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Abstract: The modern smart grid is a vital component of national development and is a complex
coupled network composed of power and communication networks. The faults or attacks of either
network may cause the performance of a power grid to decline or result in a large-scale power outage,
leading to significant economic losses. To assess the impact of grid faults or attacks, hardware-in-
the-loop (HIL) simulation tools that integrate real grid networks and software virtual networks
(SVNs) are used. However, scheduling faults and modifying model parameters using most existing
simulators can be challenging, and traditional HIL interfaces only support a single device. To
address these limitations, we designed and implemented a grid co-simulation platform that could
dynamically simulate grid faults and evaluate grid sub-nets. This platform used RTDS and EXata as
power and communication simulators, respectively, integrated using a protocol conversion module
to synchronize and convert protocol formats. Additionally, the platform had a programmable fault
configuration interface (PFCI) to modify model parameters and a real sub-net access interface (RSAI)
to access physical grid devices or sub-nets in the SVN, improving simulation accuracy. We also
conducted several tests to demonstrate the effectiveness of the proposed platform.

Keywords: co-simulation; HIL; PFCI; RSAI; smart grid

1. Introduction

With the advancements in information and communication technology (ICT), modern
power systems have evolved into complex coupled network systems comprising power
and communication information systems [1]. In a smart grid system, unlike in traditional
power networks, a fault or attack on either the power system or the components in the
communication system may result in the paralysis of the entire coupled network [2]. To
improve the control performance and stability of the coupled system and eliminate potential
chain faults, a comprehensive and accurate understanding of the dynamic behavioral
characteristics of the coupled system and the mechanisms associated with the occurrence
and development of faults in the system is necessary. Thus, it is essential to establish
a platform that can deeply analyze complex information/physical composite systems
and provide simulation, testing, and verification support for studying theoretical and
application problems related to these systems.

Thus, this platform has garnered significant academic attention. In general, evaluation
methods for complex coupled systems can be classified into three types: test-bed (hardware),
digital co-simulation (software), and hardware-in-the-loop (HIL) co-simulation [3]. Test-
bed relies on the physical environment with high accuracy but introduces the overhead
problem [4]. Moreover, test-bed is usually limited in scale and cannot be deployed in a
separate environment, thereby limiting the reproducibility of the network. On the other
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hand, digital co-simulation utilizes different simulation engines to simulate grid and
communication network behaviors, which is a cost-effective alternative to test-bed a short
test cycle, with flexibility in building grid node topologies. However, most of the current
co-simulation architectures have simplified time synchronization mechanisms, system
structures, component compositions, and natural response characteristics, which reduce
the accuracy of simulation results. Furthermore, power systems adopt many dedicated
protocols that may not be directly ported to a simulator and are also difficult to evaluate
accurately through software-only co-simulation alone. The HIL co-simulation method,
nevertheless, combines the advantages of both methods, integrating physical hardware
(e.g., novel grid devices) and SVNs to establish complex, real-time embedded systems [5].

However, most HIL simulation methods are mainly oriented to static network sim-
ulations, which means the parameters of the software virtual network (SVN) remain
unchanged during the simulation, so it cannot meet the following evaluation requirements
for a grid. First, to verify the reliability of new grid structures or power devices, they
must be tested in dynamic network environments with power outages, link faults, network
attacks, etc., which cannot be implemented in a static simulation. Second, when parameters
need to be adjusted, the simulation must be reconfigured and rerun multiple times to
optimize the network settings, which is time-consuming. In addition, when building a
co-simulation platform, one of the critical problems is how the power system and the
communication network interact with each other [6,7]. For example, most communication
network simulators only support the standard IP packets. They cannot directly interact
with a power system’s nonstandard phasor measurement unit (PMU) or stability control
service packets.

To solve the mentioned problems, we propose a HIL co-simulation platform that can
dynamically load grid faults in the simulation process and integrate physical sub-nets to
SVNs via the proposed programmable fault configuration interface (PFCI) and real sub-net
access interface (RSAI). First, a well-designed simulator for power and communication
networks is urgently required to implement this platform. Compared with developing a
new simulation engine from scratch, using existing high-performance simulation software
is more accessible and efficient, as well as less costly [8]. Based on real-time simulation
characteristics, we choose EXata and a real-time digital simulation system (RTDS) to
form a co-simulation platform and implement the data exchange between simulators
using a protocol conversion module (PCM). Next, the PFCI implements programmable
fault configuration and model parameter modification using the fault configuration and
GET/SET packets. Moreover, the RSAI achieves one-to-one mapping between real sub-net
routers and virtual network nodes to improve simulation realism and increase the scale.

