a useful tool for integrating distributed resources such as renew-
able generation, electric vehicles, manageable loads, and energy storage systems under a coordinated
management system to obtain economic advantages and provide ancillary services to the grid. This
study proposes a management system for a residential virtual power plant that includes household
loads, photovoltaic generation, energy storage systems, and electric vehicles. With the proposed man-
agement system, the virtual power plant is economically optimized (as in commercial virtual power
plants) while providing ancillary services (as in technical virtual power plants) to the distribution
grid. A genetic algorithm with appropriate constraints is designed and tested to manage the energy
storage system and the charge/discharge of electric vehicles, with several economic and technical
objectives. Single-objective optimization techniques are compared to multi-objective ones to show
that the former perform better in the studied scenarios. A deterministic gradient-based optimization
method is also used to validate the performance of the genetic algorithm. The results show that these
technical targets (usually reserved for larger virtual power plants) and economic targets can be easily
managed in restricted-sized virtual power plants.

Keywords: electric vehicles; energy management; energy storage systems; genetic algorithms;
photovoltaic systems; virtual power plants

1. Introduction

Current power systems present two important challenges: the need to reduce depen-
dence on fossil fuels and greenhouse gas emissions and the increase in power demand,
which is accelerated by the proliferation of electric vehicles (EVs) and fast charging systems.
In this situation, virtual power plants (VPPs) arise as a means to better integrate uncertain
renewable energy into the power system, as well as to improve the control of distributed
energy resources and help with grid support [1–3]. A VPP can be defined as the aggregation
and coordination of resources (renewable/non-renewable generation, controllable loads,
energy storage systems, and/or EV) with economic and/or technical objectives. Very
recent literature reveals the research community’s active interest in the development of
VPPs as a means for better integrating and managing renewable energy systems and other
resources, valuing their economic and technical impact on power systems [4–6]. VPPs are
classified into commercial (CVPP) and technical (TVPP) depending on their main objective:
CVPPs aim to reduce costs or improve profits, while TVPPs aim to support the grid [2].
However, according to the authors’ opinion, these objectives are complementary, and they
should coexist in order for VPPs to be attractive to resource owners and useful for the
power system.

Previous works in the literature explore the optimal schedule of different resources
included in a VPP or an energy community with different targets. Ref. [7] proposes a mixed

Electronics 2023, 12, 3717. https://doi.org/10.3390/electronics12173717 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173717
https://doi.org/10.3390/electronics12173717
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1409-3098
https://orcid.org/0000-0003-4760-8788
https://orcid.org/0000-0001-6852-8600
https://orcid.org/0000-0002-2696-679X
https://orcid.org/0000-0002-1863-279X
https://doi.org/10.3390/electronics12173717
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173717?type=check_update&version=1


Electronics 2023, 12, 3717 2 of 17

integer linear programming (MILP) method to schedule photovoltaic (PV) resources, a fuel
cell, a central energy storage system (ESS), and a customer-owned ESS, looking for a zero
net energy community. Ref. [8] optimizes demand-side management (DSM) services in an
urban microgrid with the aim of reducing electricity prices by participating in flexibility
markets. Ref. [9] describes a pilot project of a residential VPP developed in Ireland, where
ESS scheduling is addressed with different objective functions, like improving individual
or common self-consumption, reducing electricity bills, or providing peak-shaving services.
A recently published model [10] adds an extra optimization layer to modify the previous
schedule of resources based on economic objectives in order to fulfill the constraints of
the distribution grid. Notably, none of these works include the EV charging/discharging
schedule. Meanwhile, ref. [11] includes EV among the resources of a VPP to study the
impact of VPP management on grid performance. However, the same cost is assumed to
charge and discharge the EVs, so they do not participate in economic optimization. No
other ESS is considered in [8]. Therefore, the optimization problem is different from the
one proposed in this paper. Ref. [12] optimizes renewable energy resources along with
battery-based ESSs and EVs in a smart home. However, ESSs and EVs are considered only
as backup resources during peak hours when renewable sources are not available. EVs
are also managed [13] within a VPP to optimize bidding for the day-ahead market and
secondary reserve. However, no constraints are considered regarding the time of EV use,
and no other ESS is included. The same optimization targets are used in [14] to jointly
schedule the energy resources of two neighbor VPPs with energy interchange between
them, but the case does not consider any network constraints. Similarly, a very recent
paper [15] presents a home energy management system using model predictive control
(MPC), including EV among the resources to be scheduled, but again without considering
network constraints. Other works, like [16], manage EV charge/discharge to better exploit
renewable generation, but they do not perform any optimal daily scheduling based on
economic targets. An interesting approach can be found in [17], which coordinates a home
energy management system (EMS), including appliances, renewable sources, ESSs, and
EVs. In this case, however, the optimization system decides the state of both the ESS and
EVs from three options: charge at maximum power, discharge at maximum power, or idle.
No modulation in power is performed, and an oscillating state of charge (SoC) is obtained
due to alternating states.

