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Abstract: Conventional fuel consumption prediction (FCP) models using neural networks usually
adopt driving parameters, such as speed and acceleration, as the training input, leading to a low pre-
diction accuracy and a poor correlation between fuel consumption and driving behavior. To address
this issue, the present study introduced jerk (an acceleration derivative) as an important variable in
the training input of four selected neural networks: long short-term memory (LSTM), recurrent neural
network (RNN), nonlinear auto-regressive model with exogenous inputs (NARX), and generalized
regression neural network (GRNN). Furthermore, the root-mean-square error (RMSE), relative error
(RE), and coefficient of determination (R2) were used to evaluate the prediction performance of each
model. The results from the comparison experiment show that the LSTM model outperforms the
other three models. Specifically, the four selected neural network models exhibited an improved
accuracy in fuel consumption prediction after the jerk was added as a new variable to the training
input. LSTM exhibited the greatest improvement under the high-speed expressway scenario, in
which the RMSE decreased by 14.3%, the RE decreased by 28.3%, and the R2 increased by 9.7%.

Keywords: eco-driving; fuel consumption forecast; neural networks; driving behavior; jerk

1. Introduction

The World Meteorological Organization (WMO) [1] reported that the concentrations
of primary greenhouse gases have continued to rise over the past two years, with the
global carbon dioxide concentration exceeding 410 ppm. Furthermore, with the rapid
development of the transportation industry, the greenhouse gas emissions from vehicles are
an essential factor causing air pollution. The resulting energy shortages and environmental
pollution problems are becoming increasingly severe. As a result, the eco-driving research
has focused on controlling vehicle speed and acceleration, to promote sustainable and
low-emission transportation, and reduce the impacts of energy consumption and exhaust
emissions on air pollution and climate change. Therefore, predicting fuel consumption,
considering vehicle driving parameters, holds significant importance.

Currently, several classic models are used to solve the problem of fuel consumption
predictions. Typical traditional models include the mobile source model [2], the computer
program to calculate emissions from road transport (COPERT) model [3], the emission factor
(EMFAC) model [4], the international vehicle emissions (IVE) model [5], the comprehensive
modal emissions model (CMEM) [6–8], the vehicle-specific power (VSP) model [9], and the
microscopic energy and emission model developed by Virginia Tech (VT-Micro) [10]. The
first three models mentioned above obtain emission factors via engine dynamometer testing.
However, as this emission factor is not relevant to the actual roads, it cannot accurately
represent real road emissions, resulting in considerable differences between the predicted
results and actual values. The IVE fuel consumption and emission model considers two
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real-time vehicle operating parameters: the vehicle power ratio VSP, and the engine load.
This model calculates fuel emissions based on the average driving speed and the time
proportions of the driving state in different modules, but engine load data are challenging
to collect. The CMEM fuel consumption emission model calculates exhaust emissions and
fuel consumption in real time, through the second-by-second driving mode, and real-time
engine operating condition data. However, obtaining actual data is difficult, due to the
model’s excessively detailed vehicle classification. Moreover, the model’s excessive input
parameters can lead to a low operational efficiency in practical applications. The VSP-based
and VT-Micro fuel consumption emission models require numerous coefficients that need to
be calibrated, with the VT-Micro model containing 32 calibration parameters. Consequently,
while researchers have conducted several studies on the fuel consumption emission model,
and achieved satisfactory results, the calibration of coefficients remains cumbersome.

With the rapid growth in artificial intelligence technology, many researchers are
committed to using traditional artificial neural networks to predict fuel consumption.
Rahimi-Ajdadi et al. [11] used a large number of experimental data from tractor laboratories
to train a neural network repeatedly, established a tractor fuel consumption model, and
highlighted the limitations of multiple regressions. Zhao et al. [12] extracted the microscopic
driving behavior data of taxi drivers, using a vehicle-mounted terminal acquisition system,
and established a taxi fuel consumption model, using the principal component analysis
(PCA) algorithm and back-propagation (BP) neural network, accurately predicting the
fuel consumption of taxis on expressways. Wu et al. [13] proposed a fuel consumption
prediction system using a BP neural network. The prediction results showed that the system
was effective. Jakov Topi’c et al. [14] proposed a neural network model based on vehicle
velocity, acceleration, and road slope time series inputs, and the test results proved that the
method is suitable for various applications, such as vehicle routing optimization, etc.