In conclusion, the main contributions of this paper are as follows.

(1) An HIL co-simulation platform with EXata and RTDS is proposed to perform a
large-scale, highly realistic simulation of grid scenarios.

(2) A PFCI is designed and implemented to modify network parameters or load real-time
fault events during simulations. Meanwhile, an online fault configuration module
(OFCM) is developed to provide efficient and convenient management operations.

(3) An RSAI is developed to realize the platform’s physical device and sub-net access
function. In addition, the RSAI can scale up the grid to be tested.

(4) Several tests are conducted on the platform, and the results demonstrate that the
proposed co-simulation platform is effective.

2. Related Works

Power and ICT systems have different specialized simulation tools as two separate
systems. The dynamic behavior of a power system is continuous in time and can be
represented by a set of differential algebraic equations [9]. Usually, these equations can only
be solved numerically, so power system simulation tools use discrete time steps to estimate
a system’s current state approximately. Nevertheless, an information and communication
system is discrete. It can be modeled directly with the discrete event-based simulation
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(DES) tool [10]. This tool utilizes a discrete state model to describe a network under discrete
parameters (e.g., data queue length) and discrete events (e.g., packet transmission), thus
translating complex communication processes into concrete event queues.

Based on the above features, various power and communication network simulators
are available. Currently, the commonly used power system simulators include (1) BPA,
PSASP, PSS/E, and SYMPOW, which are mainly employed for steady-state and electrome-
chanical transient simulations; (2) EMTP/ATP and PSCAD/EMTDC, which focus on
electromagnetic transient analysis; and (3) DIgSILENT, OPAL-RT, and RTDS, which are
integrated power system simulators. RTDS [11], which can accurately simulate AC and DC
power systems, is a real-time digital simulator for electromagnetic transient power systems.
Meanwhile, the popular communication network simulators include (1) open-source simu-
lators, such as NS-2, NS-3, and OMNet++, and (2) commercial simulators, such as OPNET
and EXata. EXata [12], as the upgraded version of QualNet, is designed for novel wireless
communication technologies and supports real-time simulation. Therefore, based on the
real-time simulation performances of RTDS and EXata, they are suitable for building an
HIL co-simulation platform to evaluate smart grids.

In recent years, to combine both types of simulation approaches to investigate the
characteristics of smart grids, researchers have proposed the following three types of
solutions [13].

2.1. Test-Bed

Test-bed, with the highest authenticity compared to other methods, provides a hard-
ware test environment for novel grid technologies before deployment in the field. The
authors of [14] give a comprehensive survey of various test-beds built around the world, in-
cluding SmartGridLab [15], JEJU testbed [16], VAST [17], etc. In [18], a test-bed is proposed
to monitor an IEEE 14-bus system simulated using an RTDS, which consisted of a GPS
clock, PMUs, an RTDS, and a phasor data concentrator (PDC). Similarly, another test-bed
developed for an electric power distribution system was presented in [19], which was
adapted for research and education in labs. Most test-beds mentioned above, however, are
set up either in a lab environment or in isolation, which limits the scale and reproducibility
of grid tests [14].

2.2. Digital Co-Simulation

Digital co-simulation performed in a purely digital environment is an effective ap-
proach to reducing testing costs and increasing scenarios’ scalability. This technique is
typically categorized into non-real-time simulation and real-time simulation. In a non-real-
time simulation, the event execution time generally exceeds the set time step. In contrast,
in real-time simulation, the event execution time is less than or equal to the time step [20].