Another aspect studied in this literature is the provision of ancillary services (ASs) to
help support the distribution network. According to [18], ASs oriented to the distribution
network can be classified into four categories: voltage regulation, voltage unbalance
mitigation, congestion management, and power smoothing. The proposed technique
intends to contribute to congestion prevention via peak shaving. Additionally, this study
also discusses the potential participation of the ESS in other ASs (such as congestion
management and power smoothing).

Optimization processes are used in power system planning and management regard-
ing electricity market operation, planning, optimal dispatch, and dynamic safety [19].
Traditional optimization methods like linear, non-linear, mixed integer, and quadratic
programming are mathematically rigorous. However, when the problem to be solved is
complex or large-scale, convergence may be missed depending on initial conditions [16].
In contrast, an adequate process of mutation and crossover of the genetic algorithm (GA)
population has proven to have a good ability to find a global solution within a large range
of possible values [20]. GAs have been used for optimization purposes for power net-
work reconfiguration [21], fault diagnosis [22], volt/VAR optimization [20], economic load
dispatch [23], renewable resource allocation and sizing [24], and demand response [25],
among others. In the field of energy communities, buildings, and microgrids, GAs have
been tested to shift the connection of appliances in a home energy management system [26],
to size energy resources [27], and also for EMS [28–30]. The authors in [28] optimize the
use of energy resources from several home agents to perform decentralized management
of demand, renewable generation, and storage. However, EVs are not included among
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these resources. They prefer GA to other optimization techniques due to its flexibility and
ability to find near-optimal solutions. Previous research [29] proposes a GA to improve the
performance of a MILP technique to schedule the ESS and EV of an individual, minimizing
energy costs. No AS is considered in [29]. More recently, Ref. [30] compares GA and
multi-objective particle swarm optimization (MOPSO) for managing diverse distributed
generation technologies, as well as ESS and demand response in a microgrid, with very
similar results. Second-life batteries, previously deployed in EVs, are used as ESSs to
perform a home EMS with GA [31]. However, EVs are not considered resources in this
approach. Other works, like [32], use a GA to decide which EVs are excluded from charging
in a charging facility when not enough energy is available. Afterward, an allocation process,
including vehicle-to-grid (V2G), is performed only during overloaded hours.

Finally, previous works by this research team have proposed a GA to schedule the
battery management of microgrids for prosumers [33,34]. However, those papers did not
manage EVs, and they did not foresee AS provisions.

Other heuristic/meta-heuristic optimization methods may be used to solve an opti-
mization problem in EMS. Some of them, like particle swarm optimization (PSO) or grey
wolf optimization (GWO), have been previously used for similar purposes. PSO iteratively
tries to improve a candidate solution (expressed as particle positions) by moving these
particles around the search space based on their own best-known position and velocity and
the entire swarm’s best-known position. Previous work [30] showed very similar results
as GAs in a problem like the one proposed in this paper. However, the performance of
PSO is very sensitive to an adequate selection of parameters, as discussed in [35], adding
some difficulty to the method formulation. GWO is a population-based meta-heuristic
algorithm that simulates the leadership hierarchy and hunting mechanism of grey wolves
in nature. The paper [17] uses GWO in a home EMS with promising results, although
without modulating the power of the different resources. Other interesting optimization
tools to be explored are the gravitational search algorithm (GSA) and inclined plane system
(IPS) optimization, which are inspired by gravitational and movement laws. The GSA has
been used recently for ship EMS [36], although an improvement of the method is required
due to its slow convergence speed. In this work, the GA is preferred to other heuristic
and meta-heuristic methods because it has already demonstrated proper performance in
solving similar problems. Exploring other optimization tools is assumed to be a future line
of research.