Although these studies have achieved good results, this neural network has higher in-
put feature requirements, requires a longer training time, and suffers from a lower accuracy
in its predictions, and an inferior generalization performance. To solve the defects of FCP
models based on traditional neural networks, four neural networks, LSTM, RNN, NARX,
and GRNN, were selected for this study. Among them, LSTM can capture time series
characteristics over a longer period, and overcome the problem of gradient disappearance.
Hence, this model is considered effective for long-term time series predictions [15–19], such
as pedestrian trajectory predictions [20], and traffic flow predictions [21]. The RNN circu-
lating neural network has a memory function, i.e., calculating the state at the current time
point depends on the calculation results at the previous time point. NARX with external
input is considered a suitable algorithm for modelling discrete nonlinear dynamic systems.
NARX and LSTM belong to the category of RNNs, and their prediction effects depend on
the actual scene. GRNN is an improved radial basis function network, established based on
mathematical statistics. The network model offers robust nonlinear mapping capabilities,
and a fast learning speed, and can be used to process unstable data. Zhang et al. [22]
proposed a new data-driven fuel consumption model that considers vehicular speed, ac-
celeration, and jerk. The authors reported a significant correlation between the jerk and
fuel consumption. Xu et al. [23] developed a generalized regression neural network that
implicitly established the relationship between the truck fuel consumption obtained from
the internet of vehicles, and the driving behaviors of the truck drivers. However, jerk was
not considered as the training input. The present study introduced jerk as an essential
training input for the experiments, and used the above-mentioned neural networks to
evaluate the impact of jerk on the fuel consumption prediction results.

This study’s main contributions are threefold. Firstly, four combinations, i.e., speed,
speed–acceleration, speed–acceleration–jerk, and rotating speed, are taken as the neural
network’s input variables for the fuel consumption prediction models, and the effects
of introducing jerk as an input variable on the model performance are evaluated. The
experiments demonstrate that the model obtained through adding the jerk variable offers
a higher accuracy in its predictions. Secondly, three different experimental scenarios, i.e.,
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a low-speed campus; a low- and medium-speed city; and an all-speed expressway with
low, medium, and high speeds, are selected, to compare and analyze the performance of
the various fuel consumption prediction models using a neural network, and to explore a
model with a higher prediction accuracy and robustness. The results show that the LSTM
model is suitable for different road conditions, with a greater robustness, and superior
accuracy. Lastly, the jerk can be used to classify driving behaviors in more detail, thereby
providing more instructive information for eco-driving and speed controller design in
smart cars.

2. Research Framework

The overall framework of this study is shown in Figure 1a, and involves the follow-
ing tasks:

Task 1: Establish a data acquisition system, and obtain the raw data (e.g., speed,
rotating speed, and fuel consumption) for three road scenarios.

Task 2: Establish normalized datasets (speed, acceleration, jerk, rotating speed, and
fuel consumption) using preprocessing data tools, such as derivation and normalization.

Task 3: Classify driving behaviors based on the jerk, and analyze the effects of various
driving behaviors on the fuel consumption.

Task 4: Select four typical neural network models (LSTM, RNN, NARX, and GRNN),
and four parameter combinations (speed, speed–acceleration, speed–acceleration–jerk, and
rotating speed), which are shown in Figure 1b.

Task 5: Train and verify the fuel consumption prediction models in turn. Each neural
network model input contains test training sets under three driving scenarios: the low-
speed campus scenario; low– and medium–speed city scenario; and expressway driving
scenario with low, medium, and high speeds.

Task 6: Evaluate the jerk’s effect on the accuracy of the fuel consumption prediction
models, using RMSE, RE, and R2.

Figure 1. Cont.
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Figure 1. Research framework: (a) the task flow; (b) the evaluated combinations of input parameters,
theoretical models, and road scenarios.

