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Abstract: Recently, complicated spatial search algorithms have emerged as spatial-information-based
applications, such as location-based services (LBS), and have become very diverse and frequent.
The aggregate nearest neighbor (ANN) search is an extension of the existing nearest neighbor (NN)
search; it finds the object p∗ that minimizes G{d(p∗, qi), qi ∈ Q} from a set Q of M (≥1) query objects,
where G is an aggregate function and d() is the distance between two objects. The flexible aggregate
nearest neighbor (FANN) search is an extension of the ANN search by introducing flexibility factor
φ (0 < φ ≤ 1); it finds the object p∗ that minimizes G{d(p∗, qi), qi ∈ Qφ} from Qφ, a subset of Q
with |Qφ| = φ|Q|. This paper proposes an efficient ε-approximate k-FANN (k ≥ 1) search algorithm
for an arbitrary approximation ratio ε (≥1) in road networks. In general, ε-approximate algorithms
are expected to give an improved search performance at the cost of allowing an error ratio of up to
the given ε. Since the optimal value of ε varies greatly depending on applications and cases, the
approximate algorithm for an arbitrary ε is essential. We prove that the error ratios of the approximate
FANN objects returned by our algorithm do not exceed the given ε. To the best of our knowledge,
our algorithm is the first ε-approximate k-FANN search algorithm in road networks for an arbitrary ε.
Through a series of experiments using various real-world road network datasets, we demonstrated
that our approximate algorithm always outperformed the previous state-of-the-art exact algorithm
and that the error ratios of the approximate FANN objects were significantly lower than the given
ε value.

Keywords: flexible aggregate nearest neighbor (FANN) search; ε-approximate search; road
network; location-based service (LBS)

1. Introduction

Many spatial applications, such as location-based services (LBS), carry out various
searches based on the locations of the objects. For instance, the nearest neighbor (NN)
search finds the object p∗(∈P) nearest to a given query object q in a set P of target objects
(e.g., gas stations, restaurants, banks, and hospitals) [1,2]. Recently, since the number of
mobile devices has dramatically increased and their applications have become diverse
and frequent, more complicated spatial search algorithms have emerged than before.
The aggregate nearest neighbor (ANN) search [3–6] is an extension of the NN search by
introducing a set Q of M (≥1) query objects rather than a single query object q. The ANN
search finds the object p∗ that minimizes the aggregate (e.g., max, sum) of the distances
between p∗ and all query objects qi. The ANN search with M = 1 is equivalent to the NN
search. Examples of the ANN search applications are as follows [7]:

• When holding a meeting, we choose a location so that the distance from the farthest
(max) participant is minimized to quickly convene all participants.
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• When constructing a building such as a hospital or a mart, to maximize the profit from
the customers, we choose a location of the new building to minimize the total (sum)
distances from all potential customers living in various locations.

The flexible aggregate nearest neighbor (FANN) search [7–12] is an extension of the
ANN search by introducing flexibility factor φ (0 < φ ≤ 1). The FANN search with φ = 1
is equivalent to the ANN search. In the above examples of the ANN search applications,
if it is possible to host the meeting only with φM participants, or if it is more effective to
target only φM customers instead of all the potential customers, it is more useful to find a
solution for Qφ, a subset of Q with |Qφ| = φ|Q|. The FANN search finds the best subset
Qφ out of all possible query subsets.

This paper proposes an efficient ε-approximate k-FANN search algorithm for an
arbitrary approximation ratio ε (≥1) in road networks (k ≥ 1), where k is the number
of FANN objects, i.e., the k-FANN algorithm returns k optimal FANN objects. Usually,
FANN implies 1-FANN with k = 1; however, in this paper, k-FANN is simply denoted
as FANN when there is no confusion. In general, ε-approximate algorithms are expected
to improve search performance at the cost of allowing an error ratio of up to the given
ε [6,8,10,11]. Since the optimal value of ε varies greatly depending on applications and
cases, the approximate algorithm for an arbitrary ε is essential. In this paper, we prove that
the error ratios of the approximate FANN objects returned by our algorithm do not exceed
the given ε. To the best of our knowledge, our algorithm is the first ε-approximate k-FANN
search algorithm for road networks for an arbitrary ε. Through a series of experiments
using various real-world road network datasets, we demonstrated that the performance of
our algorithm improved by up to 30.3% over FANN-PHL [12], which is the state-of-the-art
exact k-FANN algorithm, for ε = 5.0, and the maximum error ratio of the approximate
FANN objects was 1.147, which is very close to the optimal value of ε = 1.0. That is, our
algorithm was able to quickly find very-near-optimal results even with a high value of ε.