Table 1 shows a comparison of optimization techniques and energy resources con-
sidered in the cited works more closely related to the purpose of this paper. As can be
observed, none of them use the same method with the same objectives and resources as the
current paper.

To sum up, the recent literature offers a wide range of proposals for power system
optimization and EMS. However, the use of GA for optimization and the inclusion of both
ESSs and EVs have not received such high attention. Moreover, AS provision is hardly
considered in these kinds of works.

In light of this state-of-the-art study, the main contributions of this paper are as follows:

• A novel method based on GA has been designed, formulated, and tested for the EMS
of a residential VPP that includes loads, renewable generation, ESS, and EVs. The
proposed model is suitable for VPPs with limited resources.

• Although the reduction in the electricity bill is the main objective, technical support
for the distribution grid is also considered. The literature has hardly examined AS
provision from VPPs and energy communities to the distribution grid, even though
this is an important challenge under the current energy transition circumstances.

• EVs are considered storage systems with a V2G strategy, respecting the time restriction
and the availability of stored energy for mobility purposes. The previous literature has
not examined the use of EVs as an EMS resource along with other ESSs to optimize
energy costs and provide ASs at a residential level.
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• Both single-objective and multi-objective methods are used and compared to combine
economic and technical targets.

Table 1. Comparative literature review on optimization for EMS.

Paper ESS EV Role of EV within EMS Optimization
Method

AS or Network
Support

[7] X # - MILP #
[8] X # - OPF X
[9] X # - MILP X

[10] X # - MILP/OPF X
[11] # X EMS resource MILP X
[12] X X Backup storage Several heuristic X
[13] # X EMS resource OPF X
[14] X X EMS resource MILP #
[15] X X EMS resource MPC #
[16] X X Charging—V2G if possible None #

[17] X X
States: charge/discharge/idle,

no power modulation GWO #

[28] X # - GA #
[29] X X EMS resource GA/MILP #
[30] X # - GA/MOPSO #
[31] X # - GA #

[32] # X
Charging—V2G only in

overloaded hours GA X

[33] X # - GA #
[34] X # - GA #

Current
Paper X X EMS resource GA X

The rest of the paper is organized as follows: Section 2 presents the case study. Section 3
describes the optimization model. Section 4 presents the results and discussion for different
versions of single-objective and multi-objective optimization techniques. Finally, Section 5
concludes the paper.

2. Case Study

The VPP under study encompasses a set of households, a communitarian PV power
plant, a battery-based ESS, and EVs (see Figure 1).
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Eight households were included in this study. Their hourly demand profiles through-
out the day were supposed to have been forecasted, responding to demand profiles pro-
posed in published works: four houses were modeled for a household with a medium
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level of annual electricity use in Denmark [37], two houses responded to a high-demand
profile [33], and the remaining two houses had low-demand profiles [33].

A communitarian PV power plant rated at a 15 kW peak was supposed to follow a
forecasted generation profile proportional to that studied in [33]. This sizing was consistent
with Spanish self-consumption habits, which usually limit peak generation power to avoid
a high contracted power due to a high power component of network tariffs (an optimum
peak power for average dwellings in Spain was estimated at 1.5–2 kW in [38]).

The ESS was considered a set of Li-ion batteries controlled by power electronic con-
verters and centrally managed. The total capacity of the system (Cnom) was 24 kWh, with a
maximum charge/discharge power of ±6 kW and a SoC range of 20–100%. The ESS sizing
was limited in accordance with Spanish self-consumption remuneration as well. Batteries
represent a high percentage of the investment required for self-consumption. Indeed, if
only economic advantages were pursued, some studies discourage investment in storage
systems until costs decrease [39].

Four EVs, each with a battery capacity of 50 kWh and an average consumption of
20 kWh/100 km, completed the set of resources included in the VPP. Charger plugs were
limited to a standard single-phase rating of 230 V 32A, suitable for residential applications.
Although EVs are probably plugged in at any hour in the previous evening, it is usual in
some countries that a network tariff system encourages consumers to shift some controllable
loads to off-peak hours for extra savings. This is the case in Spain, where time-of-use
network tariffs have a component due to contracted power that is almost 20 times lower
from 0 to 8 h than in the rest of the working day [40]. As this tariff scheme strongly
influences the consumers’ habits, it has been assumed that they would prefer charging their
EVs during this off-peak time slot.

