
Citation: Wang, L.; Su, B.; Liu, Q.;

Gao, R.; Zhang, J.; Wang, G. Human

Action Recognition Based on

Skeleton Information and

Multi-Feature Fusion. Electronics

2023, 12, 3702. https://doi.org/

10.3390/electronics12173702

Academic Editors: Rania Hodhod

and Mohammad Jafari

Received: 3 August 2023

Revised: 28 August 2023

Accepted: 28 August 2023

Published: 1 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Human Action Recognition Based on Skeleton Information and
Multi-Feature Fusion
Li Wang 1,2 , Bo Su 1,3, Qunpo Liu 1,3, Ruxin Gao 1,3 , Jianjun Zhang 1,3 and Guodong Wang 4,*

1 School of Electrical Engineering & Automation, Henan Polytechnic University, Jiaozuo 454003, China
2 Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Jiaozuo 454003, China
3 Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment,

Jiaozuo 454003, China
4 Computer Science Department, Massachusetts College of Liberal Arts, North Adams, MA 01247, USA
* Correspondence: guodong.wang@mcla.edu

Abstract: Action assessment and feedback can effectively assist fitness practitioners in improving
exercise benefits. In this paper, we address key challenges in human action recognition and assess-
ment by proposing innovative methods that enhance performance while reducing computational
complexity. Firstly, we present Oct-MobileNet, a lightweight backbone network, to overcome the
limitations of the traditional OpenPose algorithm’s VGG19 network, which exhibits a large parameter
size and high device requirements. Oct-MobileNet employs octave convolution and attention mecha-
nisms to improve the extraction of high-frequency features from the human body contour, resulting
in enhanced accuracy with reduced model computational burden. Furthermore, we introduce a
novel approach for action recognition that combines skeleton-based information and multiple feature
fusion. By extracting spatial geometric and temporal characteristics from actions, we employ a
sliding window algorithm to integrate these features. Experimental results show the effectiveness of
our approach, demonstrating its ability to accurately recognize and classify various human actions.
Additionally, we address the evaluation of traditional fitness exercises, specifically focusing on the
BaDunJin movements. We propose a multimodal information-based assessment method that com-
bines pose detection and keypoint analysis. Label sequences are obtained through a pose detector
and each frame’s keypoint coordinates are represented as pose vectors. Leveraging multimodal
information, including label sequences and pose vectors, we explore action similarity and perform
quantitative evaluations to help exercisers assess the quality of their exercise performance.

Keywords: motion recognition; backbone network; motion evaluation

1. Introduction

Exercise is essential in daily life. With the acceleration of the pace of life, people tend to
exercise at home and evaluate their exercise effectiveness by themselves. However, ordinary
self-study methods lack professional guidance, and incorrect or improper body movements
can lead to a decrease in exercise effectiveness and even cause physical harm. Therefore, it is
necessary to analyze and evaluate exercise and provide feedback for achieving better results.

Currently, most exercise analysis relies on specialized sensor devices [1]. For exam-
ple, Albert et al. [2] developed a home exercise system based on inertial measurement
components, which allows users to practice kicking exercises at home by wearing sensors.
Gupta et al. [3] designed a yoga-assisted exercise system that helps amateur enthusiasts
learn correct yoga movements without the supervision of a coach. The motion sensors used
in this system mainly include accelerometers and gyroscopes. Although these wearable
sensors have good data acquisition and analysis capabilities, they require exercisers to wear
related devices, which causes inconvenience to exercise and also has certain invasiveness
and safety risks to the human body.
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With the development and popularization of computers and image technology, visual-
based action recognition has gradually attracted people’s attention [4]. The idea of visual-
based recognition is that there is action information hidden in human skeletal data, and
action recognition can be achieved through methods such as feature extraction and informa-
tion mining. For example, the authors of [5] proposed a machine learning-based shooting
action recognition method. This method can extract multidimensional motion posture
features and use those features to recognize actions. In addition, Xu et al. [6] designed
an end-to-end network to improve the efficiency of optical flow feature extraction, and
combined spatiotemporal features to achieve human action recognition. These methods
have brought convenience and achieved certain performance. However, it requires a large
amount of annotated data and a long training time if directly extracting video features
based on deep learning.

