
Citation: Hu, C.; Sun, X.; Dai, H.;

Zhang, H.; Liu, H. Research on Log

Anomaly Detection Based on

Sentence-BERT. Electronics 2023, 12,

3580. https://doi.org/10.3390/

electronics12173580

Academic Editor: Grzegorz Dudek

Received: 23 July 2023

Revised: 17 August 2023

Accepted: 22 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research on Log Anomaly Detection Based on Sentence-BERT
Caiping Hu 1,* , Xuekui Sun 2, Hua Dai 2 , Hangchuan Zhang 1 and Haiqiang Liu 1

1 Department of Computer Engineering, Jinling Institute of Technology, Nanjing 211169, China;
19850303315@163.com (H.Z.); 00000005207@jit.edu.cn (H.L.)

2 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
kasonsun@foxmail.com (X.S.); daihua@njupt.edu.cn (H.D.)

* Correspondence: hucp@jit.edu.cn

Abstract: Log anomaly detection is crucial for computer systems. By analyzing and processing the
logs generated by a system, abnormal events or potential problems in the system can be identified,
which is helpful for its stability and reliability. At present, due to the expansion of the scale and
complexity of software systems, the amount of log data grows enormously, and traditional detection
methods have been unable to detect system anomalies in time. Therefore, it is important to design
log anomaly detection methods with high accuracy and strong generalization. In this paper, we
propose the log anomaly detection method LogADSBERT, which is based on Sentence-BERT. This
method adopts the Sentence-BERT model to extract the semantic behavior characteristics of log events
and implements anomaly detection through the bidirectional recurrent neural network, Bi-LSTM.
Experiments on the open log data set show that the accuracy of LogADSBERT is better than that
of the existing log anomaly detection methods. Moreover, LogADSBERT is robust even under the
scenario of new log event injections.

Keywords: anomaly detection; log; deep learning; Sentence-BERT; semantic feature

1. Introduction

Logs usually contain information about the operational status of a system, including
operation records, fault information, security time, etc., which can provide a comprehensive
view of the system’s operational status [1]. Logs are time-series in nature; the information
in the logs is recorded by time, which allows us to analyze it in order to gain insight
into the operation of the system. Logs can provide a historical view—they collect all
information about the application, and there are a lot of helpful insights that can be gleaned
from an application’s history record, including information about potential problems and
benchmarks for determining when a process becomes an exception. Logs can monitor
the behavior of a system, and in contrast to other data sources, they can go deeper into
the system and track the actual behavior of the system as it runs. Log records contain
information and trends during system operation. Analyzing and mining the log data can
help detect and diagnose system anomalies.

With the expansion of software systems’ scale, complexity, and application scope, the
number of logs generated shows exponential growth, making it difficult for the traditional
log anomaly detection methods based on rules and statistics. In order to adapt to the
development of software systems, researchers have shifted their research focus to deep
learning-based solutions, and, currently, log anomaly detection based on deep learning has
become a hot spot in the field of anomaly detection [2]. Compared to the traditional methods
based on rules and statistics, an anomaly detection method based on deep learning requires
no human intervention and can quickly and accurately identify abnormal behaviors in logs.
Moreover, traditional log anomaly detection methods are constrained by the limitations of
algorithms and capacity, whereas a log anomaly detection method based on deep learning
can process a large amount of data in parallel. It can efficiently solve the problems of

Electronics 2023, 12, 3580. https://doi.org/10.3390/electronics12173580 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173580
https://doi.org/10.3390/electronics12173580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-6633-3849
https://orcid.org/0000-0003-2465-8977
https://doi.org/10.3390/electronics12173580
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173580?type=check_update&version=1

Electronics 2023, 12, 3580 2 of 16

repeated sampling and information extraction. In addition, deep learning models can
extract useful information from dozens of data metrics, which can better capture the details
of the log data that reflect the anomalies of the system. This is because log data are usually
in plain text format, and natural language processing is a specialized field for processing
and analyzing text data. For example, chatbots [3] based on machine translation have
become popular in recent years. Most of the log anomaly detection methods based on
deep learning that have emerged so far are associated with natural language processing
(NLP). NLP is used to extract the semantic features in log files, such as vocabulary, phrases,
sentences, and grammatical structures. These features are useful for pattern recognition
and classification in log anomaly detection, and the models built in this way can better
process and analyze the log data, as well as predict abnormal behaviors and events.

