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Abstract: Large-scale wind power grid connection increases the uncertainty of the power system,
which reduces the economy and security of power system operations. Wind power prediction
technology provides the wind power sequence for a period of time in the future, which provides key
technical support for the reasonable development of the power generation plan and the arrangement
of spare capacity. For large-scale wind farm groups, we propose a cluster model of wind power
prediction based on multi-task learning, which can directly output the power prediction results of
multiple wind farms. Firstly, the spatial and temporal feature matrix is constructed based on the
meteorological forecast data provided by eight wind farms, and the dimensionality of each attribute
is reduced by the principal component analysis algorithm to form the spatial fusion feature set. Then,
a network structure with bidirectional gated cycle units is constructed, and a multi-output network
structure is designed based on the Multi-gate Mixture-of-Experts (MMoE) framework to design the
wind power group prediction model. Finally, the data provided by eight wind farms in Jilin, China,
was used for experimental analysis, and the predicted average normalized root mean square error
is 0.1754, meaning the prediction precision meets the scheduling requirement, which verifies the
validity of the wind power prediction model.

Keywords: multi-task learning; wind farms; wind power cluster; MMoE; wind power prediction

1. Introduction

According to the Global Wind Energy Council (GWEC), which released the “Global
Wind Energy Report 2023”, the renewable capacity was expected to further increase by over
8% in 2022, reaching almost 320 GW. Among them, the wind power (WP) development
scale of China is the first in the world [1]. Wind power is a kind of uncertain power supply,
which has certain intermittently, fluctuation, and randomness. The grid connection of
large-scale WP brings serious challenges to the safe and stable operation of the power
system. Wind power prediction (WPP) technology provides a power prediction sequence
for a certain period in the future, which provides technical support for the formulation
of a power generation plan and reserve of spare capacity [2,3]. The improvement in the
WPP accuracy is of great significance for promoting the consumption of WP, reducing the
cost of thermal power generation, and enhancing the competitive advantage of WP in the
power market.

According to the prediction time scale, WPP technology can be divided into ultra-short-
term prediction, short-term prediction, and medium- and long-term prediction. According
to a spatial scale, WPP technology can be divided into single wind turbine prediction, wind
farm prediction, and wind power cluster prediction [4,5].

The prediction time scale of the short-term wind power prediction (STWPP) model is
1–3 days in the future, that is, it provides the WPP sequence of 0–72 h the next day, and the
number of executions of the model is determined by the refresh frequency of the numerical
weather prediction (NWP) [6]. So, the STWPP technology is of great significance for the
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formulation of the power generation plan, reserve of spare capacity, and adjustment of unit
combination plan [7]. According to the modeling method, the STWPP can be divided into
physical-based methods and statistical-based methods. Based on the actual geographic in-
formation of the wind farm (WF), the physics-based prediction model can predict the wind
speed (WS) and wind direction (WD) in the range of the WF by solving high-dimensional
nonlinear equations. Then, according to the wind speed–power conversion model, the
predicted output of the WP is obtained. This prediction model can reflect the operating
characteristics of wind farms and has good interpretability. Since the complex topography
and geomorphology of wind farms are difficult to describe mathematically, the accuracy of
such prediction methods is often limited [8].

By mining the autocorrelation of the time series and establishing a nonlinear mapping
relationship between history and the future, a statistical-based model transforms the static
time series modeling problem into a dynamic time series modeling task [9,10]. Such
methods include time series predictive modeling algorithms and traditional machine
learning algorithms. The time series prediction algorithms include the continuous method,
moving average method, auto-regressive moving average method, and so on. Machine
learning algorithms include support vector machines, artificial neural networks, and so
on. The prediction method based on statistics avoids the physical mechanism to some
extent, and the modeling is more efficient. However, the ability to mine the temporal
characteristics of time series is limited, which is often suitable for ultra-short-term power
prediction tasks [11,12]. The WP series is a dynamic time series, and the WPP results are
not only related to the current state but also to the past state. Therefore, traditional machine
learning algorithms have certain limitations for STWPP tasks.