In this paper, we propose a visual-based motion recognition algorithm and apply it to
the fitness exercise “BaDuanJin”, an exercise that focuses on a mind–body integration [7].
The proposed method does not require a large amount of annotated data and it has low
computational complexity, making it suitable for motion videos with varying lengths. In
addition, we propose a feedback method for trainers to evaluate their training effectiveness
and obtain recommendations accordingly. In this feedback method, label sequence and
pose vector are used to evaluate the video motion similarity, which assists practitioners in
correcting their actions and obtaining suggestions.

The main contribution of this paper includes the following.

• This paper proposes a lightweight backbone network called Oct-MobileNet to address
the problem of high parameter volume in the traditional OpenPose algorithm’s VGG19
backbone network. The proposed method utilizes the attention mechanism and octave
convolution to enhance the network’s ability to extract high-frequency features of
human body contours while reducing the model’s computational complexity.

• A motion recognition method based on skeleton information and multi-feature fusion
is proposed in this paper. Multiple features are extracted from the spatial geometry
and temporal characteristics, and a sliding window algorithm is used to fuse them.

• A multimodal information-based motion evaluation method is proposed for the fitness
exercise. The method uses a pose detector to obtain the label sequence of standard
motions and represents the coordinates of each frame’s key points as a pose vector.
The method extracts motion similarity from multiple modal information, such as label
sequence and pose vector, and performs a quantitative evaluation for exercisers.

The rest of the paper is organized as follows. In Section 2, the related work is intro-
duced. Section 3 introduces the Oct-OpenPose and Coordinates Preprocess. In Section 4,
we elaborate on the Action Recognition Model. Section 5 presents the Evaluation Methods
for BaDuanJin Movements. Concluding remarks are drawn in Section 6.

2. Related Work

Human action recognition is one of the fundamental ways to achieve human–computer
interaction aiming at describing human behavior in images or videos. From the perspective
of information acquisition, the methods can be broadly classified into two categories [8]:
sensor-based action recognition and vision-based action recognition.

Sensor-based action recognition has emerged as a promising field of research with
numerous applications in fields such as healthcare, sports analysis, and human–computer
interactions [9]. In particular, wearable sensors are placed on important joint positions of
the human body to collect motion data in real time and transmit it to the upper computer.
The upper computer then analyzes and processes the data, thus achieving human motion
recognition. Pansiot et al. [10] designed a head-mounted inertial sensor for swimming
motion analysis. By recording features such as pitch angle and rotation angle, they analyzed
the movement details of swimmers and developed a swimming monitoring system for
training guidance. Ma et al. [11] designed a wireless network module based on MEMS
inertial sensors [12] and Zigbee [13] used the SVM classification algorithm [14] for human
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motion recognition. This work showed desirable performance in detecting abnormal
behaviors such as falls. Authors of [15] developed a wearable system using an accelerometer,
an analog-to-digital converter, and a WiFi module to acquire and transmit human motion
data. They used the KNN algorithm [16] to recognize four types of daily behaviors: lying
down, sitting, standing, and walking, achieving an accuracy of 93%. Authors of [17]
used a smartphone on the waist of subjects to measure linear acceleration and angular
velocity along three axes using the built-in accelerometer and gyroscope of the phone.
The LightGBM [18] algorithm was used to recognize and classify six types of movements,
including going up and down stairs, sitting, and standing.

While sensor-based action recognition has shown promising results in various appli-
cations, it also has limitations that need to be considered. The biggest limitation is that it
relies on the availability and proper placement of sensors on the body to capture motion
data. Compared to sensor-based action recognition, vision-based action recognition does
not use any extra sensors, which makes it a preferred choice in many scenarios. Recently,
there has been some research in this field. For example, Sun et al. [19] proposed a method
for extracting key frames from video streams, and combined it with a posture estimation
algorithm to extract skeleton information for golf action comparison recognition.

In addition to action recognition, human action evaluation is also an important branch
of motion analysis. By measuring the difference or similarity between two actions, the
consistency of the practice action and the standard action can be judged. For example,
Xu et al. [20] designed two complementary long short-term memory networks to extract
information from figure skating videos and used aggregate feature information to predict
scores. The proposed model achieved desirable performance on their self-built data set.
Another work is provided by authors of [21], who proposed a method for evaluating the
similarity of etiquette actions. First, the video keyframes were extracted using the frame
difference method, and then the evaluation criteria were set based on standard actions.
Action scoring was carried out by calculating the similarity of limb vector angles and
foot distance in keyframes. The above-mentioned methods generally require a substantial
quantity of annotated data and lengthy training times, which results in relatively limited
model generalization capabilities.