In this paper, we propose the log anomaly detection method LogADSBERT. It uses the
Sentence-BERT model [4] to extract the semantic features of log events and realizes the final
anomaly detection using the recurrent neural network model Bi-LSTM [5]. LogADSBERT
consists of two stages: the model training and the anomaly detection. In the model training
stage, the log parser parses the original logs into log events and log triples. The log events
are used as the corpus to train the Sentence-BERT model, and the log triples are used to
construct a sliding window sequence of log event semantic vectors to train the Bi-LSTM
neural network classification model, Bi-LSTM-ADM. In the anomaly detection stage, Bi-
LSTM-ADM is used to detect anomalies in the log data. LogADSBERT can achieve anomaly
detection with high accuracy and robustness.

The contributions of this paper can be summarized as follows:

1. We construct a log event semantic feature extraction model, T-SBERT, based on the
Sentence-BERT model, which can convert log events into log event semantic fea-
ture representations. The Bidirectional Long Short-Term Memory Recurrent Neural
Network model (Bi-LSTM) with an attention mechanism is adopted to generate an
anomaly detection model.

2. We propose a log event semantic feature matching algorithm and an anomaly detec-
tion algorithm. The log event semantic matching dictionary is established, and the log
anomaly detection method LogADSBERT, based on Sentence-BERT, is constructed. It
is, to the best of our knowledge, the first to extract log event semantic features using
the Sentence-BERT model.

3. In the scenario of new log event injection, LogADSBERT can ensure high accuracy
and strong robustness of anomaly detection. Experiment results demonstrate the
effectiveness of the proposed method.

This paper is structured as follows: Section 2 discusses the related work; Section 3
presents the preliminary knowledge of this paper; Section 4 presents the definitions related
to the proposed method; Section 5 presents the framework of our anomaly detection
method; Section 6 describes the experiments used to evaluate the effectiveness of the
proposed method; and finally, the conclusion is provided in Section 7.

2. Related Work

The traditional log anomaly detection methods are based on rules and statistics [6–8]
and generally need to analyze normal and abnormal behavior patterns using mathematical
counting methods. They usually define a set of features, design response rules for each
feature, and combine these rules into a complete system. In the testing stage, the newly
generated logs are compared with the existing rules to determine the existence of anomalies.
For example, Prewett et al. [7] proposed the log file analysis tool Logsurfer, which achieves
anomaly detection by defining rules for the expected behavior of the system and then
matching them using regular expressions. At the same time, Logsurfer can also update
its rule set at runtime. Rouilard et al. [8] proposed the SEC simple temporal correlator to
create feature rule sets by analyzing log sequences, which reduces the false alarm rate but is
less automated and incurs higher labor costs. Due to the expansion and update of the scale
of log data, the traditional log anomaly detection methods based on rules and statistics are

Electronics 2023, 12, 3580 3 of 16

usually not effective in detecting complex and or unknow anomalies. Thus, researchers
in the field have shifted their research direction to the area of machine learning and deep
learning.

Traditional machine learning log anomaly detection includes supervised and unsuper-
vised machine learning methods. Supervised machine learning methods include Support
Vector Classifier (SVM) [9,10], Linear Regression (LR) [11,12], Decision Tree (DT) [13], K-
Neighborhood Algorithm (KNN) [14], etc. These are based on the log frequency statistics
vector to record the frequency of occurrence of each log event within the log sequence, and
they use the frequency statistics vector as input and dichotomous labels as the classification
result. Unsupervised machine learning methods include Principal Component Analysis
(PCA) [15] and clustering-based methods such as Isolated Forest (IF) [16], Invariant Min-
ing (IM) [17], and Log Clustering (LC) [18]. These use unlabeled data for training, and
unsupervised log anomaly detection can be achieved.