With the development of deep learning (DL) technology, its algorithm has also made
obvious breakthroughs in time series prediction. Therefore, the WPP algorithm also adopts
DL technology in a wide range. On the one hand, DL algorithms can improve the ability
of the nonlinear feature extraction of data through the stacking of network layers. On
the other hand, for the development of WPP systems, DL models are easy to maintain
and deploy [13,14]. The authors in [15] further improved the complementary ensemble
empirical mode decomposition (CEEMD) algorithm based on those in [16] to reduce
data noise in the mode decomposition process, and then the moth–flame algorithm was
applied to optimize the wavelet neural network parameters to enhance the reliability of the
modeling. Duan et al. adopted the maximum entropy iteration algorithm to automatically
search for the optimal number of modes, improved the loss function of the regression task,
and significantly improved the modeling accuracy [17]. Due to the large number of sub-
models, the efficiency of modeling is relatively low for the technical route of decomposing
power data and then modeling each component separately. Zhang et al. used the K-means
algorithm to divide the data into several scenes, and then Sequence-to-Sequence modeling
was carried out for each scene, which improved the learning ability of the model for each
scene with a high degree of refinement [18]; this is the most common modeling method
in the current research. In [19], Ding et al. proposed a wind speed correction algorithm
to further construct statistical characteristics based on the WS correction, and then the
bidirectional gate recurrent unit (Bi_GRU) network was constructed to establish the WPP
model. As the NWP is the main input of WPP modeling, numerical weather prediction
error is the main cause of power prediction error, and the correction of WS can significantly
improve the prediction accuracy of WP. In addition, new network structures, such as
deep residual networks and graph neural networks, can also improve the accuracy of
WPP [20,21].

The DL algorithm has been widely used in the field of WF power prediction, but for
the dispatching side, the regional wind power output has a greater value for power and
electricity balance. Although the dispatching side can collect the forecast results of each
WF and then obtain the regional forecast power by superimposing the predicted power of
all the WFs, it is difficult to ensure the simultaneity of the data reported by each WF. To
solve this problem, a wind power group prediction model is proposed in this paper, which
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can ensure the simultaneity of the predicted power of each WF. The framework utilizes the
advantages of recurrent neural networks in a time series prediction and is combined with
a multi-task learning framework to developed a synchronous multi-output, the specific
research contents of which are as follows:

(1) The dimensionality of WS, WD, temperature, humidity, and pressure data of each WF
is reduced based on the principal component analysis algorithm, and the input feature
set of the WPP model is formed together with the original meteorological attributes.

(2) A Bi_GRU network is built as the base learner and a multi-task learning mechanism is
designed based on the MMoE algorithm to train the power of multiple WFs in space
at the same time to improve modeling efficiency.

(3) Simulation experiments were conducted on the data provided by eight WFs in Jilin
Province, China, and RMSE and MAE indexes were used to evaluate the predic-
tion performance.

The rest of the manuscript is structured as follows: Section 2 is a summary of the
problems and a description of the methods; Section 3 is the technical route; Section 4 is the
experimental analysis; and Section 5 is the conclusion of this paper.

2. Materials and Methods
2.1. Power Group Prediction of Wind Power Cluster

Wind power group prediction requires the power prediction results of all wind WFs
in the output space. Because there is a certain correlation between the output of WFs with
close spatial distribution, the utilization of this correlation can effectively improve the
training accuracy of the network. Due to the confidentiality of WFs to data, the data of each
wind farm are not transmitted to each other but rather uploaded to the dispatch center, so
only the dispatch center has the multi-source data uploaded by each WF [22,23]. Based on
this consideration, a centralized wind power group prediction model is developed in this
paper. Using the data uploaded by each WF as the input, the multi-task learning model is
used as a predictor to directly input the power prediction results of all WFs in the space.
The output power of each WF is equivalent to a prediction task. The MMoe multi-task
learning framework is adopted to directly output the power prediction results of 8 wind
farms to reduce the modeling complexity.