Based on the above discussion, it is evident that sensor-based action assessment ap-
proaches heavily depend on hardware devices, which presents challenges in terms of
widespread adoption. On the other hand, deep learning methods that directly extract video
features necessitate a substantial volume of annotated data and entail lengthy training
durations. Therefore, there is a need for an alternative approach that eliminates the require-
ment for extensive annotated data, possesses low computational complexity, and proves
suitable for fitness routines of varying durations.

3. Oct-OpenPose and Coordinates Preprocess

In this section, we analyze the current popular human pose estimation methods
and then propose a method that meets the requirements of body movement recognition
discussed in the related work section. In particular, we focus on fitness exercises in normal
scenarios, and a lightweight model is needed for human pose estimation.

Visual-based human pose estimation methods can be divided into two categories: the
top-down approach and the bottom-up approach. The top-down approach detects each
person in the image first and then performs key point detection for each individual. The
typical top-down approach algorithms include RMPE [22] and CPN [23]. In contrast, the
bottom-up approach detects all the key points of all people in the image first and then
assigns key points to each individual. The typical bottom-up approach algorithms include
OpenPose [24] and HigherHRNet [25].

The bottom-up approach is relatively faster and more robust, so in this paper, we
use the bottom-up approach for keypoint detection and multi-body pose estimations. We
have two options: HigherHRNet and OpenPose. The HigherHRNet network is complex
and usually focuses on solving the pose estimation problem for dense, small-sized people,
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which does not meet the scenario of fitness exercise. Therefore, we choose OpenPose in
this paper. The traditional OpenPose uses VGG19 as the backbone network to extract
features from input images. The VGG19 network, due to its extensive parameter count, is
not considered a lightweight backbone network. Consequently, the traditional OpenPose
model utilizing VGG19 fails to fulfill the real-time performance demanded by the scenario
discussed in this paper.

Natural images can be decomposed into low-frequency components and high-frequency
components. Octave convolution divides the convolutional feature map into low-frequency
components and high-frequency components. Information interactions between the two
frequency groups are achieved through up-sampling and down-sampling, and ultimately,
the original feature map can be reassembled. We can achieve the following advantages
by replacing traditional convolutions with Octave convolutions. (1) Reduced storage and
computational load. The size of the low-frequency feature map can be halved, effectively
reducing storage and computational resources. This enhancement contributes to improving
the speed of detecting human key points. (2) Enhanced receptive field. With the feature
map size reduced while keeping the convolutional kernel size constant, the receptive field
increases. This expansion enables better capture of contextual information in scenarios like
the “BaDuanJin” movement, ultimately enhancing recognition performance. (3) Preserved
high-frequency information. Octave convolution fully retains high-frequency information,
and since the human body outline constitutes critical high-frequency information for action
recognition, this preservation is important.

Based on the structure design of OpenPose and the above discussion, we propose
an improved model named Oct-OpenPose in this paper. The network structure of the
Oct-OpenPose is shown in Figure 1. The Predicted Affinity Fields (PAFs) prediction part
of the network is reduced from the original four stages to three stages, and the Heatmaps
prediction part is reduced to one stage. The first convolution kernel size of the three
inside concatenated convolutions is changed to 1 × 1. The final convolution kernel is
designed as a dilated convolution with a dilation factor of two to reduce the redundancy
of the network. The new backbone network Oct-MobileNet using the Oct-OpenPose has
greatly reduced the parameter quantity of the MobileNet. It also reduces low-frequency
information redundancy and focuses more on high-frequency information so that the
extracted deep features contain more effective information.

In order to evaluate the performance of the proposed model, we used the Common
Objects in the Context (COCO2017) data set to test the MobileNet and Oct-MobileNet
networks. Specifically, we used the adaptive momentum method to train and optimize the
models. The training was conducted for 3× 105 iterations, with an initial learning rate of
4× 10−4, and a batch size of 24. Figure 2 compares the feature visualization results. It can be
seen that the Oct-MobileNet places more emphasis on high-frequency feature components
such as the human body contour when extracting deep features and suppresses other
low-frequency components, which makes the PAFs of human key points more clear.