Accumulated demand and generation within the VPP, excluding the storage system,
are depicted in Figure 2a. In this initial situation, EVs were supposed to be charging at
maximum power from the moment the charging process started (at 0 h) until they were
fully charged. In this base case, the self-consumption rate (SC, percentage of the generation
that is self-consumed) and the self-sufficiency rate (SS, percentage of the demand supplied
by the own generation) were 59.87% and 33.89%, respectively. Figure 2b shows the power
interchanged between the whole VPP and the power grid in this initial situation. It is
obvious that maximum demand for power occurs when the EVs are charging (the well-
known rebound effect produced by time-of-use tariffs), followed by high-demand hours
in the late evening, as is usual in household consumption profiles. Meanwhile, the power
injected into the grid reaches its highest values at midday, when the PV plant’s production
is at its maximum.
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Figure 2. (a) Initial accumulated demand and generation, excluding the ESS; (b) Power interchange
with the distribution grid in the initial situation.

The power profiles of ESSs and EVs will be obtained as a result of the optimization
algorithm described in Section 3.

Besides technical data, economic data regarding the purchase or sale of electrical
energy are vital to performing an EMS. The reduction in the electricity bill or the increase
in profits derived from surplus energy sales constitutes the most important motivation for
consumers, prosumers, producers, and other stakeholders to participate in aggregating
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initiatives. The price of the purchased/sold energy varies with the kind of stakeholders
and local regulations in the country. In liberalized market scenarios, prices vary according
to a bidding process depending on offer/demand in each scheduled period. In contrast, the
commercial offers of retailers to small consumers can be flat or time-of-use tariffs. In any
case, the cost of the bought electric energy is usually higher than the price of the sold energy
because consumers pay for other power system costs in addition to the energy consumed.
In Spain, based on the Iberian electricity market MIBEL coordinated by Spain and Portugal,
there are regulated prices that follow the day-ahead market prices for small prosumers
who prefer this option to retailers’ offers. These prices are different for purchased energy
and sold energy, and the difference is based on general power system costs. Figure 3 shows
a daily profile for these prices in Spain, published in the information system of the Spanish
System Operator [41] for 1 February. The prices in Figure 3 have been used in the objective
functions in this work. A daily bill of EUR 23.47/day for the whole VPP is obtained as the
base case when prices in Figure 3 are applied to power values in Figure 2b.
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3. Optimal Day-Ahead Schedule of Storage and Electric Vehicles

Optimization of the ESS power and the EV power during the time they were connected
to the grid was performed using a GA with different objective functions and constraints.
An hourly time resolution was applied, as was usual when prices were considered [7,9].

The GA was inspired by evolutionary theories to find a solution for an optimization
problem emulating a natural selection process. A random initial population was created
as a set of possible solutions (chromosomes). Then, the GA sequentially created new
populations by selecting the best individuals according to their fitness values after crossover
and mutation operations. After a sufficient number of generations, the GA aimed to find a
solution for the optimization problem. The GA was considered to provide powerful search
characteristics for large, complex search spaces without requiring full knowledge of the
problem domain [20]. Its flexibility and ability to find near-optimal solutions encouraged
its use in EMS optimization procedures [28]. Using crossover and mutation operations, a
parallel search was performed by GA from the initial population. Thus, it has the ability to
avoid being trapped in local optimal solutions, unlike traditional methods that search from
a single point. The augmented Lagrangian genetic algorithm constraint solver provided by
Matlab® was used to handle constraints in this paper. Figure 4 presents a flow chart of the
GA used.

The number of variables in the system was determined by the hourly power of the
ESS and EVs. It was expressed as 24+nhEV, where nhEV represented the number of hours
any EV was connected to the grid and available for charging. Only a time slot during
the night was considered for EV scheduling. Other papers open the EV schedule to other
time slots during the day [11]. However, this situation may not be realistic in residential
environments, as users are usually at home during the night, and both energy prices and
network tariffs are usually lower during these hours. Accordingly, it is difficult to motivate
EV owners to plug in their EVs at home during the day to participate in VPP management.
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The VPP power balance is defined in (1). Starting from (1), the objective functions are
shown in (2) and (3).