The deep learning-based log anomaly detection methods [19–21] usually have three
steps: First, a log parser is used to split the system log data into two parts, the log event and
the parameter. The log event describes the system or process behavior, and the parameter
element records state information such as the timestamp and the process identifier. Second,
the behavior sequence of the system or process is constructed using the timestamp and log
event of the log record. Third, anomaly detection is performed based on the behavioral
sequences. Researchers have been developing log anomaly detection methods based on
recurrent neural networks. For example, Du et al. [19] trained LSTM based on log keys and
parameters to obtain a log key anomaly detection model and a parameter value anomaly
detection model. They combined two models to achieve anomaly detection. However, the
log key is the index of the log event, which is not combined with the semantic features in
the real sense. Log key-based detection requires knowledge of the size of the collection
of log events before the detection, which may fail when the log events are updated or
added. Meng et al. [20] proposed a template2vec-based method, LogAnomaly, that used
the Bi-LSTM model with an attention mechanism to combine log event features and word
features within the event to obtain the log event semantic feature space vector. When the log
event is updated, the semantic feature vector of the log event is computed first, and then the
existing log event is replaced by selecting the closest log event with the Euclidean distance.
However, the performance drops sharply when more log events are added. Brown et al. [21]
also proposed an LSTM-based approach for routine detection that incorporates multiple
implementations of attention mechanisms into the LSTM model to extract log features
and achieve eventual anomaly detection. Although the experiments show a high accuracy
rate for this method on the LANL cyber security datasets, the experimental datasets are
relatively limited, and high accuracy cannot be achieved on several publicly available and
commonly used datasets. This method only focuses on discovering relationships hidden
in system logs and the effectiveness of multiple attention mechanisms in log anomaly
detection, which causes limitations in practical application scenarios. In addition, the
BERT model and its derivative models, which have recently become popular in the field
of natural language processing, have been used in the field of log anomaly detection. For
example, Chen et al. [22] produced semantic log vectors by utilizing a pre-trained language
BERT model and used the linear classification to detect anomalies. This method uses a
single BERT implementation, which may lose semantic information in sequence feature
extraction processing. Zhang et al. [23] adopted the SBERT model to extract the semantic
representation of log events, which considers the semantic and word order relationship of
each word in log events. They designed a GRU model for anomaly detection; however, as
the content of exception log is diverse, including sequence pattern, frequency, correlation,
etc., GRU can only capture one-way sequence information. Guo et al. [24] learned the
patterns of normal log sequences using two novel, self-supervised training tasks: the
masked log message prediction and volume of hypersphere minimization. Nevertheless,
this work does not identify and train the semantic information of abnormal logs.

Electronics 2023, 12, 3580 4 of 16

Currently, the log anomaly detection methods based on rules and statistics can no
longer meet the rapid development of software systems, and machine learning-based log
anomaly detection suffers from weak feature extraction ability, poor adaptability, large labor
cost, and low accuracy rate compared to deep learning. Therefore, current log anomaly
detection research focuses on the deep learning-based methods. However, the existing log
anomaly detection methods based on deep learning still do not fully utilize the semantic
information existing in the log data, as well as some other feature information such as
frequency statistics, location embedding, etc. As a result, the accuracy rate of the methods
does not reach the required standard, and the robustness of these methods to the addition
of new logs needs to be further improved.

3. Preliminary Knowledge
3.1. Log Parser

System log data as semi-structured data are difficult to input directly into model
training and detection, so processing semi-structured log data into structured log data is
the first step of data processing and is crucial for subsequent anomaly detection. A system
log data includes variable and constant parts. When generating a log, it is actually a process
of combining constants and variables. The variable is the log parameters, which change
dynamically depending on the type of log generated. The constants are usually fixed and
unchanged log events that are the system log in the parameter part of the use of wildcard
replacement to get the standard event. LogParser does exactly the opposite of the log
generation process; the log parser must generate logs reverse-parsed into log events and
parameters in order to better complete the anomaly detection—there are many open-source
log parsers to choose from. Currently, log parsers [25–29] can be divided into two main
groups: log parsers based on clustering and log parsers based on heuristic structures.

3.2. Self-Attention Mechanism

A self-attention approach was designed by Google in 2017 [30], which was an im-
plementation of the original attention mechanism proposed in 2014 [31]. Early attention
mechanisms need to use other neural networks to extract relevant features, compute inter-
mediate states, and finally give different attention to each intermediate state through the
attention mechanism. Now, the self-attention mechanism does not need to use other neural
networks to extract sequence features. It directly uses the self-attention mechanism to learn
sequence features, which solves the problem of other neural networks not being able to
perform in parallel and long short-term dependence.

3.3. Sentence-BERT Model

The Sentence-BERT model [3] is a derivative of the pre-training model BERT that sheds
the decoder of the Transformer model so that the construction of BERT is the encoder part
of the Transformer. BERT has proved to be effective in a variety of NLP tasks, and with pre-
training and fine-tuning, it can obtain better results. Sentence-BERT comes from a similar
background. It was constructed based on the Siamese Network and Triplet Network [32];
it performs better in clustering and semantic-based retrieval tasks and can quickly and
efficiently realize sentence semantic similarity computation and obtain sentence vector
representations, etc. In this paper, the pre-training Sentence-BERT uses the log data for
training and fine-tuning so that it can obtain better vector representations.