We also compared the accuracy of the proposed model as well as the network in
Table 1. As can be seen from Table 1, the number of stages for PAFs and Heatmaps has
been reduced from 4 + 2 to 3 + 1, with negligible loss in accuracy. When using a regular
MobileNet as the backbone network, the model’s accuracy decreased by 7.1% compared
to the original network. However, Oct-MobileNet, which integrates the improved Octave
convolution, places more emphasis on high-frequency features such as the human body
outline and suppresses other low-frequency features when extracting features, resulting
in a 6% increase in model accuracy compared to regular MobileNet. The accuracy of the
improved model is only reduced by 1.2% compared to the original model. The detection
speed of the improved model can reach 31 fps, which is 300% faster than the original model.
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图 1 OpenPose 网络结构
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[16]，这样使轻量级网络 MobileNet 进一步降低了参数量，减少低频信息冗余的同时更
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Table 1. Comparison of OpenPose models with different structures.

Models Backbone PAFs Stages Heatmaps Stages mAP (%) Speed (fps)

OpenPose VGG19 4 2 65.2 7.1
3 1 64.6 8

Revised-OpenPose MobileNet 3 1 57.5 29
Oct-MobileNet 3 1 63.4 31

Besides feature extraction, we also normalize the coordinates of key points. The
coordinates are normalized in order to solve the problem of non-uniformity caused by
image size or lens distance variation. First, the input image is scaled so that an image
with width and height (w, h) is first scaled to (1, h/w). The center position (Xc, Yc) of
the human body is then calculated based on the coordinates of 18 points according to
Equation (1). Second, we calculate the height H between the neck and the hip. Note that
the height H does not change for different actions. Finally, each keypoint is subtracted from
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the central coordinate and divided by H according to Equation (2) to obtain the normalized
coordinates (Xnew, Ynew), as shown in Figure 3.

Xc =
∑18

i=1 xi

18
, Yc =

∑18
i=1 yi

18
(1)

Xnew =
xi − Xc

H
, Ynew =

yi −Yc

H
, (2)
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4. Action Recognition Model

During human movement, the main movements are in the limbs and torso, which are
not related to the face. Therefore, eye and ear coordinates are excluded, and the position
information of the head is abstracted using the nose to represent the head position, reducing
the total number of key points from 18 to 14. The diagram of geometric features is depicted
in Figure 4, where the numbers represent the key joints of human body.

(1-2-3)则表示的是脖子、右肩到右肘所形成的夹角，如图 4 所示。计算公式如式(3)、(4)，

其中(x1，y1)，(x3，y3)表示关键点 1 和 3 的坐标，a、b、c 则表示脖子、右肩与右肘构成

三角形的三条边长。 

表 3 空间几何特征表 

关节距离 Li 说明 关节角 θi 说明 

L1 d(1-3) θ1 ∠(1-2-3) 

L2 d(2-4) θ2 ∠(2-3-4) 

L3 d(1-6) θ3 ∠(1-5-6) 

L4 d(5-7) θ4 ∠(5-6-7) 

L5 d(1-9) θ5 ∠(1-8-9) 

L6 d(8-10) θ6 ∠(8-9-10) 

L7 d(1-12) θ7 ∠(1-11-12) 

L8 d(11-13) θ8 ∠(11-12-13) 

L9 d(4-8) θ9 ∠(2-1-8) 

L10 d(7-11) θ10 ∠(5-1-11) 

L11 d(8-13) θ11 ∠(8-9-13) 
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图 4 几何特征示例图 

运动运动特征则反应人体在连续时刻的变化，如某些关节、肢体的摆动速度等。关

键点速度的计算方式为某个关节点在相邻帧 Tk 到 Tk+1 上 x 与 y 方向上各自的位移除以

间隔时间 t，如式(5)。t 与视频帧率 F 有关，例如当 F 为 25fps 时 t = 0.04s。 

Figure 4. Diagram of geometric features of human body.