This paper is organized as follows. In Section 2, the existing ANN and FANN algo-
rithms are briefly introduced. In Section 3, our ε-approximate k-FANN search algorithm
is explained in detail. In Section 4, the performance and accuracy of our algorithm are
evaluated through various experiments. Finally, we conclude this paper in Section 5.

2. Related Work

In this section, we briefly introduce the existing ANN and FANN search algorithms
and discuss their pros and cons. The ANN search finds the object p∗ that minimizes
G{d(p∗, qi), qi ∈ Q} from a set Q of M (≥1) query objects, where G is an aggregate function
such as max and sum, and d() is a distance function between two objects [5,6]. The FANN
search is formally defined as the problem of finding p∗ and Q∗φ as follows [7,11,12]:

p.gφ = min
Qφ⊆Q

{
G{d(p, qi), qi ∈ Qφ}

}
, (1)

p∗, Q∗φ = argmin
p∈P,Qφ⊆Q

{p.gφ}. (2)

The existing algorithms were studied separately in the Euclidean space and in road
networks. In the Euclidean space, the distance between two objects can be calculated very
quickly, and the nearest object can also be found quickly using an index structure such
as the R-tree [13]. In contrast, road networks are represented as graphs, and the distance
between two objects in a road network is defined as their shortest-path distance [2,4,11].
Calculating the shortest-path distance between two objects has a very high complexity of
O(E + V log V), where E and V are the number of edges and vertices in the entire graph,
respectively. In general, the distance between two objects in a road network is very different
from their Euclidean distance. Therefore, the nearest neighbor search in road networks has
higher complexity than in the Euclidean space, and the ANN and FANN searches in road
networks also have higher complexity than in the Euclidean space.
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Papadias et al. [3,14] proposed three algorithms using the R-tree and triangle inequality
for the ANN search in the Euclidean space: the multiple query method (MQM), single-point
method (SPM), and minimum bounding method (MBM). The MBM forms the minimum
bounding rectangle (MBR) containing all query objects in Q and then finds the ANN object
using the distance equation defined between the MBR and an object. Li et al. [6] improved
MBM for a better performance of the ANN search with G = max by replacing the MBR
with the convex hull, minimum enclosing ball (MEB), and Voronoi cell for Q. They also
proposed a

√
2-approximate algorithm for high-dimensional spaces.

Yiu et al. [4] proposed three algorithms for the ANN search in road networks: the
incremental Euclidean restriction (IER), threshold algorithm (TA), and concurrent expansion
(CE). These algorithms use the indices based on the Euclidean coordinates instead of the
actual shortest-path distances between objects. Ioup et al. [5] proposed an ANN search
algorithm in road networks using the M-tree [15]. The M-tree index is constructed based
on the actual distances between objects, and thus the ANN search using the M-tree is more
efficient than using the R-tree. However, their algorithm only returns approximate search
results, and the error range of the search results is not known.

Li et al. [8,10] handled the FANN search problem in the Euclidean space and proposed
search algorithms using the R-tree and list data structure. In the algorithm using the
R-tree, an R-tree node is pruned based on its FANN distance estimated using the φM query
objects closest to the MBR of the node. The subtree rooted by the pruned node is not
further accessed, i.e., discarded from the search candidates. In the list-based algorithm,
the final FANN object p∗ is obtained by constructing gradually a nearest-object list for each
query object qi and finding the first object commonly contained in all the lists. In addition,
Li et al. [8,10] proposed a 3-approximate algorithm and a (1+ 2

√
2)-approximate algorithm

for G = max. Li et al. [10] added a 2-approximate algorithm in two-dimensional spaces
and a (1 + ε)-approximate algorithm in low-dimensional spaces for an arbitrary ε for both
G = sum and max. Houle et al. [9] proposed an approximate FANN algorithm in the
Euclidean space for G = sum and max and showed through experiments that the accuracy
and performance improved over the approximate algorithms by Li et al. [8].