Pgrid(h) = PPV(h)− PLD(h)− PESS(h)− PEV(h), (1)

f1 = ∑24
h=1 P2

grid(h), (2)

f2 = ∑24
h=1

[(
Ipur(h)·ppur(h)− Isel(h)·psel(h)

)
·
∣∣∣Pgrid(h)

∣∣∣] (3)

Objective function f 1 in (2) aims to minimize the power interchanged with the grid.
It is useful to maximize SC and SS without considering prices, for example, in a TVPP
devoted to supporting the distribution grid. A CVPP requires economic incentives for final
users to be motivated to participate in the VPP. In this kind of VPP, objective function f 2 in
(3) is more appropriate, as it aims to minimize the VPP electricity bill. Constraints for the
ESS are shown in (4)–(6).

−PESSmax ≤ PESS(h) ≤ PESSmax, (4)

SoClo ≤ SoC(h) ≤ SoCup, (5)

|SoCin − SoC(24)| ≤ 10%, (6)

where

SoC(h) = SoCin +
100

Cnom
∑h

i=1

(
IESSch(i)·PESS(i)·ηch + IESSdi(i)·

PESS(i)
ηdi

)
(7)

The constraint in (4) delimits the allowed range of power of the ESS. The maximum
power of the associated power converter PESSmax is considered, and both positive (charge)
and negative (discharge) power values are allowed. Meanwhile, (5) delimits the allowed
SoC range according to manufacturer recommendations, and (6) guarantees that the differ-
ence in SoC between the beginning and the end of the day is lower than 10%. Other works [8]
propose equal values for these SoC values in order to complete a daily charge/discharge
cycle. However, this constraint reduces the flexibility of the model. A maximum difference
of 10% prevents the ESS from being completely charged or discharged at the beginning
of the next day, with a certain degree of flexibility. The ESS SoC is calculated as in (7),
considering both charge and discharge efficiency rates.
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The constraints for EV power are shown in (8)–(10).

−PEVmax·nEV(hEV) ≤ PEV(hEV) ≤ PEVmax·nEV(hEV), hEV ∈ nhEV , (8)

PEV(h) = 0, h /∈ nhEV , (9)

∑
hEV

PEV(h) = EEVtotal (10)

There is a time restriction for EVs: they can only be charged/discharged during the
time slot in which they are connected to the grid and available for charging/discharging.
During these hours, the maximum power is limited to that of individual chargers multiplied
by the number of connected vehicles, as in (8). For the remaining hours, the power for the
EVs is zero (9). The constraint in (10) guarantees that at the end of the time slot in which
the EVs are connected to the grid, the whole energy amount necessary to fully charge all
the EVs has been charged, i.e., the SoC for every EV must be 100%.

Finally, to provide support to the distribution grid, a constraint is also included for
Pgrid to perform peak shaving as a means of grid congestion prevention (11).∣∣∣Pgrid(h)

∣∣∣ ≤ Ppeak (11)

4. Results and Discussion of the Optimization

Four cases have been studied to test the proposed energy management method. The
first one intends to minimize the power interchanged with the grid in order to prevent
distribution grid congestion. The second one is aligned with most papers in the literature;
it aims to optimize the electricity bill. To combine economic and technical targets, the
third case minimizes the electricity price subjected to grid congestion constraints via peak
shaving. Finally, a multi-objective function optimization is performed in the fourth case. A
maximum number of 500 generations and a tolerance of 1 × 10−12 have been programmed
for the GA as the stop criterion. The default values suggested by Matlab® support have
been selected for the remaining GA parameters.

The parameters used for constraints are the following (discussed in Section 2):

• PESSmax = 6 kW
• SoClo = 20%; SoChi = 100%
• SoCin = 50%
• ηch = ηdi = 0.95
• PEVmax = 7.4 kW
• nEV = 4
• nhEV = 8 (0–8 h)
• EEVtotal = 30 kWh
• Ppeak = 10 kW

Case 1: Minimization of Power Interchanged with the Grid

This first case corresponds to a situation in which the energy management system is
devoted to avoiding network congestion, although peak-shaving AS cannot be provided
because limited peak power is not guaranteed. It can be compared to previous works in
the literature that intend to minimize the peak-to-average rate. The objective function f 1 in
(2) and the constraints (4)–(6) and (8)–(10) are used.