2.2. The MMoe Multi-Task Learning Framework

Multiple prediction tasks are generally carried out in a separate modeling way. How-
ever, when there is some potential correlation between multiple tasks, if the idea of indepen-
dent modeling is still adopted, the correlation of multiple problems will be ignored. In this
case, the multi-task learning strategy can be used to improve the overall effect. Multi-task
learning framework only needs to build a deep learning model, regard multiple related
problems as sub-tasks of the model, and control the features in the model, so that multiple
tasks can share information, to improve the performance of each task.

The traditional multi-task learning strategy generally adopts the parameter hard-
sharing mechanism. The hard-sharing mechanism divides the model into a parameter-
sharing layer and subtask-learning layers. The parameter-sharing layer obtains the input
features of all tasks and extracts the features [24]. The sub-task learning layer obtains the
features related to the task itself from the parameter-sharing layer, then trains the sub-task
and outputs the predicted results. Taking a model with 3 outputs as an example, the
network model is shown in Figure 1. For each task, all the parameters and structure of the
model are the same, only the goal of the final mapping is different. The interaction between
all tasks is fixed in the training process and has certain limitations.
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Figure 1. The parameter hard sharing mechanism.

In the hard sharing mechanism, the stronger the correlation of subtasks, the better the
model training effect; if some tasks are weakly correlated, the performance of the model
may degrade because other tasks are misleading [25]. To this end, Google Inc proposed the
MMoE multi-task learning framework, the basic principle of which is shown in Figure 2.
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Figure 2. The MMoE multi-task learning framework.

The MMoE algorithm divides the parameter-sharing layer into several expert subnets.
Each expert subnetwork is a multi-layer perceptron, which is responsible for independently
learning the coupling relationship between multiple tasks. Different expert subnets do not
share parameters. At the same time, the MMoE algorithm sets a gate unit for each subtask,
which is responsible for calculating the weight of each expert subnet in the subtask so that
different tasks can choose expert subnets more flexibly and avoid the mutual interference
between weakly related tasks. The output yk of the kth subtask in the MMoE multi-task
learning model can be expressed as Formulas (1) and (2):

yk =
n

∑
i=1

gk
i (x) fi(x) (1)

gk
i (x) = so f t max(Wk,i

g x) (2)

where n is the number of expert subnets, k indicates the task number, x is the input feature
of the model, gk

i (x) is the weight of expert subnet i in the task k, fi(x) is the output of expert
subnet i, Wk,i

g is the linear transformation matrix of the ith expert subnet corresponding to
the kth gated unit, and so f tmax() stands for activation function.
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The gate control unit maps the input features to the dimension through linear trans-
formation and obtains the weight coefficient of each expert subnet through the softmax
activation function, which realizes the flexible control of expert subnet output in the task.
Due to the weak correlation between multi-time scale power prediction, the MMoE multi-
task learning model can separately train the weight coefficient of the expert subnet for the
prediction of 8 WFs subtasks on the premise of sharing multi-time scale power informa-
tion to ensure that each subtask can learn the most effective information during network
training. Therefore, the MMoE algorithm is more suitable for modeling.

2.3. Bidirectional Gated Recurrent Unit

The structure of the GRU is shown in Figure 3. The GRU structure contains two gates.
The reset gate r determines how to combine the new input information with the previous
memory, and the update gate z controls how much information from the past is passed to
the future; the network parameters of GRU are shown in Formula (3):

rt = σ(itWxr + ht−1Whr + br)
zt = σ(itWxz + ht−1Whz + bz)

h̃t = tanh(itWxh + rt � ht−1Whh + bn)

ht = zt � ht−1 + (1− zt)� h̃t

(3)

where it represents the input of the current state, and h̃t and yt represent the output of the
current state and the input of the next neuron, respectively. Wxr, Wxz, and Whh represent
the three parameter matrices of the previous hidden layer states ht−1 through rt, zt, and ht,
respectively.