2.2.1. Non-Real-Time Simulation

Initially, Mesut Baran et al. [21] proposed a co-simulation scheme using PSCAD/EMTDC
and a communication module written in Java and proposed the idea of the co-simulation
of time-continuous and event-triggered systems. After that, EPOCHS [22] is considered to
be the first co-simulation platform based on implementing multidisciplinary simulation
tools. It used a high-level architecture (HLA) module to support the joint operation of
multiple simulators. It adopted three independent simulation tools: PSCAD/EMTDC for
electromagnetic transient process simulation of power systems, PSLF simulation software
for electromechanical transient process simulation, and NS2 for communication network
modeling and simulation. Meanwhile, the runtime infrastructure (RTI) was designed as
the interface between the independent simulators to coordinate each simulator’s simula-
tion time and data transmission. Recently, smart grids have integrated many distributed
energy resources (DERs) due to their low environmental impact and improved energy
efficiency [23], and the simulation scale is increasing consequently. A co-simulation frame-
work was presented in [24] to enable large-scale transmission and distribution simulation.
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The major modules of this framework were as follows: PSS/E as a transmission solver,
GridLAB-D as a distribution solver, and a hierarchical engine for large-scale infrastructure
co-simulation (HELICS) as the interface to coordinate time and exchange variables. An-
other co-simulation platform for evaluating cybersecurity and control applications was
introduced in [25]. This platform integrated OpenDSS and NS3 with Mosaik [26], which
reused and combined existing simulation models and simulators to create large-scale smart
grid scenarios. However, when used for power system dynamic problem simulation (e.g.,
stability control or wide-area monitoring), simulation time is challenging to synchronize
precisely and respond to power or communication events timely, thus affecting the accuracy
of simulation results [27]. Moreover, when a simulation server requires more computing
capacity or the model time determinism is unsuitable, the simulation runtime may exceed
the real time significantly.

2.2.2. Real-Time Simulation

In a real-time simulation platform, simulator engines synchronize the simulation
clock and real-time clock to monitor and evaluate novel control and protection devices,
demanding more computing capability than non-real-time simulation. Mikel Armendariz
et al. [28] proposed a real-time co-simulation platform, which consisted of four parts: a
power system real-time simulation unit, a communication network real-time simulation
unit, a system-monitoring center, and network connection equipment. This platform could
achieve high-precision electromagnetic transient simulation up to 900 power nodes and
wide-area power-system-monitoring simulation up to 240,000 power nodes. The authors
in [29] employed OPAL-RT and MATLAB to construct a real-time co-simulation platform
to evaluate DER coordination schemes. In addition, ref. [30] combined RTDS and OPAL-RT,
which run in the electromechanical/root mean square (RMS) and electromagnetic transient
(EMT) domains, respectively, to demonstrate the feasibility of a real-time co-simulation of
RMS and EMT power system models. They also developed an optical fiber interface with an
Aurora protocol to exchange data and compensate for latency. A novel distributed simulator
utilizing GridLAB-D and CORE was designed in [8], which scaled up the simulation using
lightweight virtualization technology supported using a Linux kernel and evaluated the
performance of scheduling algorithms in smart grids.

2.3. HIL Co-Simulation

However, digital co-simulation studies and implementations are difficult to accurately
simulate the performance of secondary power and communication devices and unique and
dedicated communication protocols used in power systems. One approach to achieve a
more realistic simulation system is by connecting real devices to the computer simulation
loop, forming a HIL co-simulation system. Tong et al. [31] utilized RTDS and QualNet
to simulate and verify the impact of communication bit error rate on the power system,
achieving a simulation method with synchronous digital hierarchy (SDH) physical device
access. Another co-simulation system was proposed in ref. [32] to analyze the impact of
network attacks on power grids, which integrated RTDS, DETERLab (network security
simulator), NS3 network simulator, and PMU devices. An architecture for co-simulation
proposed in ref. [33] involved two software packages, i.e., OMNeT++ for the ICT system
and DIgSILENT for the power system. A MATLAB GUI was designed to input smart grid
data. Next, with the proposed platform, this paper also evaluated the feasibility of long
term evolution (LTE) as a communication medium for fault management and network
reconfiguration. However, dynamically and accurately configuring power grid faults and
network attacks, as well as supporting real grid subnet access, remains challenging for
these simulation frameworks.