The FANN search problem in road networks was first dealt with by Yao et al. [11].
They proposed three algorithms, namely, the Dijkstra-based algorithm, the R-List algorithm,
and the IER-kNN algorithm. Through experiments, it was shown that IER-kNN always
outperformed the others. In addition, they presented a 3-approximate algorithm that does
not use an index for G = sum. However, this algorithm showed lower search performance
than IER-kNN using an index. Chen et al. [16] defined a new FANN distance that considers
not only the aggregate of the distances from query objects in Qφ but also keyword similarity
in road networks. They proposed search algorithms based on the distance by extending the
Dijkstra-based algorithm, the R-List algorithm, and the IER-kNN algorithm proposed by
Yao et al. [11].

Chung and Loh [7] proposed the IER-LMDS algorithm, which is an efficient α-prob-
abilistic FANN algorithm that uses landmark multidimensional scaling (LMDS) [17,18].
LMDS maps the objects in a road network to those in a Euclidean space while maintaining
their relative distances as much as possible. Thus, we can perform the FANN search on
the mapped objects efficiently by using, for instance, the R-tree. However, IER-LMDS only
returns the search results within the given search probability α (0 < α < 1), and there
may exist false drops. The FANN object is missed in case its distance change from query
objects after LMDS mapping is in the probability range of (1− α), i.e., the distance change
is larger or smaller than the others. Chung et al. [12] proposed the FANN-PHL algorithm,
which is an exact k-FANN algorithm using the M-tree. The previous IER-kNN incurs many
unnecessary accesses to R-tree nodes and thus many unnecessary calculations of actual
shortest-path distances of the objects in the nodes. It is because IER-kNN uses the R-tree
index constructed based on the Euclidean distances between objects. On the contrary,
FANN-PHL improved the search performance significantly by greatly reducing accesses to
unnecessary index nodes using the M-tree index constructed based on the actual distances
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between objects in a road network. The ε-approximate FANN search algorithm for an
arbitrary ε proposed in this study is an extension of FANN-PHL. In Section 4, we show that
our algorithm always outperforms FANN-PHL while allowing only small error ratios.

3. Efficient ε-Approximate k-FANN Search Algorithm for Arbitrary ε

In this section, we explain our ε-approximate k-FANN search algorithm for an arbitrary
approximation ratio ε (≥1) in road networks (k ≥ 1). The ε-approximate object p∗ε should
satisfy the following equation for the exact FANN object p∗:

p∗ε .gφ

p∗.gφ
≤ ε. (3)

We use the pruned highway labeling (PHL) algorithm [19,20] to find the shortest-
path distance D between two objects since it is known to be the fastest for finding D
until recently [2,11]. Although our algorithm uses the PHL algorithm, ANN and FANN
search problems are difficult to solve by simply employing the PHL algorithm. A simple
method for ANN search using only the PHL algorithm is to find an object p∗ with the
minimal aggregate of the distances to all query objects qi (∈Q) among all data objects p (∈P).
The complexity of this method is O(|P||Q|C), where C is the cost of the PHL algorithm.
That is high complexity since |P| as well as C are usually very high. A simple method for
FANN search using an ANN algorithm is to perform ANN search for every possible Qφ.
However, for the default values M = 256 and φ = 0.5 of our experiments in Section 4,
we should perform the ANN search as much as 5.769 × 1075 times. The performance
of the FANN search algorithms in road networks is highly dependent on the cost of the
shortest-path distance calculation between two objects [11,12]. That is also demonstrated
through experiments in Section 4. Therefore, to improve the performance of the FANN
algorithms in road networks, the algorithms should be designed to minimize the number
of shortest-path distance calculations. Our algorithm may use any other shortest-path
distance algorithm with better performance than the PHL algorithm.