Case 2: Minimization of the Electricity Bill

This case only intends to minimize the electricity bill, and it is in line with the purpose
of most works previously published in the literature, as can be inferred from the introduc-
tion section. Indeed, AS provision at the distribution level is not usually considered in
previous works. The reason may be found in the lack of regulation of AS markets at this
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level, although it has been identified as a forthcoming challenge. In this case, the objective
function f 2 in (3) and constraints (4)–(6) and (8)–(10) are used.

Case 3: Minimization of the Electricity Bill Subjected to Grid Congestion Constraints

This third case corresponds to a trade-off between economic and technical targets,
which is what the authors propose as the best solution for the energy scheduling method
designed. The same objective function and constraints as in Case 2 are used, and the
peak-shaving constraint (11) is added in this case.

Case 4: Multi-Objective Optimization

As a double target is pursued, a fourth case was studied for comparison, which
combines both economic and technical targets in a multi-objective optimization process
with a GA. The objective functions f 1 (2) and f 2 (3) and the constraints of Cases 1 and 2 are
used. Figure 5 shows the Pareto front obtained in the process. Each point in the Pareto
front represents one possible solution for the problem. The fitness value of both objective
functions for each solution is depicted. The marked point of the Pareto front is considered
a good trade-off solution, as it provides a low fitness value for both objective functions
without prioritizing either of them.
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Figure 6 depicts the scheduled power values for the ESS and EVs at each hour. In
these curves, positive values of ESS and EV power correspond to charging, and negative
values correspond to discharging. EVs are charging or discharging during the available
time slot (0–8 h). In Case 1 (Figure 6a), the ESS is mainly devoted to counteracting the
impact of EVs on the power interchanged with the grid during this time slot. During
the rest of the day, the ESS shifts energy demanded in the evening to midday hours for
a higher self-consumption rate. Figure 6b verifies that the EV charging/discharging at
each night hour is sharper in Case 2 than in Case 1, adapting to different prices at each
hour without peak-shaving purposes. The operation of the EV chargers is smoother again
in Case 3 (Figure 6c), while the participation of the ESS in management is quite lower in
Case 4 (Figure 6d).

Figure 7 shows the modified demand along with the power produced and demanded
by the households (without EVs). The modified demand includes the initial demand, the
ESS, and the EVs. In Case 1 (Figure 7a), the best values of SC (79.10%) and SS (53.30%) are
reached. Lower values are reached in Case 2 (SC is 58.16% and SS is 39.19%), Case 3 (SC is
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62.88% and SS is 42.36%, which outperform those obtained in Case 2), and Case 4 (SC is
57.75% and SS is 38.91%).
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Figure 8 depicts the power interchanged with the grid. The high peak charging power
initially present at 0 h has been mitigated in every case because charging/discharging of
EVs have been distributed among eight valley hours. The rest of the day, power values are
also softer compared to the base case. The bill after scheduling in Case 1 is EUR 20.58/day
(a reduction of 12.3% is obtained compared to the base case). Observation of Case 1 leads
to the conclusion that, although no economic factors have been considered for energy
scheduling, savings are obtained in the electricity bill as a result. Indeed, the energy
interchanged with the grid is minimized in this first case—both the sold and the purchased
energy (Figure 8a). As the net balance in this case study results in net energy bought for
the grid, the higher prices for purchased energy explain the reduction in the final bill: the
bought energy decreases. In Case 2, the operation of the ESS is devoted to avoiding buying
high amounts of energy at the highest price hours. Therefore, the interchange of power
with the grid has higher peaks than in Case 1 (compare Figure 8b to Figure 8a). The highest
peaks for bought energy coincide with low-priced hours (the middle of the night and the
last hour). It is interesting to highlight that during the last hour of the day, the ESS has not
provided most of the energy demanded by storing more energy produced by the PV during
the midday. This is because the price for the purchased energy at the end of the day is
similar to that of the midday hours, whereas extra PV production can be sold at these central
hours. In Case 2, the final bill is EUR 19.95/day (a reduction of 15% from the base case).
This bill is the lowest among the studied cases and is detrimental to SC and SS rates. Both
the EVs and ESS are coordinated in Case 3 to avoid power peaks higher than 10 kW while
economic optimization is performed. Despite this constraint being very strict, assuming that
the VPP encompasses eight dwellings and four EVs with a limited PV plant size and ESS,
Figure 8c proves that it has been fulfilled. In this case, the obtained SC and SS outperform
those obtained in Case 2, which is detrimental to the final bill (EUR 21.94/day), which
is higher than before—as was expected—because of the grid constraint. The difference
between bill values in Cases 2 and 3 demonstrates the need for economic compensation
from the distribution system operator (DSO) due to the AS provision. Observation of
Figure 8d leads to the conclusion that the multi-objective optimization process reduces the
contribution of the ESS to the whole purpose. Consequently, neither the peak values of
interchanged power nor the final bill (EUR 22.53/day) outperform those obtained with a
single-objective optimization.
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Figure 9 shows the potential for increasing or decreasing the ESS power at each hour. It
is labeled as a demand because positive values of ESS power correspond to charging power
values. These values are constrained by the maximum charging/discharging power PESSmax
and the distance to the extreme values of the SoC. As an ESS converter is a fully controllable
bidirectional device, the power range at each hour can be used to face uncertainty in
generation or demand forecasting and to provide other ASs to the distribution grid. For
example, the DSO might send a power setpoint to the VPP to avoid network congestion
in high-demand hours or to smooth power, with the aim of better exploiting the grid
capacity and managing grid losses. In Case 1, the ESS is well exploited for the optimization
process; thus, low or even no power is available for ASs during some hours (Figure 9a). In
Case 2, the potential ranges of ESS power increase/decrease (Figure 9b) suffer from high
variability, as in Case 1, although they outperform those of Case 1 during the morning.
The use of the ESS in Case 3 is not as strong as in other cases. As a result, the potential
increase/decrease in ESS power for providing other ASs is generally higher in this case than
in previous ones (Figure 9c). Therefore, this technique is the only one capable of providing
peak shaving AS, and it is the best suited for other AS provisions among the techniques
studied. Finally, the higher range of power change observed in Case 4 (Figure 9d) is due to
the lower participation of the ESS in the optimization process.