Thus, we propose a co-simulation platform to realize the large-scale grid dynamic
evaluation through the designed PFCI and RSAI to address the aforementioned issues. With
the PFCI, operators can accurately schedule multiple grid faults or programmatically obtain
and modify model parameters during the simulation process, significantly improving
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simulation accuracy and reducing the rerun times of simulation scripts. The RSAI allows
for the connection of physical grid equipment or a subnet to the simulation platform,
enabling HIL simulation and providing a solution for scaling up the simulation.

3. Architecture of the Platform

The architecture of the co-simulation platform is shown in Figure 1. It consists of a
communication simulation module (CSM), a power simulation module (PSM), an online
fault configuration module (OFCM), two types of external interfaces, and a protocol con-
version module (PCM). This platform connects real grid devices (such as SDH devices) and
sub-nets with a CSM’s SVNs. It performs tasks like dynamically loading grid faults and
modifying network parameters according to test purposes. Each module is described as
follow.
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Figure 1. The architecture of the platform. Figure 1. The architecture of the platform.

CSM: EXata is the core component of the CSM used to simulate the communication
network behavior of a power grid. EXata is a network simulation software that enables
the human-in-the-loop function, which provides a powerful guarantee for the simulation
and evaluation of a communication network. It can be used for design, testing, and
training in multiple areas. In addition, the simulator owns many high-precision standards-
based implementations of protocol models, including sophisticated models for a wireless
environment, mobility, weather, etc. It offers the ability to develop custom capability
protocols and interfaces in response to demand, making it flexible for building various
communication network simulation scenarios. Furthermore, EXata, which can run on a
cluster, multicore, or multiprocessor system, can simulate thousands of nodes with high
fidelity. As a result, it facilitates the simulation of large-scale power grid scenarios.

PSM: RTDS, an electromagnetic transient simulator, is adopted to simulate models of
power stability control protection and generate power business traffic. The simulation step
of RTDS ranges from 50 to 100 µs, and the frequency response resolution is 3000 Hz.

OFCM: This module tests the impact of communication network faults on the power
network and obtains and sets model parameters. It can dynamically load a variety of
communication network faults through the developed GUI and PFCI, including node
faults, link faults, DoS attacks, and data tampering.

External interface: Two types of external interfaces, i.e., PFCI and RSAI, are applied in
this architecture. The PFCI realizes the data interaction between the OFCM and CSM. Via a
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UDP socket, it implements parsing configuration packets sent by the CSM into pertinent,
recognizable messages by EXata. Then, the PFCI pre-caches them into EXata event queues
depending on the execution time. Unlike the PFCI, the RSAI enables one-to-one mapping
of physical routers or devices to virtual nodes in EXata to realize data interaction. The
working principles of both interfaces are described in Section 4.

PCM: This module realizes data packet format conversion and synchronization to
achieve the communication interaction between the PSM and CSM. Unlike the Ethernet
data of communication networks, the data frames transmitted by the stability device must
comply with strict requirements of time slot synchronization. Moreover, the stability control
device’s channel data output is a private communication protocol that uses line-spread
spectrum coding to be defined following the applicable communication regulation. Thus,
compatibility with other commercial network devices is challenging. To address this issue,
we design a protocol converter based on the existing communication equipment of the
stability control system. This converter includes a spread spectrum-coding and -decoding
device (SCS-500TX communication interface device) and an IP packet encapsulation and
transmission device (SSP-592 fiber/Ethernet conversion device). It is shown in Figure 2.
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The protocol converter is the intermediate module that connects the physical devices to
the CSM, and it is mainly used for the interconversion of E1 and Ethernet. The workflow is
as follows. The communication interface device uses a device clock to compare the time with
the input stream whenever data are transmitted from the PSM to the CSM to synchronize
the time slot. After that, the hardware decoder decodes the spread spectrum code to recover
high-level data link control (HDLC) data frames, from which the valid data are read out and
error-checked with a high-speed CPU chip. Next, the SSP-592 fiber/Ethernet conversion
device re-encapsulates these valid data into IP packets that are output in socket UDP mode.
This module performs a reverse process when the communication network has data to
send to the grid.

4. External Interfaces of the Platform
4.1. Programmable Fault Configuration Interface

As mentioned above, the PFCI is designed to exchange data between the OFCM and
CSM. On the one hand, it parses the fault configuration packets from the OFCM and pre-
caches the related events. On the other hand, it obtains EXata model parameters through
the GET packet and sends them to the OFCM for display or receives parameters from the
OFCM through the SET packet to modify model parameters.