The structure of the recurrent neural network with GRU as neurons is shown in
Figure 4. The backpropagation network is used to train and calculate the parameters of
RNN. It is described in Formula (4):

ot = V f (Uxt + W f (Uxt−1 + W f (Uxt−2 + W f (Uxt−3 + . . .)))) (4)

where ot represents the output of a single neuron, xt represents the input at the time t, and
U, V, and W represent the weight matrix of the x, h, and output layers, respectively.
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For a GRU−based RNN structure, as shown in Figure 4, if independent GRU neural
networks are connected, the structure is developed into a Bi_GRU. This structure enables
the GRU neural network to process sequence inputs in two directions, both forward and
backward with two separate hidden layers. Each hidden layer can capture both past
(forward) and future (backward) data information. This bidirectional structure increases
the capacity and flexibility of the model and improves the feature extraction capability of
the network for time series [26,27].
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The research objective of this paper proposed a short-term wind power somatic
prediction model for all wind farms in the wind power cluster and output the prediction
results of all WFs simultaneously. The model is realized by the combination of a multi-task
learning framework and bidirectional GRU network. The Bi_GRU model is the base learner,
and the correlation between tasks in the MMoE framework adjusts the learning parameters.

3. Technical Route

Based on multi-task learning technology, this paper designs an STWPP model for
WFs with different output spaces at the same time. The technology roadmap is shown in
Figure 5:
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The detailed steps are as follows:

(1) The WS, WD, temperature, humidity, pressure, and other attributes of different WFs
are collected to form a spatial feature matrix, which is used as the original input of
the model. Based on the above features, the principal component analysis algorithm
is used to reduce the dimensionality of each attribute, and the combination of the
original feature matrix and the space matrix after dimensionality reduction is taken as
the input.

(2) A multi-output model based on the MMoE framework is designed, in which Bi_GRU
is used as the base learner.

(3) The dataset is divided into the training set, verification set, and test set. The wind
power group prediction model is trained on the training set, the network parameters
are fine−tuned by the validation set, and the performance of the model is tested on
the test set.
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4. Experimental Analysis
4.1. Dataset and Network Parameters

The data from eight wind farms in Jilin, China, were used to conduct simulation
experiments. The data included historical power data of actual measurement of wind
farms and numerical weather forecast data, with a data resolution of 15min and a time
span from 1 January 2018 to 31 December 2018. The NWP includes six attributes of WS,
WD, temperature, humidity, pressure, and momentum flux. Where WS represents the
predicted wind speed of 100 m high, WD represents the predicted wind direction of 100 m
high, and temperature, humidity, pressure, and momentum flux represent the predicted
amount of temperature, humidity, pressure, and momentum flux in NWP, respectively.
The WD is normalized by the cosine trigonometric function. The installed capacity of the
single typhoon generator unit is 1.5 MW, the inlet WS is 3 m/s, and the hub height is 85 m.
The data from January to August are the training set, the data from September to October
are the verification set, and the data from November to December are the test set. The
input data are processed by a sliding window; the length of the time window is 16. The
experiments in this paper are completed in python3.8, and the deep learning framework is
the Tensorflow(CPU). The computer hardware parameters are as follows {CPU: Intel(R)
Core(TM) i5-7300HQ CPU @ 2.50 GHz 2.50 GHz; RAM: 16.0 GB}.

The network built in this paper contains eight outputs, which can realize the syn-
chronous output of eight WFs. The network structure parameters are shown in Table 1;
the network contains a total of eight tasks, that is, the network simultaneously outputs
the short-term power prediction results of eight WFs. In the multi-task learning layer, the
expert subnet parameters of the MMoE multi-task learning model are hyperparameters.
The network consists of four expert subnets with 32 neurons. Each expert subnet is used
to learn the specific relationship between input features and eight prediction tasks. The
subtask layer includes three layers of Bi_GRU layer, the number of neurons is 16 and
8, respectively, and the activation function is “Relu”, which is used to capture the long-
distance dependence of the sequence. Dropout layers are added between the three Bi_GRU
layers to force the random deactivation of neurons with a random deactivation ratio of 0.2,
which is used to prevent the overfitting of the network. The end of the Bi_GRU layer is
the fully connected layer, and the load prediction results are the output combined with
the linear activation function. During network training, the weights of the eight tasks in
the loss function are equal, the optimizer is Adam, the loss function is the mse loss, and
the number of iterations is 500. The early stop strategy is adopted in the training process,
that is, the training process is stopped if the loss does not decrease in the course of several
successive iterations.