3. Data Description and Preprocessing
3.1. Data Description

The experimental road conditions used in this study included low speeds on university
campuses (0–40 km/h); low and medium speeds on urban roads (0–70 km/h); and all
speeds on expressways with low, medium, and high speeds (0–120 km/h). On-board
diagnostics (OBDs) and a global positioning system (GPS) were used to collect data under
every working condition, and the data were accurate to two decimal places. The dataset
included 13 vehicle driving parameters: latitude and longitude, speed, acceleration, jerk,
and instantaneous fuel consumption. The dataset samples are shown in Table 1. The data
in the third and sixth columns were obtained via GPS, and the data in the seventh and
tenth columns were obtained via OBDs. The data acquisition platform and GPS tracks are
shown in Figures 2a and 2b, respectively.

Table 1. Sample datasets.

Date Time Lon 1 (◦N) Lat 2 (◦E) Alt 3 (km) Speed (km/h) RS 4 (r/min) Ins Fuel 5 (L/h) Cum Fuel 6 (L) Mileage (km)

16 January 2021 18:52:02 3413.911 10,856.648 377.8952 16.76367 1119 0.92 224.90558 1,677,555

16 January 2021 18:52:03 3413.912 10,856.644 379.1028 15.85518 902 0.88 224.90590 1,677,561

16 January 2021 18:52:04 3413.912 10,856.641 379.4774 14.73993 859 0.94 224.90612 1,677,565

16 January 2021 18:52:05 3413.912 10,856.639 379.5281 12.65565 864 0.96 224.90636 1,677,568

16 January 2021 18:52:06 3413.912 10,856.637 379.4510 10.48305 875 0.93 224.90668 1,677,572

16 January 2021 18:52:07 3413.912 10,856.635 379.2913 7.57523 840 0.94 224.90692 1,677,574

16 January 2021 18:52:08 3413.912 10,856.633 379.1885 6.20904 749 0.93 224.90724 1,677,577
1 Lon = longitude (◦N), 2 Lat = latitude (◦E), 3 Alt = altitude (km), 4 RS = rotating speed (r/min), 5 Ins
Fuel = instantaneous fuel consumption (L/h), 6 Cum fuel = cumulative fuel consumption (L).

Figure 2. Cont.
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Figure 2. The data acquisition platform and global positioning system(GPS) tracks: (a) the data
acquisition platform: a Honda car and equipment (global positioning system(GPS) and On-board
diagnostics(OBDs)); (b) the campus, city, and expressway GPS tracks.

3.2. Data Analysis

The dynamic changes in driving parameters under the low, medium, and high road
scenarios are shown in Figure 3a–c, and an analysis of the statistical characteristics of the
driving parameters is shown in Table 2. The characterization values of acceleration and
jerk are derived through subtracting the speed and acceleration values before and after a
one-second interval.

Ahn et al. [24] fitted a linear regression curve, and concluded that the higher the speed,
the smaller the acceleration. This is because a vehicle engine must do more work to maintain
the same acceleration at higher speeds, to overcome the increased air resistance. Therefore,
the vehicle’s ability to accelerate or decelerate naturally decreases at higher speeds. The
distribution maps of acceleration and jerk with speed are provided, to verify the rationality
of the dataset in this study, as shown in Figure 4. As noted, both the acceleration and
jerk decreased gradually with an increase in speed, so the dataset is reasonable, at least to
some extent.

3.3. Data Preprocessing

Due to the different dimensionalities and dimensionality units of the parameters
investigated, as well as the relatively larger variance in the speed, compared to those
of other features in several orders of magnitude, speed occupies a dominant position in
the learning algorithm, leading to an excessive speed weight in algorithm learning, and
affecting the data analysis results. To address this issue, data standardization was used
in this study for preprocessing, to eliminate the dimensionality impact between the data
indicators, and ensure their comparability.

Table 2. Statistical characteristics of the main driving parameters under the different road scenarios.

Input
Campus City Expressway

V 1 A 2 J 3 V 1 A 2 J 3 V 1 A 2 J 3

Average 15.48 0.04 0.67 30.76 1.52 × 10−4 −0.01 53.26 0.01 0.01

Max 33.28 3.41 4.49 82.72 2.83 6.44 119.49 4.94 8.14

Min 0.01 −2.22 −4.29 0 −3.10 −5.31 0 −1.82 −2.99

Variance 49.97 0.34 0.59 311.60 0.20 0.24 1.80 × 103 0.12 0.17
1 V = speed (km/h), 2 A = acceleration (km/h2), 3 J = jerk (km/h3).
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Figure 3. Dynamic changes in the main parameters under the various road scenarios: (a) the main
data for the low-speed campus scenario, (b) the main data for the low- and medium-speed urban
scenario, (c) the all-speed data for the low-, medium-, and high-speed expressway scenario.
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Figure 4. Relationship of the acceleration and jerk with speed.