4.1.1. Fault Configuration

We defined four types of fault packet formats, as shown in Figure 3, corresponding to
node faults, link faults, DoS attacks, and data-tampering attacks, respectively.

Standard fields in these formats include addr, type, len, nodeId, startTime, and end-
Time, where addr stores the IP address of the CSM; type denotes packet type; length means
packet length; nodeId (1 or 2) indicates the node on which a fault or attack occurs; and
startTime and endTime indicate the fault execution and termination times, respectively.
Furthermore, delayTime in the node and link fault packets determines the action delay of
the fault, which is used to mimic the switching delay in real situations. While in the DoS
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attack and data-tampering formats, itemNum and itemSize mean the total number and size
of packets the attack sends, respectively.
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In the initialization phase, a command is added to the EXata configuration file to
activate the PFCI. Then, the EXata kernel initializes a UDP socket for receiving data from
the OFCM and assigns an idle layer of EXata to the PFCI to handle events.

After initialization, the PFCI workflow is shown in Figure 4. First, via the OFCM, the
operator can pre-program a series of the mentioned faults by manually entering or reading
a file. Once the fault packet is received, the PFCI stores it in the receive buffer. Next, the
event processor of EXata calls the packet parsing function to interpret this packet. If the
packet fault parameter is incorrect, the parser returns the corresponding error packet to
the send buffer. The CSM sends this error packet to the OFCM to prompt the operator
for the command error. Otherwise, the PFCI converts the fault packet into a message and
pre-caches it in the event queue based on the time label, namely startTime, in the packet.
Then, when the simulation time equals the value of startTime, the corresponding event is
assigned to the processor by the event scheduler. At last, the processor triggers one of the
following events according to the type of event.

• Node fault: Shut down all ports of the node represented by nodeId;
• Link fault: Shut down the ports between nodeId1 and nodeId2;
• DoS attack: Send large virtual packets to the target node to delay the target system

service response or even reject the action;
• Data-tampering attack: Tamper with data or re-transmit captured standard packets to

hinder the reliability and accuracy of data exchange in the grid.
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4.1.2. Get and Set Packets

In addition to fault configuration, the PFCI can also acquire and modify model pa-
rameters via the GET and SET packets. The primary function of a GET packet is to obtain
parameters from the CSM, such as node operating status, communication parameters, fault
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parameters, etc., and display them on the GUI of the OFCM for operator reference. Its
workflow is as follows:

First, when an operator needs to view a node’s parameters, the OFCM generates
a GET packet and sends it to the CSM through the PFCI. After that, the CSM calls the
PFCI_ProcessEvent() function to judge the packet type and calls the corresponding function
to handle this packet according to the judgment result. Next, the CSM sends an ACK
message of the GET packet to the OFCM to indicate successful receipt, and the ACK
message contains the corresponding parameters requested by the OFCM. Finally, the
OFCM receives the ACK packet and obtains the required parameters successfully. The
interactive flow of the GET packet is depicted in Figure 5a. The primary function of the
SET packet is to modify the model’s parameters in the CSM, which has a similar workflow
to the GET packet, as shown in Figure 5b.
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4.2. Real Sub-Net Access Interface

The main feature of the RSAI is to access the sub-nets of physical grid devices (or a
single device), such as DC sub-stations, load sub-stations, and other physical devices, to
the SVN to realize data interaction between the sub-net and the CSM, thus improving the
simulation accuracy. The RSAI’s framework is demonstrated in Figure 6. It implements a
one-to-one mapping of a single router (device) to a virtual route (node) in the SVN, e.g.,
A to A’ and B to B’. The RSAI consists of libpcap, libnet, a real–virtual gateway, and a
real–virtual packet converter, which are described below.
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4.2.1. Workflow of the RSAI

Figure 7 shows the workflow of the RSAI by illustrating the data interaction between
real sub-net A and B. Here, we assume that the PCM has converted all non-standard IP
packets to standard IP packets. Each accessed sub-net is linked to the CSM’s network
interface card (A is linked to eth0, and B is linked to eth1).
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Figure 7. The workflow of the RSAI.