Table 1. Network parameters.

Name of Parameter Parameter Values

Network
structure

Multi-task layer MMoE

Number of neurons 32

Number of experts 4

Number of tasks 8

Subtask layer

Bi_GRU Number of neurons 16

Dropout Ratio 0.2

Bi_GRU Number of neurons 32

Dropout Ratio 0.2

Bi_GRU Number of neurons 16

Dense Number of neurons 1
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Table 1. Cont.

Name of Parameter Parameter Values

Network
parameter

Activation function Relu

Last layer activation function Linear

Multi-task loss function weights Average

optimizer Adam

Number of iterations 5000

Loss function mse

The correlation coefficient of the power of each WF is calculated on the training set, and
the results are shown in Figure 6. Wind farms and their numbers are simply “f”+ “number”.
The correlation coefficient between the power of f4 and f2 is the largest, reaching 0.87; the
correlation coefficient between f3 and f7 is the smallest, reaching 0.56. The correlation
coefficient represents the degree of linear correlation between the two sequences, and the
greater the correlation coefficient, the more similar the two sequences are. Table 2 provides
the quantitative index of correlation level; there is a significant correlation between the
power of the eight WFs. The strong correlation of each wind farm power reflects the
coupling between each task, and joint training helps to improve the prediction accuracy.
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Table 2. The corresponding relationship between the correlation coefficient and correlation degree.

I Degree of Correlation

<0.3 Weak correlation
[0.3, 0.5) Low correlation
[0.5, 0.8) Significant correlation
[0.8, 1] Strong correlation

4.2. Error Evaluation Index

The normalized root mean square error (RMSE), normalized mean absolute error
(MAE), and normalized mean error percentage (MEP) were used to evaluate the perfor-
mance of the proposed wind power prediction model. The root mean square error is
calculated as shown in Formula (5):

RRMSE =

√
∑n

i=1 (yi − ŷi)
2

nCap2 (5)

where yi represents the real power at time i, ŷi represents the predicted power, n represents
the length of the test set, and Cap represents the actual start-up capacity of the WF. Since
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the actual start-up capacity of the WF is difficult to obtain, the installed capacity is used
instead in this paper.

The mean absolute error RMAE is calculated as shown in Formula (6):

RMAE =
1
n∑n

i=1
|yi − ŷi|×100%

Cap
(6)

The mean error percentage RMEP is as shown in Formula (7):

RMEP =
1
n

n

∑
i=1

|yi − ŷi|
yi

× 100% (7)

To maintain the same dimension and improve computing efficiency, the maximum-
minimum normalization method is adopted to normalize the input and output data. The
normalization principle is shown in Formula (8):

x′ =
x− xmin

xmax − xmin
(8)

where x′ represents the normalized eigenvector, and xmax and xmin represent the maximum
and minimum values, respectively. In the prediction stage, the prediction results are
restored to the original power interval according to the inverse normalization formula. The
inverse normalization principle is shown in Formula (9):

x = x′(xmax − xmin) + xmin (9)

4.3. Experimental Results

The NWP provided by each WF includes six attributes of wind speed, wind direction,
temperature, humidity, pressure, and momentum flux, and eight WFs have a total of
48 attributes. To reduce the dimensionality of the data, principal component analysis is used
to reduce the dimensionality of the data. The dimensionality reduction strategy is not to
reduce the dimensionality of 48 attributes at the same time but to reduce the dimensionality
of the attributes of each NWP, respectively, and then the data after dimensionality reduction
are merged.

Since a total of eight wind farms are included, each meteorological attribute in the data
contains eight features. The principal component analysis algorithm is used to extract the
features of the data, and the number of principal components is set to eight. The principal
component contribution rate is sorted by dimensionality reduction, and the sorting result
is shown in Figure 7:
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Figure 7. Principal component contribution of each attribute. (a) Temperature; (b) momentum flux;
(c) WS; (d) WD; (e) atmospheric pressure; (f) humidness.