Min–max normalization, also known as deviation standardization, was used to linearly
transform the raw data, achieving values within [−1, 1]. The conversion function is shown
in Equation (1).

f (x) = 2(x−Min)/(Max−Min)− 1 (1)

where Min and Max are the minimum and maximum values of the sample data, respectively.
Some data samples, before and after normalization, are shown in Table 3. As noted,

after the raw data were subjected to data standardization, all parameters remained within
[−1, 1]. Here, all indicators have the same order of magnitude, and are suitable for a
comprehensive comparative evaluation. As the variances in the new data are normalized,
the dimensionalities of each dimension are equivalent. Each dimension conforms to a
normal distribution, with a mean of 0 and a variance of 1. This distribution helps prevent
the speed range from being too large, and the training time from being too long, due to the
initialization falling in a specific direction, and thereby avoiding an enormous impact on
the fuel consumption prediction caused by the selection of different dimensionalities. After
normalization, the identification of the optimal solution was expedited, and the accuracy
of the models was improved.

Table 3. Data before and after normalization.

Raw Data Normalized Data

Speed (km/h) Acceleration (km/h2) Jerk (km/h3) Fuel (L) Speed Acceleration Jerk Fuel

15.9000 −0.1000 0.5000 0.8800 0.1338 0.2537 0.2963 0.0148
14.7000 −0.2000 −0.3000 0.9400 0.1237 0.2388 0.2222 0.0192
12.7000 −0.6000 −0.2000 0.9600 0.1069 0.1791 0.2315 0.0207
10.5000 −0.2000 0.2000 0.9300 0.0884 0.2388 0.2685 0.0185
7.6000 −0.7000 −0.1000 0.9400 0.0640 0.1642 0.2407 0.0192

4. Classification of Driving Behaviors Based on Jerk and Its Effects on
Fuel Consumption
4.1. Introduction of Jerk

According to Newton’s second law and conservation of energy, the vehicle jerk is
the rate of change of the resultant force exerted on the vehicle, and the vehicle’s power
ultimately comes from fuel combustion work, so jerk is related to energy consumption.

In physics, jerk refers to the speed at which the acceleration of an object changes with
time, and is usually represented by the symbol j, with units in m/s3. As a vector, the jerk
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can be expressed as the first derivative of acceleration, the second derivative of speed, or
the third derivative of displacement, as Equation (2).

j(t) =
da(t)

dt
=

d2v(t)
dt2 =

d3r(t)
dt3 (2)

where a is acceleration, v is speed, r is displacement, and t is time. As noted, jerk represents
the abrupt movement of vehicles. The jerk profile shows changes in the acceleration and
deceleration rates, unlike the acceleration profile, which shows an increase or decrease in
speed. The jerk profile indicates the driver’s abrupt changes during the driving operation.

4.2. Driving Behavior Classification Based on Jerk

Equation (2) shows that the jerk, as the second derivative of speed, has a strong
characterization effect on the fluctuation degree of the speed–time curve. In addition, the
fluctuation degree of the speed–time curve significantly affects fuel consumption. Figure 5a
classifies the jerk into nine types (a to i). Considering the speed–time curve of an expressway
as an example, Figure 5b presents various jerk types in the speed–time curve, with different
line types, according to the classifications outlined in Figure 5a.

Figure 5. Relationship of acceleration and jerk with speed. Classification of jerk: (a) schematic
diagram of nine jerk types, and (b) expressway speed curves marked with different types of jerk.
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4.3. Effect of Jerk on Fuel Consumption

The occurrence frequency of various types of jerk, and the corresponding fuel consump-
tion in the expressway scenario, were counted, and a histogram was plotted. Figure 6a–c
show the effect of the jerk on the fuel consumption. As noted, the occurrence frequencies of
different jerk types were different, and the corresponding fuel consumption of each type
was also different. Thus, the jerk not only reflects driving behavior, but is also an essential
factor affecting fuel consumption. Hence, it is of great significance to introduce jerk into
neural networks as one of the inputs.