These results entail a novel contribution to the research topic. Moreover, as discussed
in the introduction, there is a lack of previous works that economically optimize the daily
energy scheduling of VPPs or energy communities at a residential level, which involve EVs
as another EMS resource and provide ASs to the grid as well.

Table 2 presents a comparison of the different results for the four cases studied (the
best results are bolded) and the base case. Although the highest cost discount is reached in
Case 2 (minimum cost), peak power is not guaranteed. On the other hand, although Case 1
provides a high-cost saving as well as the best SC and SS rates, if peak shaving is committed
as an AS to prevent network congestion, only Case 3 guarantees its commitment, which is
detrimental to the final bill and should be compensated via AS payment.

Table 2. Comparative analysis of results.

Case Base 1 2 3 4

Description Without ESS Min. power
interchange (2) Min. cost (3) Min. cost (3) +

peak shaving (11)
Multi-objective

(2) and (3)

SC (%) 59.87 79.10 58.16 62.88 57.75

SS (%) 33.89 53.30 39.19 42.36 38.91

Electricity bill
(EUR/day) 23.47 20.58 19.95 21.94 22.53

Cost saving (%) 0 12.3 15.0 6.5 4.0

Extreme power
peak (kW) −36.44 −11.09 −23.67 −10 −18.32

For the sake of comparison, constrained non-linear programming (NLP) has also been
used with the same objective function and constraints as in Case 3. It is well known that
classic gradient-based optimization methods, often used in the literature for problems
similar to the one proposed here, are liable to fall into local minima. The obtained result can
be summarized in SC and SS values of 59.02% and 39.77%, respectively, and an electricity
bill of EUR 22.15/day, while the peak power is restricted to 10 kW. Figure 10 compares
the obtained results with the cases in Table 2. In this figure, the best option proposed
(Case 3) is highlighted in blue. Light grey represents the base case (without either ESS or
optimization), dark grey is related to NLP, and other colors were selected for the remaining
cases. NLP provides worse results than Case 3 in terms of both SC and SS, as well as in
terms of savings. This result confirms the initial assumption that the GA outperforms
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traditional optimization methods in this kind of problem, with a large search space and
scarce initial information about the optimal solution.
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5. Conclusions

This paper proposes a GA-based optimization method to manage a residential VPP
with the double objective of reducing the electricity cost and providing ASs related to the
prevention of network congestion. The charging/discharging power profiles of an ESS (dur-
ing the whole day) and the available EVs (during several night hours) were obtained as the
result of the optimization process. Different objective functions and constraints were tested.
The best result is obtained when a single-objective function based on purchase/sale prices
is minimized and a peak-shaving constraint is added to regular constraints related to the
different energy resources. This technique guarantees a limited peak power interchanged
with the distribution grid, and it minimizes the electricity bill of the whole VPP subject to
network constraints—outperforming even a multi-objective optimization technique and
traditional deterministic optimization methods as well.