A value of 95% is taken as the threshold of principal component retention, in which
temperature retains the first principal component, momentum flux retains the first two
principal components, WS retains the first two principal components, air pressure takes the
first principal component, and humidity takes the first principal component. Because the
principal component of WD is too divergent, it is considered that the principal component
analysis algorithm does not affect the wind direction, so the WD after dimensionality
reduction is not considered. The features after dimensionality reduction and the original
features are used as the input of the MMoE algorithm.

The prediction model proposed in this paper is named MMoE−PCA−Bi_GRU. The
predicted power curves of each wind farm are shown in Figure 8. To show clearly, the
predicted power curves of 1 November 2018–7 November 2018 are shown. Combined
with the analysis of Figure 8a–i, the wind power group prediction framework proposed in
this paper can well predict the wind power trend, and the prediction curve can follow the
actual power curve. By adding the power prediction results of all WFs, the cluster wind
power prediction results are obtained, as shown in Figure 8i. The peaks and troughs can be
well predicted.
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Figure 8. Prediction power curve. (a) Farm 1; (b) Farm 2; (c) Farm 3; (d) Farm; (e) Farm 5; (f) Farm 
6; (g) Farm 7; (h) Farm 8; (i) cluster. 

The statistical error indicators of eight wind farms and wind power clusters in No-
vember and December are shown in Table 3. Among them, the prediction accuracy of the 
wind farm on 5 November was low, but the prediction error in December significantly 
decreased. The 7 December wind farm had the highest forecast error, but the November 
forecast was more accurate than the December 1, 2, and 5 WFs. On average, the eight wind 
farms had an average RMSE of 0.1760 and an average MAE of 0.1738 in November and an 
average RMSE of 0.1367 and an average MAE of 0.1325 in December, all below 20% of the 
installed capacity. From the analysis of the wind power cluster composed of eight WFs, 
the predicted RMSE and MAE of the whole wind power cluster are lower than 15% of the 
installed capacity and 12% of the installed capacity, indicating that the MMoE-PCA-
Bi_GRU model is valid. The MEP indicator reflects the predicted error as a percentage of 
the actual power, the average error deviation in November is higher, reaching 20.32%, and 
the maximum MEP of a single WF is 27.71%. The average MEP in December reached 
18.65%, and the maximum MEP for a single WF is 23.32. 
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Figure 8. Prediction power curve. (a) Farm 1; (b) Farm 2; (c) Farm 3; (d) Farm; (e) Farm 5; (f) Farm 6;
(g) Farm 7; (h) Farm 8; (i) cluster.

The statistical error indicators of eight wind farms and wind power clusters in Novem-
ber and December are shown in Table 3. Among them, the prediction accuracy of the wind
farm on 5 November was low, but the prediction error in December significantly decreased.
The 7 December wind farm had the highest forecast error, but the November forecast was
more accurate than the December 1, 2, and 5 WFs. On average, the eight wind farms had an
average RMSE of 0.1760 and an average MAE of 0.1738 in November and an average RMSE
of 0.1367 and an average MAE of 0.1325 in December, all below 20% of the installed capacity.
From the analysis of the wind power cluster composed of eight WFs, the predicted RMSE
and MAE of the whole wind power cluster are lower than 15% of the installed capacity and
12% of the installed capacity, indicating that the MMoE-PCA-Bi_GRU model is valid. The
MEP indicator reflects the predicted error as a percentage of the actual power, the average
error deviation in November is higher, reaching 20.32%, and the maximum MEP of a single
WF is 27.71%. The average MEP in December reached 18.65%, and the maximum MEP for
a single WF is 23.32.

Table 3. Prediction indexes of MMoE−PCA−Bi_GRU model.