Figure 6. Relationship of acceleration and jerk with speed. Effect of the jerk type on fuel consumption:
(a) frequency, (b) fuel consumption, and (c) fuel consumption per frequency.

The speed, acceleration, and jerk are the main manifestations of driving behavior
closely associated with fuel consumption, and the acceleration is the speed’s first derivative,
and the jerk is the acceleration’s derivative. Therefore, these three variables depend on
each other, and using any one of them will impact the prediction results. The following
sections describe, in detail, the effects of different combinations on the prediction results.

5. Experimental Modelling
5.1. Modelling

The input and output variables of the neural network models are described in Table 4.
This study selected four neural network models: LSTM, RNN, NARX, and GRNN. This
experiment sought to study the effects on fuel consumption prediction under different
neural network models, after introducing the jerk. Therefore, parameters such as the speed,
acceleration, jerk, and rotating speed were selected for the experiment, and combined as the
model inputs, and the fuel consumption was set as the output parameter. The parameter
setting of each neural network model is provided in Table 5.

Table 4. Description of input and output variables.

Variable Variable Description

Input

v(t) Vehicle speed
a(t) Vehicle acceleration speed
j(t) Vehicle jerk speed
y(t) Fuel consumption at time t
r(t) Rotating speed

Output ŷ(t + 1) Fuel consumption at the next time step
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Table 5. Parameter setting of each neural network model.

Neural Network Input Network Layer Parameter Setting Output

LSTM
Speed,

acceleration,
jerk,

rotating speed

Hidden neurons 60 × 180 × 60

Fuel consumption

Dropout layers 0.2 × 0.3 × 0.2

RNN Hidden neurons 10

NARX
Hidden neurons 10

Delays d 2

GRNN Hidden neurons Number of samples

5.2. Model Calibration and Verification

Four input combinations were selected (speed, speed–acceleration, speed–acceleration–
jerk, and rotating speed) to determine the parameters of the best input combination. Under
the three road scenarios, the fuel consumption prediction performance of each group of the
four neural network models, LSTM, RNN, NARX, and GRNN, was quantitatively analyzed.
Therefore, it was necessary to carry out 4 × 4 × 3 = 48 groups of experiments. In each
experimental group, 70% of the datasets were used for training, 15% for verifying the
accuracy of the models, and 15% for testing. The calibration and verification of each model
under the input condition combination of speed–acceleration–jerk are shown in Figure 7a–d.

Figure 7. Cont.
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Figure 7. The model calibration and verification of each neural network model: (a) LSTM, (b) RNN,
(c) NARX, (d) GRNN.

6. Analysis of Experimental Results
6.1. Evaluation Indices

Three indices were selected to evaluate the fuel consumption prediction results, as
Equations (3)–(5).

RMSE =

√
1
N ∑N

t=1
(
yrealt − ypret

)2 (3)

RE =
1
N ∑N

t=1
| yrealt−ypret |

yrealt
(4)

R2 = 1− ∑N
t=1
(
yrealt − ypret

)2

∑N
t=1
(
yrealt − y

)2 (5)

where N is the sample size, ypret
is the predicted value, yrealt is the actual value, and y is

the average value. When the RMSE and RE are small, and the R2 is closer to 1, the data
fitting is better, which indicates that the independent variables offer a higher degree of
explanation for the dependent variables.

6.2. Experimental Analysis of Each Neural Network Model under Different Input Conditions

According to the analysis in Section 4.2, the jerk should be introduced into the input
sequence of the neural network models as a factor. Figure 8a–d graphically show the
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absolute error diagrams of different input combinations (speed, speed–acceleration, speed–
acceleration–jerk) for each neural network under three working conditions (campus, urban
road, and expressway). As noted, when the speed, acceleration, and jerk are simultaneously
used as the input characteristic variables, the prediction errors of each neural network are
the smallest.

To further analyze the performance of different input variables for the four fuel
consumption prediction models using a neural network under different road scenarios,
the evaluation indices in Section 6.1 were calculated, as shown in Table 6. As noted, the
prediction performance of each fuel consumption prediction model under different road
scenarios gradually improved when speed, speed–acceleration, and speed–acceleration–
jerk were selected as the training input combinations. The bold data in the Table 6 show
the data results of the best performing model.

Table 6. The prediction performance of different models under three road scenarios.