Our ε-approximate FANN search algorithm is an extension of FANN-PHL, an exact
FANN search algorithm by Chung et al. [12]. Thus, we denote our algorithm as AFANN-
PHL hereafter. Table 1 summarizes the notations in this paper. Our algorithm uses the
M-tree [15,21] as the index structure as FANN-PHL. The M-tree is a multi-level balanced
tree index structure similar to the R-tree [13]. While the R-tree index is built using the
absolute Euclidean coordinates of the objects, the M-tree index is constructed using the
metric distances between the objects. The M-tree uses triangular inequality for efficient
range and k-NN search as well as indexing [15,22]. Like other tree-based data structures,
the M-tree consists of leaf and non-leaf nodes. Each leaf node has multiple data objects
with unique identifiers, and each non-leaf node has multiple entries containing a pointer to
a subtree. The region for each non-leaf node is represented as a sphere. When the sub-node
is a leaf node, it is the minimum spherical region containing all objects in the sub-node;
when the sub-node is a non-leaf node, it is the minimum spherical region containing all the
minimum spherical regions for all entries in the sub-node. The object at the center of the
minimum spherical region is called a parent object.

Table 1. Summary of notations.

Notation Description

R road network dataset
D shortest-path distance between objects inR
Q set of query objects
M number of query objects, i.e., M = |Q|
φ flexibility factor (0 < φ ≤ 1)
ε approximation ratio (ε ≥ 1)
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Figure 1 shows the node entry structures of the M-tree, and the description for each
attribute is summarized in Tables 2 and 3. The minimum bounding region containing
all the objects in an M-tree leaf node L is represented as a sphere. In Table 2, the parent
object Op is the central object that represents all the objects Oi in the leaf node L. The entry
structure of the M-tree leaf node used in our algorithm is the same as before. The minimum
bounding region containing all the objects in an M-tree non-leaf node N is also represented
as a sphere. In Table 3, n is the subnode of N corresponding to an entry e in N, and Op
is the parent object of N. The region of node n is represented as a sphere centered by the
routing object Or (i.e., the parent object of node n) with a radius of r(Or). The attribute
count is newly added in our algorithm. If the node n pointed to by the pointer ptr(T(Or))
in an entry e is a leaf node, the value of e.count is the number of all objects in the node n.
If the node n pointed to by e.ptr(T(Or)) is a non-leaf node, the value of e.count is set as
e.count = ∑ e′.count for all entries e′ in node n. Thus, the count value for an entry e is the
number of all objects contained in the subtree T(Or) rooted by the node n.

Table 2. Attributes of a leaf node entry (Figure 1a).

Attribute Description

Oi an object
oid(Oi) ID of Oi

d(Oi, Op) distance between Oi and parent object Op

Table 3. Attributes of a non-leaf node entry (Figure 1b).

Attribute Description

Or routing object, i.e., parent object of n
r(Or) radius of spherical region of n

ptr(T(Or)) pointer to the subtree T(Or) rooted by n
d(Or, Op) distance between Or and Op (parent node of N)

count number of objects in the subtree T(Or)
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Figure 1. Structures of M-tree node entries for AFANN-PHL. (a) Leaf node entry. (b) Non-leaf
node entry.