Farm/Cluster
RMSE MAE MEP(%)

November December November December November December

Farm 1 0.1769 0.1959 0.1404 0.1476 21.22 23.32
Farm 2 0.1763 0.1939 0.1361 0.1441 20.83 22.18
Farm 3 0.1575 0.1417 0.1165 0.1021 18.69 16.84
Farm 4 0.1872 0.1461 0.1399 0.1146 19.17 16.03
Farm 5 0.1970 0.1554 0.1553 0.1211 27.71 16.98
Farm 6 0.1595 0.1536 0.1274 0.1159 18.46 16.34
Farm 7 0.1739 0.2214 0.1338 0.1731 18.04 18.56
Farm 8 0.1793 0.1822 0.1445 0.1415 18.41 18.97

Average 0.1760 0.1738 0.1367 0.1325 20.32 18.65
Cluster 0.1394 0.1302 0.1114 0.1023 16.43 16.02

Take traditional Bi_GRU as the prediction model, and the parameters were set the
same as those of MMoE−PCA−Bi_GRU. Each WF established its prediction model, and
the prediction results are shown in Table 4. Among them, the MMoE−PCA−Bi_GRU
model is superior to the traditional Bi_GRU model for the predicted RMSE and MAE of
all wind farms. However, in some cases, the performance of the MMoE−PCA−Bi_GRU
model is not as good as the traditional Bi_GRU model, such as the RMSE of the MMoE-
PCA-Bi_GRU model in December of the No. 1 wind farm, but from the global performance,
the performance of the MMoE−PCA−Bi_GRU model is better. The single wind farm MEP
of the Bi_GRU model in November was 22.56%, the average MEP was 19.8%, and the
maximum MEP of the single WF in December was 29.38%, among which the maximum
MEP of the single WF in December was larger. For the whole wind power cluster, the MEP
of the Bi_GRU model on the test set is higher than that of the model proposed in this paper.
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Table 4. Prediction indexes of traditional Bi_GRU model.

Farm/Cluster
RMSE MAE MEP

November December November December November December

Farm 1 0.2077 0.1889 0.1655 0.1442 22.56 20.88
Farm 2 0.1818 0.1875 0.1384 0.1375 18.59 19.03
Farm 3 0.1549 0.1377 0.1238 0.1068 16.54 15.58
Farm 4 0.2008 0.1509 0.1542 0.1156 20.35 16.87
Farm 5 0.2184 0.1618 0.1690 0.1256 20.79 17.89
Farm 6 0.1672 0.1542 0.1308 0.1128 17.03 17.25
Farm 7 0.1927 0.2396 0.1497 0.1868 21.22 29.38
Farm 8 0.1837 0.1871 0.1461 0.1424 21.32 20.16

Average 0.1837 0.1760 0.1472 0.1340 19.80 19.63
Cluster 0.1547 0.1406 0.1220 0.1078 0.1673 0.1639

With RMSE as the evaluation index, the performance of the proposed model is com-
pared with other deep learning models, including the CNN−LSTM model, Seq2Seq model,
deep residual network (DRN), and Bi_GRU model. The matching results are shown in
Figure 9:
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When taking a single wind farm as the target, the prediction error of the model
proposed in this paper is higher for the No. 3 wind farm, but for other wind farms,
the model proposed in this paper is lower. The MMoE−PCA−Bi_GRU model has the
lowest average error and cluster error for eight WFs, which verifies the validity of the
proposed model.

5. Conclusions

A wind power group prediction model is proposed to directly output the STWPP
results of all WFs in the region, which improves the modeling efficiency. The conclusions
are as follows.

• The principal component analysis algorithm is used to extract features from meteo-
rological data of multiple wind farms, and the dimensionality of the data is reduced
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from 48 to 8 dimensions by screening the principal component components, which
reduces the complexity of the model.

• The STWPP of the wind power cluster is designed based on multi-task learning, and
the power prediction sequence of all wind farms in the output region is synchronized,
which simplifies the modeling complexity.

• The average RMSE of the MMoE−PCA−Bi_GRU model for eight wind farms is 0.1754;
compared with the model predicted by each wind farm separately, the prediction
precision has been significantly improved.

The model proposed in this paper is more suitable for small- and medium-sized wind
power clusters. When the wind power cluster covers a wider area and more target tasks
are predicted, each task is difficult to converge at the same time, and the model proposed
in this paper is difficult to apply. In future studies, large-scale graph computation and
distributed training algorithms will be introduced to improve the ability of the model for
spatio−temporal feature extraction, and it is suitable for large-scale wind power cluster
power prediction tasks.
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