Parameter
Combination

Model

Driving Scenario

Campus City Expressway

RMSE RE R2 RMSE RE R2 RMSE RE R2

Rotating speed

LSTM 0.030 0.033 0.998 0.029 0.018 0.998 0.090 0.067 0.994
RNN 0.485 0.219 0.796 0.748 0.299 0.822 1.359 0.548 0.779

NARX 0.485 0.229 0.795 1.704 0.535 0.773 1.670 0.624 0.665
GRNN 0.521 0.247 0.765 0.884 0.425 0.820 1.679 0.613 0.740

Speed–
acceleration–

jerk

LSTM 0.033 0.017 0.998 0.026 0.014 0.998 0.048 0.033 0.996
RNN 0.466 0.200 0.811 1.271 0.374 0.610 1.242 0.385 0.842

NARX 0.377 0.153 0.875 1.510 0.647 0.451 1.607 0.489 0.736
GRNN 0.545 0.234 0.743 1.528 0.506 0.463 1.543 0.483 0.781

Speed–
acceleration

LSTM 0.040 0.024 0.997 0.044 0.044 0.991 0.056 0.046 0.991
RNN 0.512 0.225 0.771 1.448 0.457 0.517 1.450 0.450 0.806

NARX 0.574 0.267 0.712 1.688 0.686 0.318 1.840 0.640 0.688
GRNN 0.624 0.330 0.663 1.581 0.528 0.424 1.709 0.520 0.731

Speed

LSTM 0.054 0.047 0.995 0.055 0.065 0.988 0.065 0.051 0.988
RNN 0.732 0.345 0.674 1.915 0.494 0.479 2.070 0.764 0.664

NARX 0.753 0.301 0.576 1.827 0.746 0.307 1.906 0.713 0.609
GRNN 0.698 0.423 0.574 1.724 0.689 0.405 1.928 0.638 0.694

Figure 8. Cont.
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Figure 8. Absolute prediction error diagrams of each neural network model: (a) LSTM, (b) RNN,
(c) NARX, (d) GRNN.

The prediction performance improvements in the four neural network models after
considering the jerk are shown in Table 7 as percentages. As noted, for a low speed, medium
speed, and high speed, each neural network offered the best fuel consumption prediction
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effects with the speed–acceleration–jerk as the combination input. The bold data in the
Table 7 indicate the maximum and minimum values of the corresponding indicators. Here,
the prediction results of each model improved after introducing jerk as an input, with the
RMSE decreasing by up to 40.9% (LSTM, urban scenario), the RE decreasing by up to 68.2%
(LSTM, urban scenario), and the R2 increasing by up to 41.8% (NARX, urban scenario).

Table 7. Analysis of the model prediction performance improvements after considering jerk.

Driving Scenario

Campus City Expressway

RMSE RE R2 RMSE RE R2 RMSE RE R2

LSTM −17.5% −29.2% +0.1% −40.9% −68.2% +0.7% −14.3% −28.3% +9.7%
RNN −8.9% −11.0% +5.2% −12.2% −18.0% +18.0% −14.3% −14.4% +4.5%

NARX −34.3% −43.0% +22.9% −10.5% −5.7% +41.8% −12.7% −23.6% +7.0%
GRNN −12.7% −29.0% +13.3% −3.4% −4.2% +9.2% −9.7% −7.1% +6.8%

Specifically, under the high-speed expressway scenario, LSTM achieved the most
remarkable improvement, with the RMSE decreasing by 14.3%, the RE decreasing by 28.3%,
and the R2 increasing by 9.7%. Under the low-speed campus scenario, NARX achieved the
most remarkable improvement, with the RMSE decreasing by 34.3%, the RE decreasing by
43.0%, and the R2 increasing by 22.9%. Under the medium-speed urban scenario, LSTM
achieved the greatest improvement in the RMSE and RE, with the RMSE decreasing by
40.9%, and the RE decreasing by 68.2%. NARX achieved the greatest improvement in the
R2, with an increase of 41.8%.

Most of the large relative errors in prediction occurred in the following two cases:
(1) when the vehicle came to a stop, the acceleration and the fuel consumption were not 0,
and (2) a sudden acceleration or deceleration led to overly large relative prediction errors.
The fuel consumption predictions of various neural networks could be properly trained,
and the relative errors in fuel consumption prediction were also reduced when the jerk was
introduced.