Algorithm 1 shows the AFANN-PHL algorithm. This algorithm has almost the same
structure as the exact FANN-PHL [12]; the approximation task is added in line 14. In line 1
of Algorithm 1, p̂∗ is the current candidate FANN object, and H is the priority queue that
includes the M-tree non-leaf entries e and is sorted in the ascending order of e.gφ values.
In line 5, e.n is the subnode corresponding to e, i.e., the root node of the subtree pointed to
by the pointer e.ptr(T(Or)). In line 7, the FANN distance e′.gφ of an entry e′ is defined as
follows [12]:

e′.gφ = min
Qφ⊆Q

{
G{D(e′, qi), qi ∈ Qφ}

}
, (4)

where D(e′, qi) is the distance between the spherical region for a node e′.n and a query
object qi; it is defined as D(e′, qi) = max{D(e′.Or, qi)− e′.r(Or), 0} (refer to Figure 2) [12].
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Algorithm 1 AFANN-PHL Algorithm.
Require: R, P, Q, φ,G, T
Ensure: p∗, Q∗φ, g(p∗, Q∗φ)

1: p̂∗.gφ ← ∞, H ← ∅
2: H.push(e) for all entries e in T.root
3: while H 6= ∅ do
4: e← H.pop()
5: if e.n is a non-leaf node then
6: for each entry e′ in e.n do
7: if e′.gφ ≤ p̂∗.gφ then H.push(e′) end if
8: end for
9: else

10: for each object p in e.n such that p ∈ P do
11: if p.gφ ≤ p̂∗.gφ then p̂∗ ← p end if
12: end for
13: end if
14: Invoke Algorithm 2 /* Perform approximation */
15: end while
16: Return p̂∗

����
�

�
�

�������
�

�
������

�

�

Figure 2. Distance D between an entry e′ and a query object q1.

We first describe the case that the number of FANN objects k is 1, and the natural
generalization for k ≥ 1 is described later in this section. The approximate FANN object p∗ε
returned by the AFANN-PHL algorithm for a given ε (≥ 1) should satisfy the following
condition for the exact FANN object p∗:

p∗ε .gφ ≤ ε · p∗.gφ. (5)

For ε = 1, the AFANN-PHL returns the same result as the exact FANN-PHL. For ε > 1,
when the AFANN-PHL finds the object p∗ε that satisfies Equation (5) in line 14 of Algo-
rithm 1, it returns the object and terminates right away. Therefore, since the algorithm
terminates early even before the exact FANN object p∗ is found, it has the advantage of
improving search performance. There is a tradeoff between the search performance and
the accuracy of the approximate FANN object p∗ε ; it can be adjusted as needed by changing
ε appropriately. In Section 4, as the experimental result using real road network datasets,
we show that the approximate FANN object p∗ε is very close to the exact FANN object p∗

even with a high value of ε.
In line 14 of Algorithm 1, the AFANN-PHL algorithm carries out the approximation

task as described in Algorithm 2. In lines 1 and 2 of Algorithm 2, Hε is the priority queue
created separately from H; a tuple [ p̂∗, p̂∗.gφ, 1] for the current candidate FANN object p̂∗

and a tuple [e, e.gφ, e.count] for each entry e in H are inserted in Hε. All the tuples in Hε

are sorted in the ascending order of the second attribute values. In line 4, the tuple ta that
satisfies the following Equation (6) is extracted:

a = min
0≤j<|Hε |

{
j

∣∣∣∣∣ ∑
0≤i≤j

ti.count ≥ 1

}
, (6)
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where ti.count is the third attribute of a tuple ti. If a tuple that satisfies Equation (6) does
not exist, ta.gφ is set as ta.gφ = ∞. If the condition in line 5 is satisfied for the tuple ta,
the algorithm returns the current candidate FANN object p̂∗ and terminates. Here, ta.gφ is
the second attribute of the tuple ta.

Algorithm 2 Approximation by AFANN-PHL.
1: Hε.push([ p̂∗, p̂∗.gφ, 1]) for current candidate FANN object p̂∗

2: Hε.push([e, e.gφ, e.count]) for each entry e in H
3: Sort Hε in the ascending order of second attribute values
4: Find the tuple ta satisfying Equation (6)
5: if p̂∗.gφ ≤ ε · ta.gφ then return p̂∗ end if

The generalization of the AFANN-PHL algorithm for k ≥ 1 is straightforward
as follows. First, an array Kε is allocated to store the k approximate FANN objects,
and Equation (5) is modified as the following:

Kε
k−1.gφ ≤ ε · Kk−1.gφ, (7)

where Kk−1 is the exact k-th FANN object. The array Kε is always sorted in the ascending
order of the values of Kε

i .gφ (0 ≤ i < k). In line 1 of Algorithm 2, a tuple [Kε
i , Kε

i .gφ, 1] for
each approximate candidate FANN object Kε

i is inserted, and in line 4, the tuple ta that
satisfies the following Equation (8) is extracted:

a = min
0≤j<|Hε |

{
j

∣∣∣∣∣ ∑
0≤i≤j

ti.count ≥ k

}
. (8)

The condition in the if statement in line 5 is modified to Kε
k−1.gφ ≤ ε · ta.gφ. The following

Lemma 1 shows the correctness of the AFANN-PHL algorithm for the general case of k ≥ 1,
i.e., the returned approximate FANN objects satisfy Equation (7).

Lemma 1. The approximate FANN object Kε
k−1 returned by the AFANN-PHL algorithm satisfies

Equation (7).

Proof. For each tuple [e, e.gφ, e.count] in Hε, any object p contained in the spherical region
of the entry e satisfies p.gφ ≥ e.gφ [12]. For each tuple [Kε

i , Kε
i .gφ, 1] (0 ≤ i < k) in Hε, we

associate a spherical region centered by the approximate FANN object Kε
i with a radius of 0.

Since there are k or more objects in the spherical regions for the tuples t0, . . . , ta that satisfy
Equation (8), it holds that ta.gφ ≤ Kk−1.gφ, where ta.gφ is the second attribute value of the
tuple ta, and Kk−1, is the exact k-th FANN object. If not, i.e., if it holds that ta.gφ > Kk−1.gφ,
all the objects p in the region for the tuple ta satisfy p.gφ > Kk−1.gφ. Moreover, since
the tuples in Hε are sorted in the ascending order of the second attribute values, all the
remaining tuples ti (i > a) satisfy ti.gφ > Kk−1.gφ, and thus all the objects p in the region
for ti satisfy p.gφ > Kk−1.gφ. That is, in the regions for the tuples ta, . . . , t|Hε |−1 in Hε, we
cannot find any FANN object. However, since there exist less than k objects in the regions
for the tuples t0, . . . , ta−1, there cannot exist k FANN objects, which is a contradiction.
Therefore, it holds that ta.gφ ≤ Kk−1.gφ. If the condition Kε

k−1.gφ ≤ ε · ta.gφ is satisfied in
line 5 of Algorithm 2, since it holds that ε · ta.gφ ≤ ε · Kk−1.gφ, the AFANN-PHL algorithm
satisfies Kε

k−1.gφ ≤ ε · Kk−1.gφ (Equation (7)).

Our algorithm has the worst-case complexity for ε = 1.0 since it cannot terminate
early, and the complexity is the same as that of the exact FANN algorithm. The exact
FANN algorithm has the worst-case complexity when the number and distribution of query
objects are set so that the algorithm should access all leaf nodes in the M-tree. In this case,
the shortest-path distances from all data objects p (∈ P) to all query objects qi (∈ Q) should
be calculated. Thus, the worst-case complexity of our algorithm is O(|P||Q|C), where C
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is the cost of the shortest-path distance calculation. However, the practical search cost is
usually much lower than the worst-case complexity.

4. Experimental Evaluation

In this section, we carry out a series of experiments to compare the search performance
of the existing exact FANN-PHL algorithm [12] and our AFANN-PHL algorithm and to
verify the search accuracy of our algorithm for various approximation ratios ε. In our
experiments, the performance of our algorithm is compared only with the FANN-PHL
algorithm [12] since it is the state-of-the-art exact FANN search algorithm. The platform
for the experiments is a workstation equipped with an AMD 3970X CPU, 128GB memory,
and a 1.2TB SSD. Both FANN-PHL and AFANN-PHL algorithms were implemented in
C/C++. In our experiments, to quickly calculate the shortest-path distance D between two
objects (vertices), we used the C/C++ source code written by the original author of the
PHL algorithm (http://github.com/kawatea/pruned-highway-labeling (accessed on 1
July 2023)).