The proposed daily energy scheduling procedure entails a novel contribution to the
research topic. As mentioned in the introduction, a research gap has been found in the
literature regarding the use of EVs as an EMS resource along with other ESSs to optimize
energy costs and provide ASs at a residential level.

According to the obtained results, the GA proved to have the proper performance
to manage, in a coordinated way, both ESSs and EV charging/discharging in residential
VPPs, even with a reduced number of available EVs. In addition, the proposed technique
guarantees the capability of the VPP to provide ASs to the distribution grid, even with
limited energy resources. This method may be used for any other VPP with different
generation and/or demand profiles, only adapting the initial population range according
to the managed data. Due to the flexibility of the GA and its ability to find optimal
solutions across wide ranges of values, new proposals, such as adding a DSM purpose to
the management systems, may be studied as a future extension of this work. Additional
future research directions may be:

• Optimally sizing energy resources (PV power plants, ESSs, and EV clusters) to maxi-
mize economic advantages

• Considering uncertainties regarding PV generation and EV users’ habits within the
optimization model
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• Updating the energy scheduling during the day as far as information and estimations
are better known

• Adapting constraints to the AS market at the distribution level, as far as they are
developed in the regulations of different countries

• Designing a framework of peer-to-peer or aggregator-to-stakeholder contracts to
optimally allocate economic benefits and savings

• Proposing similar management procedures for industrial/commercial VPPs, adapting
assumptions and constraints

• Coordinating the daily energy scheduling of different VPPs to increase the capability
of the aggregated resources to participate in electricity markets

• Exploring other heuristic and meta-heuristic optimization tools
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Abbreviations
The following abbreviations are used in this manuscript:

ACRONYMS
CVPP Commercial virtual power plant
DSM Demand side management
DSO Distribution system operator
EMS Energy management system
ESS Energy storage system
EV Electric vehicle
GA Genetic algorithm
GSA Gravitational search algorithm
GWO Grey wolf optimization
IPS Inclined planes system
MILP Mixed integer linear programming
MOPSO Multi-objective particle swarm optimization
MPC Model predictive control
NLP Non-linear programming
OPF Optimal power flow
PSO Particle swarm optimization
PV Photovoltaic
SC Self-consumption rate
SS Self-sufficiency rate
TVPP Technical virtual power plant
VPP Virtual power plant
V2G Vehicle-to-grid
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VARIABLES
Cnom Nominal capacity of ESS, kWh
EEVtotal Energy required for full EV charge, kWh
IESSch(h) Binary index, 1 when PESS(h) > 0
IESSdi(h) Binary index, 1 when PESS(h) ≤ 0
Ipur(h) Binary index, 1 when Pgrid(h) ≤ 0
Isel(h) Binary index, 1 when Pgrid(h) > 0
hEV Hour at which any EV is grid-connected
nEV(h) Number of EVs connected at hour h
nhEV Number of hours with any EV connected
PESS(h) ESS power at hour h (positive when charging), kW
PESSmax Maximum ESS power, kW
PEV(h) EV power at hour h (positive when charging), kW
PEVmax Maximum power of an individual EV charger, kW

Pgrid(h)
Power interchanged with the grid at hour h (positive
when injecting), kW

PLD(h) Load demand power at hour h, kW
Ppeak Peak value allowed for peak shaving, kW
PPV(h) PV generation power at hour h, kW
ppur(h) Price for purchased energy at hour h, EUR/kWh
psel(h) Price for sold energy at hour h, EUR/kWh
SoC(h) State of charge of ESS at hour h, %
SoCin Initial value of SoC at hour h = 0, %
SoClo Lower value of SoC recommended by manufacturer, %
SoCup Upper value of SoC recommended by manufacturer, %
ηch Charging efficiency of ESS, pu
ηdi Discharging efficiency of ESS, pu
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