The spatial position of the human skeleton and its geometric relationship can be
used to model human motion. In order for the classifier to better distinguish between
different movements in the BaDuanJin, spatial geometry and temporal motion features
are extracted from the skeletal coordinate information. Taking L1 and θ1 as an example,
Table 2 shows that d(1–3) represents the pixel distance between the neck and right elbow,
while ∠(1 − 2 − 3) represents the angle formed by the neck, right shoulder, and right
elbow, as shown in Figure 4. The calculation formulas are shown in Equations (3) and (4),
where (x1,y1) and (x3,y3) represent the coordinates of key points 1 and 3, and a, b, and
c represent the three sides of the triangle formed by the neck, right shoulder, and right
elbow, respectively.
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Table 2. Spatial geometric feature table.

Joint Distance Symbol Joint Angle Symbol

L1 d(1–3) θ1 ∠(1− 2− 3)
L2 d(2–4) θ2 ∠(2− 3− 4)
L3 d(1–6) θ3 ∠(1− 5− 6)
L4 d(5–7) θ4 ∠(5− 6− 7)
L5 d(1–9) θ5 ∠(1− 8− 9)
L6 d(8–10) θ6 ∠(8− 9− 10)
L7 d(1–12) θ7 ∠(1− 11− 12)
L8 d(11–13) θ8 ∠(11− 12− 13)
L9 d(4–8) θ9 ∠(2− 1− 8)

L10 d(7–11) θ10 ∠(5− 1− 11)
L11 d(8–13) θ11 ∠(8− 9− 13)
L12 d(10–11) θ12 ∠(11− 12− 10)

L1 = d(1−3) =
√
(x1 − x3)2 + (y1 − y3)2 (3)

θ1 = arccos(
a2 + c2 − b2

2ac
) =

√
(x1 − x3)2 + (y1 − y3)2 (4)

The motion feature reflects the changes in the human body over consecutive moments,
such as the swing speed of certain joints or limbs. The calculation method for key point
velocity is to divide the displacement into the x and y directions between adjacent frames
Tk and Tk+1 by the interval time t, as shown in Equation (5). The value of t is related to the
video frame rate F. For example, when F is 25 fps, t = 0.04 s (1/25 = 0.04 s).

Vx =
XTk+1 − XTk

t
, Vy =

YTk+1 −YTk

t
(5)

To achieve sequence-based feature extraction, new features need to be constantly
extracted from the video sequence and old features need to be removed in real time. We
use a sliding window algorithm to deal with the feature extraction, as shown in Figure 5. A
window of size N is used to store data based on the time series. As time progresses, the
window moves directionally, with new data added to the head of the window and old data
pushed out from the tail. This process continues until the window has traversed through all
the data. In this paper, the sliding window size N is set to 10 frames, and spatial geometry
features and temporal motion features are calculated accordingly. The final aggregated
feature vector is shown in Table 3, where the dimension of the fused feature reaches 772. In
order to reduce the computational complexity during model training, the classical feature
extraction and data representation technique Principal Component Analysis (PCA) [26] is
used to compress the features to 100 dimensions.
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x x
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y

y y
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······
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图 5 滑动窗口算法实施过程 

健身功法八段锦是中国传统文化的传承，通过对八段锦的长期练习不仅能锻炼身体

素质，还可以弘扬传统文化风采。本文根据研究需要，自制了八段锦动作数据集，下载
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的图片样本，像素大小为 640×480，样本按照 7:3 划分为训练集和测试集。动作样例如

图 6 所示，具体各动作样本数量如表 5 所示。 

Figure 5. The process of sliding window algorithm.
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Table 3. Feature List based on Video Sequences.

Feature Category Feature Name Dimension Descriptions

Spatial Geometric Feature
Key points Position 280 Normalized coordinates of 14 key points
Distance between key points 120 Euclidean distance between key points
Joint angle 120 Angle formed by joints

Temporal Motion Feature Key point velocity 252 Velocity of each key point in the x and y direction
Fused Feature Spatial geometric + temporal motion 772 Combination of the above features

In this paper, since the scenario is action recognition based on time series, an LSTM-
based classifier is proposed to deal with the classification. In particular, the input to the
model is the 100-dimensional features that are aggregated and reduced by the sliding
window with a time step T of 30. Two layers of LSTM units are designed in the LSTM block,
and each layer has 128 neurons. After that, a fully connected layer (FC) with a size of 64 is
used to further integrate the features. Finally, the softmax activation function is used to
classify the movements.