The datasets in our experiments are the real-world road network datasets of five
regions in the USA, which have also been used in the 9th DIMACS Implementation
Challenge—Shortest Paths (http://www.diag.uniroma1.it/challenge9/download.shtml
(accessed on 1 July 2023)) and in various previous studies [2,11,12]. Table 4 summarizes
the experimental datasets. A road network dataset is represented as a graph composed
of a set of vertices and a set of undirected edges. Each vertex represents a single object in
a road network, and each edge represents a single road segment directly connecting two
neighboring vertices. Since the datasets contain noises such as self-loop edges for a vertex
and unconnected graph segments [2,11,12], we carried out preprocessing to remove the
noises. Table 5 summarizes the parameters considered in our experiments; the values in
parentheses indicate default values.

Table 4. Road network datasets.

Acronym Name Vertices Edges

NY New York City 264,346 733,846
COL Colorado 435,666 1,057,066
NW Northwest USA 1,207,945 2,840,208
LKS Great Lakes 2,758,119 6,885,658
W Western USA 6,262,104 15,248,146

Table 5. Experiment parameters.

Parameter Description Values (Default Value)

R road network dataset NY, COL, NW, LKS, W (NW)
M size of Q, i.e., |Q| 64, 128, 256, 512, 1024 (256)
k number of nearest neighbors 1, 5, 10, 15, 20 (1)
φ flexibility factor 0.1, 0.3, 0.5, 0.8, 1.0 (0.5)
C coverage ratio of Q 0.01, 0.05, 0.10, 0.15, 0.20 (0.10)
ε approximation ratio 1.0, 2.0, 3.0, 4.0, 5.0 (5.0)

In the first experiment, we compared the execution time, the number of node accesses,
and the number of distance D calculations needed for the FANN search for each road
network dataset in Table 4. Here, all the other parameter values were set to their default
values indicated in Table 5. For each parameter combination, we averaged the results
obtained using an arbitrary 1000 query sets Q. Figure 3 demonstrates the results of the
first experiment. The execution time, the number of node accesses, and the number of
distance calculations show similar trends for both algorithms. As the number of objects in
a road network increases, the number of index nodes within a query region of the same

http://github.com/kawatea/pruned-highway-labeling
http://www.diag.uniroma1.it/challenge9/download.shtml
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size increases. Thus, the number of distance calculations to the objects in the index nodes
also increases, thereby making the execution time of the algorithms increase. In the first
experiment, the AFANN-PHL algorithm always showed a higher performance than the
exact algorithm; for the W dataset, the performance improved by up to 30.3% for G = max.
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Figure 3. Comparison of FANN search performance for various road network datasets (R).
(a) Execution time (seconds), (b) number of node accesses, (c) number of distance computations.

In the second experiment, we compared the FANN search performance for various
query sizes M. As demonstrated in Figure 4, the execution time and the number of distance
calculations increases almost linearly as M increases for both algorithms. This is because
both algorithms need to calculate the exact distances D to M query objects qi to find both
p̂∗.gφ and e′.gφ [12]. Meanwhile, the number of node accesses has not changed much as M
increases for both algorithms. This is because, if the regions containing the query objects
are similar, both p̂∗.gφ and e′.gφ remain similar even though M increases [12]. In this
experiment, the approximate algorithm always outperformed the exact algorithm; the
performance improved by up to 18.7% when M = 64 and G = sum.