6.3. Comparison of FCP Models Using Neural Network

According to the above analysis, the prediction performance of each fuel consumption
prediction model under different road scenarios gradually improved when the speed,
speed–acceleration, and speed–acceleration–jerk were selected as input combinations. The
effect of the jerk on the improvement of the fuel consumption prediction performance
was deeply analyzed. This section reports a further quantitative analysis of the prediction
results among the four neural network models. Among the LSTM, RNN, NARX, and GRNN
neural network models, the prediction performance of the LSTM model outperformed
the other three models under different input combinations (rotating speed, speed, speed–
acceleration, speed–acceleration–jerk) and driving scenarios (low-speed campus scenario,
medium-speed urban scenario, and high-speed expressway scenario). The RMSE and RE
values of the LSTM model were the smallest (less than 0.1).

The RMSE values of the other three models were 11 to 17 times the value of LSTM in the
low-speed campus scenario, 26 to 59 times the value of LSTM in the medium-speed urban
scenario, and 15 to 33 times the value of LSTM in the high-speed expressway scenario. The
RE of the other three models was 6 to 14 times the LSTM value in the low-speed campus
scenario, 8 to 46 times the LSTM value in the medium-speed urban scenario, and 9 to
15 times the LSTM value in the high-speed expressway scenario. The R2 of LSTM was the
largest, reaching about 0.99, while the values of the other three models were between 0.3
and 0.8. Notably, the rotating speed and fuel consumption were highly correlated, but
the rotating speed was not always observable. Thus, the rotating speed was only used
for performance comparisons in this study. Each performance index of the LSTM-based
FCP model with the combination of speed–acceleration–jerk as the training input was
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equivalent to, or better than, the results when the rotating speed was the training input
(Table 6).

Figure 9 graphically shows a comparison of the absolute prediction errors among the
different models, considering jerk, for the expressway condition. As noted, all four models
offered an excellent performance in predicting fuel consumption, but the LSTM neural
network showed the best performance in all three evaluation indices.

Figure 9. Comparison of the prediction results among the different models, considering jerk, under
the expressway condition.

7. Conclusions

This study involved the collection of datasets under three road scenarios to facilitate
experimental analysis, with modelling of the long-term dependence characteristics of time
series data via the selection of suitable neural network parameters. Furthermore, the effects
of four combinations of input variables, under three road scenarios and four FCP models,
were compared, to determine the accuracy of their fuel consumption prediction. Based on
this study, the following conclusions can be drawn.

1. Among the LSTM, RNN, NARX, and GRNN neural network models, the prediction
performance of the LSTM model was best under the different input combinations (rotating
speed, speed, speed–acceleration, speed–acceleration–jerk) and different driving scenarios
(low-speed campus scenario, medium-speed urban scenario, and high-speed expressway
scenario). The RMSE value and RE value of the LSTM model were the smallest (less than
0.1). The RMSE values of the other three models were 11 to 17 times the RMSE of LSTM in
the low-speed campus scenario, 26 to 59 times that of LSTM in the medium-speed urban
scenario, and 15 to 33 times that of LSTM in the high-speed expressway scenario. The
RE values of the other three models were 6 to 14 times the LSTM value in the low-speed
campus scenario, 8 to 46 times the LSTM in the medium-speed urban scenario, and 9 to
15 times the LSTM in the high-speed expressway scenario. The R2 of LSTM was the largest,
reaching about 0.99, while the values of the other three models were between 0.3 and 0.8.

2. After including the jerk as a new variable in the training input, all the neural
network models improved in their fuel consumption accuracy. Notably, under the high-
speed expressway scenario, LSTM achieved the most remarkable improvements, in which
the RMSE decreased by 14.3%, the RE decreased by 28.3%, and the R2 increased by 9.7%.
Under the low-speed campus scenario, NARX achieved the most remarkable improvement,
in which the RMSE decreased by 34.3%, the RE decreased by 43.0%, and the R2 increased by
22.9%. Under the medium-speed urban scenario, LSTM achieved the greatest improvement
in the RMSE and RE, with the RMSE decreasing by 40.9%, and the RE decreasing by
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68.2%. Additionally, NARX achieved the greatest improvement in the R2, with an increase
of 41.8%.
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