Figure 6 shows the classification results and confusion matrix of the recognition results.
It can be seen that the average recognition accuracy of each movement reaches 95.7%, and
the frame rate of video detection can be maintained above 25 fps.

图 8 分类结果及混淆矩阵 
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Figure 6. Classification results and confusion matrix.

5. The Evaluation Methods for BaDuanJin Movements

In the context of BaDuanJin movements, the mere recognition of the actions holds
limited significance. The primary objective is to thoroughly analyze the disparities between
the practitioner’s movement sequences and the standard ones, facilitating a quantitative
evaluation. This evaluation aims to assist the practitioner in rectifying individual move-
ments, ultimately enhancing the overall effectiveness and benefits of the exercise routine.
This section proposes a multi-modal information-based movement evaluation method, as
shown in Figure 7. The first modality information is joint vector information extracted
from each frame of the video, and the overall similarity between the test movement and the
standard movement is measured by evaluating the similarity of joint vectors. The second
modality information is the action label detected by the pose detection model for each
frame, and the periodicity and synchronization of the two movements are evaluated by
analyzing the similarity of the label sequence.
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5.1. Similarity Evaluation Based on Joint Vectors

By improving OpenPose to detect BaDuanJin movements in videos, the coordinates of
key points for each frame of the human body can be extracted. These coordinates can be
further organized into vectors to characterize the movement of the human body in each
frame, and similarity can be analyzed through the cosine distance. At the same time, the
length of the BaDuanJin movement sequence varies, making it suitable for dynamic time
warping (DTW) algorithm processing. Inspired by this, this section proposes a similarity
evaluation method based on joint vectors that combines cosine similarity and the DTW
algorithm to calculate the similarity of movement sequences.

Let A = (a1, a2, ..., an) and B = (b1, b2, ..., bm) be two time series with lengths n and m,
respectively, where n 6= m. To align the two sequences on the time axis, a matrix grid with
m rows and n columns is constructed as shown in Figure 8. The value in the i-th row and
j-th column of the grid represents the distance between bi and aj, denoted as d(i, j). Then,
the DTW distance calculation method for the time series A and B is shown in Equation (6).
Equation (6) can characterize the similarity between the two sequences, where a smaller
distance indicates a higher similarity.

D(i, j) = d(i, j) + min[D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)] (6)

Time

T
im
e

1
1

n

m

Sequence A

S
e
q
u
e
n
c
e
 
B

Figure 8. Schematic diagram of the sequence alignment based on DTW algorithm.

In order to facilitate analysis and calculation, a minimum bounding box is created
around the human in the image using the coordinates (xi, yi) of the 18 key points outputted
by the model, where i ∈ [0, 17]. Then, we create a new coordinate system, and the position
of the key points in the new coordinate system is calculated according to Equation (7),
where xmin and ymax represent the position of the lower-left endpoint of the bounding box.

xinew = xi − xmin; yinew = ymax − yi; i ∈ [0, 17] (7)

For the movement A in a certain frame of the video, the preprocessed key point
coordinates are represented as a high-dimensional vector in order, i.e., A = [a0, a2, ..., a13],
where a0 ∼ a13 are the position coordinates of 14 key points. Then, the similarity between
two frames of movements A and B can be transformed into the similarity between vectors A
and B. Suppose that the number of frames in video M and N is m and n, respectively, during
a time interval t, and the human body movements in the two videos can be characterized
as sequences M = [m1, m2, ..., mi, ..., mm] and N = [n1, n2, ..., nj, ..., nn], where mi and nj are
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vectors composed of key point coordinates in a certain frame. By substituting Equation (8)
into Equation (6), the distance between the two sequences can be calculated.

d(i, j) = 1− cos(mi, nj) (8)

Similarity Score = (1− D
Dmax

)× 100 (9)

The d(i, j) in Equation (8) represents the cosine distance between mi and nj, and
the similarity score between the two sequences is finally calculated using Equation (9),
which represents the overall similarity between the two sequences. D represents the DTW
distance D(m, n) between the sequences M and N. Dmax is the distance when the sequence
similarity reaches its minimum, and at this time, the cosine distance of each element reaches
its maximum. The pseudo-code of the algorithm is given in Algorithm 1.