In the third experiment, we compared the FANN search performance for various
numbers of nearest neighbors k, and the results are demonstrated in Figure 5. For both
algorithms, in lines 7 and 11 of Algorithm 1, the pruning bounds become larger as k
increases. Thus, more index nodes are accessed, and more distance calculations to the
objects in the index nodes are performed, thereby increasing the execution time of both
algorithms. In this experiment, the approximate algorithm always outperformed the exact
algorithm; the performance improved by up to 19.2% when k = 20 and G = max.
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Figure 4. Comparison of FANN search performance for various query sizes (M). (a) Execution time
(seconds), (b) number of node accesses, (c) number of distance computations.
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Figure 5. Comparison of FANN search performance for various numbers of nearest neighbors (k).
(a) Execution time (seconds), (b) number of node accesses, (c) number of distance computations.
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In the fourth experiment, we compared the FANN search performance for various
flexibility factors φ. In Figure 6, as φ increases, the execution time, the number of node
accesses, and the number of distance calculations tend to decrease for both algorithms.
This is because, as φ increases in line 7 of Algorithm 1, p̂∗.gφ increases more rapidly than
e′.gφ, and thus the number of entries e′ added in the priority queue H decreases. In this
experiment, the approximate algorithm always outperformed the exact algorithm; the
performance improved by up to 29.9% when φ = 1.0 and G = sum.
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Figure 6. Comparison of FANN search performance for various flexibility factors (φ). (a) Execution
time (seconds), (b) number of node accesses, (c) number of distance computations.

In the fifth experiment, we compared the FANN search performance for various
coverage ratios C (0 < C ≤ 1) of query sets Q, where C is defined as (the minimum region
covered by all the query objects in Q) divided by (the region covered by the whole road
network). The results of this experiment are demonstrated in Figure 7. As C increases,
the execution time, the number of node accesses, and the number of distance calculations
increase generally. The number of node accesses of the approximate algorithm decreases
as C increases. That is because the approximate algorithm terminates early very often as
ta.gφ increases in line 5 of Algorithm 2. In this experiment, the approximate algorithm
always outperformed the exact algorithm; the performance improved by up to 23.7% when
C = 0.2 and G = sum.

In the final experiment, we compared the FANN search performance and accuracy
for various approximation ratios ε. In Figure 8, the execution time, the number of node
accesses, and the number of distance calculations of the AFANN-PHL algorithm decrease
as ε increases, as expected. In this experiment, the approximate algorithm always outper-
formed the exact algorithm; the performance improved by up to 17.6% when ε = 5.0 and
G = max. Figure 9 demonstrates the error ratio ρ = p∗ε .gφ/p∗.gφ (i.e., the left-hand side of
Equation (3)) for the FANN objects p∗ε and p∗ obtained in the approximate and the exact
FANN algorithms, respectively. The largest error ratio was ρ = 1.147 when ε = 5.0 and
G = max. This value ρ is much smaller than the given approximation ratio ε; i.e., the
approximate FANN object p∗ε is very close to the exact FANN object p∗.
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Figure 7. Comparison of FANN search performance for various coverage ratios of query (C).
(a) Execution time (seconds), (b) number of node accesses, (c) number of distance computations.
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Figure 8. Comparison of FANN search performance for various approximation ratios (ε). (a) Execu-
tion time (seconds), (b) number of node accesses, (c) number of distance computations.
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Figure 9. Comparison of error ratios for various approximation ratios (ε).

5. Conclusions

In this paper, we proposed an ε-approximate k-FANN search algorithm for arbitrary
approximation ratios ε (≥1) in road networks (k ≥ 1). In general, ε-approximate algorithms
are expected to give an improved search performance at the cost of allowing an error ratio
of up to the given ε. Since the optimal value of ε highly depends on applications and cases,
the approximation algorithm for an arbitrary ε is essential. We proved that the error ratios
of the approximate FANN objects returned by our algorithm do not exceed the given ε.
To the best of our knowledge, our algorithm is the first ε-approximate k-FANN search
algorithm in road networks for arbitrary ratios ε. We performed a series of experiments
using various real-world road network datasets to demonstrate that our approximation
algorithm always outperformed the state-of-the-art exact FANN search algorithm named
FANN-PHL [12] for any parameter combinations. We had a better search performance
with a higher ε value. Furthermore, we also demonstrated that the error ratios of the
approximate FANN objects returned by our algorithm were much lower than the given
ε values; i.e., we could find the approximate FANN objects that were very close to the
exact FANN objects even with a high approximation ratio ε. Therefore, we expect that our
algorithm could be widely adopted in many real-world location-based applications.
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