For example, once a packet in physical sub-net C is sent to D, it is transmitted along
the solid red arrows. First, this packet is routed to eth0 and captured by the libpcap, a
function library of network packet capture for Linux systems. Each pair of mappings (e.g.,
C to C’) constructs a unique real–virtual gateway and maintains a real–virtual routing table
before the simulation start. The libpcap buffer stores the captured packet. To obtain the
corresponding virtual gateway, the real–virtual gateway mapper compares the packet’s
IP addresses (source IP and destination IP) with the real–virtual route table. After that,
the packet converter re-encapsulates a new virtual packet, which can be injected into the
SVN and contains the captured IP packet as its payload, with the obtained IP address in
its header. If the destination (D’) is reachable for the virtual packet through the SVN, it is
handed over to the converter again, extracting the real IP packet from its payload. Finally,
via gateway 2 and libnet, an interface library that provides network packet construction,
processing, and sending functions, the real IP packet is constructed and sent to eth1.

4.2.2. Support for Large-Scale Grid Simulation

Typically, a single EXata server can support scenarios with up to thousands of nodes.
To emulate larger grid scenarios, an RSAI can connect multiple separate SVNs running
on different servers to scale up the scenario. Specifically, as shown in Figure 8, a physical
RSAI router connects the two CSMs, two virtual routers (A’ and A”) of which are mapped
to the RSAI router through the RSAI. In this way, different SVNs running on both servers
can interact with each other through the RSAI router to simulate a more extensive power
network.
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5. Tests and Results

To test the accuracy of the designed interface and the OFCM, we chose EXata version
5.1 as the communication simulator and developed the OFCM GUI using Qt 4.8.4. The
device parameters for the OFCM client (laptop) and the EXata server are shown in Table 1.

Table 1. Device parameters.

Name CPU Memory Disk Space OS

OFCM client CPU Core i5-6400 8 GB 1 TB Ubuntu 12.01
EXata sever CPU Inter Xeon E5-2620 V4 x2 128 GB 1 TB Windows 7

Figure 9 shows the EXata test network scenario, where nodes were wired and config-
ured for CBR data service from node 1 to node 14. Two routing lines were configured via
static routes. The green and red arrows mark the primary and backup routes, respectively,
and the data flow was transmitted along the primary route by default.
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Figure 9. EXata test network scenario.

We set the simulation time and CBR (10 packets/s) duration to 4 min. Test 1 did not
configure the fault event, and test 2 pre-set the following events through the OFCM: at
node 4, a node fault occurred at 60 s→the node fault recovered at 90 s→at nodes 4 and 5,
a link fault occurred at 150 s→the link fault recovered at 180 s→simulation ended at 240 s.
The cumulative numbers of received packets of node 5 and node 11 in the two tests were
recorded separately, as shown in Figure 10.
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Figure 10. The cumulative numbers of received packets.

No fault events occurred in test 1, so the received packets at node 5 increased linearly.
While in test 2, at node 4 a node fault occurred at 60 s, shutting down all ports of node 4.
Thus, the number of received packets at nodes 4 and 5 no longer rose. At the same time,
the grid switched to the backup route so that the number of packets received by node 11
grew linearly. At 90 s, node 4 recovered, and data reception returned to normal. At 150 s,
the link between nodes 4 and 5 failed, and node 5 was again unable to receive packets. This
shows that the simulated network behavior was consistent with the PFCI pre-assigned
fault events, and the events were executed precisely at the scheduled time.

We also compared the single-trip delay between the RTUI proposed in [34] and the
PFCI. This delay refers to the duration or a control packet generation by the OFCM to the
reception by the CSM finishing processing the message. The results of one hundred tests are
shown in Figure 11. The average single-trip delay of the RTUI was about 95 ms, while this
delay of the PFCI was always zero because it used pre-cache technology to schedule the fault
events into the event queue before the simulation started, which significantly improved the
accuracy of the simulation. In addition, the RTUI introduced human operation delays (like
entering configuration parameters), which could dramatically affect the simulation accuracy
or even make the simulation impossible when testing fault-event-intensive scenarios.
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5.1. Test of the RSAI

The RSAI test scenario is shown in Figure 12. In this EXata scenario, nodes 2, 3, and 4
were 200 m apart. Node 1 moved along the red flag from left to right, and the movement
between adjacent flags took 30 s; the total simulation duration was 180 s. Nodes 1–3 were
in wireless network 190.0.1.0, while nodes 1, 3, and 4 were in 10.0.1.0. The node parameters
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are shown in Table 2. Users 1 and 2 (the same laptops as the OFCM clients in Table 1) were
wired to the corresponding routers, which were then wired to server 3. The RSAI mapped
nodes 1 and 2 in the scenario to routers 1 and 2, respectively.
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Table 2. Node parameters.