Algorithm 1 Similarity evaluation based on joint vectors

1: Input:
2: Template Sequence M = {m1, m2, ..., mi, ..., mm}
3: State Test sequence N = {n1, n2, ..., nj, ..., nn}
4: Output:
5: Similarity Score
6: D(0, 0)← 0
7: for (i = 1; i < m; i ++) do
8: for (j = 1; i < n; j ++) do
9: d(i, j)← 1− cos(mi, nj)

10: D(i, j)← d(i, j) + min(D(i− 1, j), D(i, j− 1), D(i− 1, j− 1))
11: end for
12: end for
13: Calculate Dmax for template sequence M
14: Similarity Score← (1− D(m, n)/Dmax)× 100

5.2. Similarity Evaluation Based on Label Sequence

The BaDuanJin movements exhibit robust regularity, characterized by their periodic
nature. Each movement follows a specific pattern, commencing from the preparatory
position, progressing through several essential postures, and concluding by returning to
the preparatory position. For example, as depicted in Figure 9, movement b is decom-
posed into posture combinations of 1-4-5-1-4-6-1, and a complete cycle is repeated three
times. Similarly, other movements can also be decomposed in a similar way. The eight
movements (a ∼ h) are divided into 21 key postures, which will be used as labels for
similarity evaluation.

Figure 9. Example of decomposing BaDuanJin movements.
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For a video of BaDuanJin movements, we first use a movement classifier to recognize
the corresponding movement, and then use the pose detection model to detect the posture
results for each frame, i.e., continuous posture labels. The sequence formed by these
labels contains the period and speed of the movement, from which information on the
synchronization and periodicity of different practitioners performing the same movement
can be extracted.

During video processing, some frames may be missed or detected incorrectly, resulting
in noise in the generated label sequence, which is not conducive to subsequent analysis
and judgment. Therefore, it is necessary to conduct denoising. Since video frames are
continuous, they do not suddenly change into another movement in the middle of a
continuous movement. Based on this, noise can be filtered out. For example, if a few
frames of movement 2 appear in a series of continuous movement labels 1, movement 2 is
considered noise and will be removed.

Both the template movements and the test movements contain a certain regularity
after processing and becoming label sequences. Either a template movement or a test
movement is a periodic sequence. The difference lies in the length of the interval from
one posture to the next one, which corresponds to different sequences and represents the
difference in speed when different practitioners perform the same movement. To compare
the similarity of label sequences, we propose a sequence pattern mining method based on
sequence intervals.

The sequence pattern mining method is shown in Figure 10, where the template
sequence and the test sequence are divided into multiple corresponding intervals. The
associate pseudo-code of the algorithm is given in Algorithm 2. The elements in each
interval are the same but they may have different lengths, representing the same movement
state but with different durations. The formula for calculating the similarity between
the test sequence and the template sequence is shown in Equation (10), where |L(i)−L(i′)|

L(i′)
represents the deviation of each corresponding interval.

Cycle Score = (1− 1
n

n

∑
i=1

|L(i)− L(i′)|
L(i)

)× 100 (10)

a a a  b b b b   c c  · · · a a a a b b b c · · · a a a b b b b c c

a a  b b b   c c c c · · · a a b b c · · · a a a b b b c c
(1) (2) (3) (n)(i)

(1) (i)(2) (3) (n)

模板序列:

测试序列:

L(1)=3

L'(1)=2

L(2)=4

L'(2)=3

Template Sequence

Test Sequence

Figure 10. Process of calculating sequence periodic similarity.

Algorithm 2 Periodic similarity evaluation based on label sequence

Input:
Template label sequence: A
Test label sequence: B

Output:
Cycle Score

Divide template label sequence A into n intervals
Count the length of subsequence L(1), L(2), ..., L(n)
Divide test label sequence B into n intervals
Count the length of subsequence L′(1), L′(2), ..., L′(n)
sum← 0
for (i = 1; i < n; i ++) do

θi ← |L(i)− L′(i)|/L(i)
sum← sum + θi

end for
Cycle Score← (1− sum/n)× 100
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5.3. Decisions and Suggestions

We tested different exercisers, and associated suggestions were given to them. For
example, one of the tests included two coaches and one beginner. By using Equation (10), it
was calculated that the periodic similarity score between the beginner and the coach was
65.7. The periodic similarity score between coach one and coach two was 90.4. Since the
overall speed of the beginner was too fast, it resulted in a lower periodic similarity score.
The movement of both coach one and coach two had a similar speed, resulting in a higher
periodic similarity score.

The scoring system was designed to have two perspectives: the similarity of move-
ments and the periodicity of movements. Users can change their perspectives by adjusting
a factor and obtaining suggestions accordingly. If they want to check whether their move-
ments are performed correctly while periodicity is not particularly important, they can
increase the weight of similarity. In this test, the weight factor is set to 0.4, which means
the proportion of movement label similarity assessment counts 40%, and the proportion of
joint vector similarity assessment counts the rest 60%.

The displacement trajectories of key points in the human body can also be visualized.
Figure 11 depicts the changes in the right knee’s x-coordinate of three testers. The trends
of curves (a) and (c) are the same, indicating a higher similarity in movements. Curve (b)
also has a similar pattern to curve (a), but the movement amplitude of curve (b) is very low,
which results in a poor similarity of the curve. Those curves can be used to give suggestions
to the exercisers.
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Figure 11. The changes of the right Knee’s x-coordinate of three testers.

In order to present the system detection results more clearly and directly, we designed
a visual interface using QT. This interface can help practitioners compare and correct their
movements by displaying the predicted results of action techniques and analyzing joint
angles, thereby assisting in their training. The movement recognition and scoring interface
is shown in Figure 12.

Practitioners can upload a video of the BaDuanJin exercise by clicking the “Video
Input” button. Then, by clicking the “Run” button, the system calls the trained action
classification model to perform the detection and display the results in the window. Finally,
on the right side, the category of the exercise video and the similarity score with the
standard video are displayed. Based on this score, practitioners can have a preliminary
understanding of their own level and enhance their interest in exercise.
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Movement Recognition and Scoring

BaDuanJin 
Scoring System

Video Input Run

Prediction Results:

Score:

key Frame Posture Analysis

Figure 12. Movement recognition and scoring interface.

After obtaining the action results from the action classifier and the similarity score of
the movements, practitioners can click on the key frame posture analysis results to view the
key movement details of the corresponding technique. The evaluation interface is shown
in Figure 13. The left window displays the posture frames of the standard action, and the
right window displays the key frames of the input test video.

Comparison of Key Frame Angles

Standard Movements Training  Movements

Right 
Knee

Left 
Knee

Right 
Hip

Left 
Hip

Right 
Elbow

Left 
Elbow

Right 
Shoulder

Left 
Shoulder

122.3127.7126.6130.924.4150.5169.6174.3Standard posture 
Angle

156.8120.7159.3146.322.5179.7157.2164.7Training posture 
Angle

-34.5+7-32.7-15.4+1.9-29.2+12.4+9.6Suggestions

Next Frame Back

Figure 13. Joint angle comparison interface.

The scoring method for the BaDuanJin fitness movements designed in this paper
measures the similarity of the practitioners’ movements from two perspectives: overall
movement similarity and the periodicity of the movements. This method achieves a quanti-
tative assessment of the similarity when practitioners perform the BaDuanJin movements.

6. Conclusions

In this paper, we first introduce the lightweight backbone network Oct-MobileNet
to overcome the limitations of traditional algorithms by employing octave convolution
and attention mechanisms. This enables the extraction of high-frequency features from the
human body contour, resulting in improved accuracy with reduced model computational
burden. Furthermore, we introduce a novel approach for action recognition that combines
skeleton-based information and multiple feature fusion. Additionally, we address the
evaluation of traditional fitness exercises and propose a multimodal information-based
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assessment method that combines pose detection and key point analysis. Overall, the
methods presented in this paper offer promising solutions to the challenges of action recog-
nition and assessment in the context of fitness training. The outcomes of the experiments
demonstrate the effectiveness of the proposed approaches in accurately recognizing and
evaluating human actions. By providing the feedback, fitness practitioners can improve
their exercise performance and maximize the benefits derived from their fitness routines.
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