Model Value

Transmission channel Two-Ray
Physical 802.11b

MAC 802.11
IP IPv4

Routing protocol AODV

A video stream was generated through the VLC media player running on user 1 that
was destined for user 2. The specific data flow direction was user 1→ router 1→ virtual
network of the EXata server → router 2 → user 2. With the movement of node 1, the
data flow direction was divided into three stages, namely 1→2, 1→3→2, and 1→4→3→2.
Addressing with AODV caused packet loss and increased transmission latency during the
communication link switching.

After the simulation started, we employ ifstat to count the sending rate of user 1 and
the receiving rate of user 2 at one-second intervals, as shown in Figure 13.
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From the figure, the receiving rate was consistent with the sending rate most of the
time, but the receiving rate decayed significantly around 85 s and 135 s because path
switching occurred twice, resulting in distinct packet loss. Therefore, the real network
behavior matched the virtual simulation scenario, which verified the effectiveness of the
RSAI.
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The delay of the interface was tested by ping, and the test scenario was unchanged.
Two groups of tests were set up, in which user 1 sent one ICMP packet to user 2 per second.
In group 1, the packet arrived at the simulation server and was forwarded directly without
going through Exata, while in group 2, the packet arrived at the server and entered the
EXata virtual network through the RSAI. We conducted one hundred tests for each group.
The average round-trip time (RTT) was 0.645 ms in group 1 and 5.314 ms in group 2. The
results are shown in Figure 14.
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The RTT of test 2 included the transmission delay of the EXata virtual network in ad-
dition to the delay introduced by the RSAI. The average transmission delay was measured
to be about 1.916 ms by adding a time stamp in the packet. So, it is easy to conclude that
the average delay introduced by the RSAI was 0.4185 ms, and this delay was acceptable in
the simulation test.

5.2. Co-Simulation Test

A dual-network coupling test scenario was constructed in the RTDS and EXata, and
the network’s topology is shown in Figure 15a. The communication of sub-stations 7, 8,
and 10 with master station 1 was emulated using the proposed co-simulation platform,
as shown in Figure 15b. When DC bipolar blocking occurred at the upstream node, we
focused on the actions of DC control stations 1, 7, 8, and 10. Three groups of comparison
experiments were set up: the first group was not loaded with a DoS attack to observe the
action delay of each station when DC bipolar blocking occurred; the second group applied
a small-flow DoS attack (50 Mb/s) to node 3; and the third group applied a large equal-flow
DoS attack (70 Mb/s). The test results are shown in Figure 16.
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Comparing Figure 16a,b, the small-traffic DoS attack increased the action delay of
sub-stations 7, 8, and 10 by 10–15 ms, indicating that a small DoS attack caused delayed
action of the device. Meanwhile, (c) shows that the addition of a 70 MB/s DoS attack
caused sub-stations 7, 8, and 10 to reject the action, indicating that a large-traffic DoS
attack may interrupt the communication between the security control devices. The test
results were consistent with the expected behavior. Therefore, the proposed co-simulation
platform could analyze impacts on dynamic environments, such as power faults on system
protection and power systems.

6. Conclusions

This paper proposed a co-simulation platform that could provide a test environment
for dynamic grid faults and novel network protocols and devices. Based on the designed
PFCI, we could accurately pre-program network fault events and modify model parame-
ters dynamically during simulation, improving the simulation accuracy. Meanwhile, the
proposed RSAI and PCM could seamlessly connect physical grid devices or sub-nets to the
virtual network to realize data interaction and provide a method to scale up the simulation.
Finally, the test results showed that the platform and interface could correctly and efficiently
evaluate and verify the impact of communication network faults, providing a reference
basis for deploying novel devices and protocols in a grid.
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