3.4. Bi-LSTM Neural Network Model

Long Short-Term Memory (LSTM) [33] is a common recurrent neural network model
that has a much longer memory. It solves the gradient vanishing and long-distance depen-
dence problems that recurrent neural networks are prone to. It has been proved in recent
years that LSTM shows good performance in several natural language processing tasks.
The Bi-LSTM model [5] is used in the research methodology of this paper, which employs a
bidirectional LSTM model. It is a combination of forward LSTM as well as reverse LSTM,

Electronics 2023, 12, 3580 5 of 16

where the hidden output of the current layer is obtained by splicing the processed results
of the forward inputs with the processed outputs of the reverse inputs. Bi-LSTM captures
backward and forwards temporal correlation and can maximize the use of historical and
future information through bi-directional propagation to achieve better performance.

4. Definitions of LogADSBERT

Assuming that the system log set is L = {l1, l2, . . ., ln}. After parsing the log set L using
LogParser, we obtain a set of the log events T = {t1, t2, . . ., tm} and a set of the log triples P =
{p1, p2, . . ., pn}.

Definition 1 (Log Event (LE)). A log event is a structured text information obtained by removing
the variable parameter from the system logs li using the log parser, which is denoted as ti ∈ T.

Definition 2 (Log Triple (LT)). A log triple is a structured log information obtained by parsing
the system logs through the log parser, which is denoted as pi = (id, t, ts), where id is the process ID,
t is the log event, and ts is the timestamp of the log generation.

Definition 3 (Log Event Semantic Vector (LE-SV)). Taking the log events of T as the input of
the T-SBERT model, the output is the log event semantic vector set V = {v1, v2, . . ., vm}.

Definition 4 (Log Event Semantic Dictionary (LE-SD)). The log event semantic dictionary is
denoted as D, and D is initialized as the mapping set ti → vj , that is D = { ti → vj

∣∣ti ∈T, vj ∈ V }.
When a new type of log appears, the log event semantic vector of the new log is obtained by the log
event semantic matching algorithm based on the T-SBERT model, and the new mapping ti → vj is
added to the log event semantic dictionary.

Definition 5 (Log Event Semantic Vector Sliding Window (LE-SV-SW)). Assuming that h
is the size of a sliding window, Ti = {e1, e2, . . ., eq} is the sequence of the log event, and Ti⊆T
is the sequence of the log event, the semantic matching algorithm of the log event based on the
T-SBERT model converts the log event sequence Ti into the log event semantic vector sequence Si =
<ve1 , ve2 , . . . , veq >. Given vej+1∈ Si, the corresponding sliding window is denoted as W(Si, vej)
which is generated according to the following rules.

1. If (h ≤ j < q), then W(Si, vej) = <vej−h+1 , vej−h+2 , . . . , vej >;
2. Else, W(Si, vej) = ∅.

In addition, for the log event semantic vector sequence Si that meets the first require-
ments, the window set of Si is Wsi = {W(Si, vej

)∣∣∣vej ∈ Si∧j ∈ [h,q)}, and the number of items

in Wsi is q-h. The corresponding log event semantic vector set is Vej+1 = { vej+1

∣∣∣vej+1 ∈ Si∧j
∈ [h,q)}.

Definition 6 (Log Sequence Anomaly Detection (LSAD)). Assuming that the log event se-
quence is Ti = {e1, e2, . . ., eq}, the log event semantic vector window set is Wsi = {W(Si, vej)|vej ∈ Si
∧ j ∈ [h, q)}, and the corresponding set of log event semantic vector vej+1 is Vej+1 = {vej+1|vej+1 ∈
Si ∧ j ∈ [h,q)}, the result vector set predicted by the Bi-LSTM-ADM with inputting Wsi is Rej+1 =
{rej+1 |j ∈ [h,q)}. Given the threshold ξ, the log sequence anomaly detection is performed as follows.

1. For each vej+1 ∈ Vej+1 and ∀ rej+1 ∈ Rej+1 , if the similarity between vej+1 and rej+1 is greater
than the threshold ξ, it can be determined that the log event sequence Ti is normal;

2. Otherwise, the log event sequence Ti is abnormal.

Electronics 2023, 12, 3580 6 of 16

5. Algorithms of LogADSBERT

The proposed LogADSBERT consists of two stages: the model training and the
anomaly detection. The specific implementation process of these two stages is described as
follows.

Model training stage: The log parser parses the logs into a set of log events and a set of
log triples. The set of log events is used as training data for Sentence-BERT and is trained
to generate the T-SBERT log event vector generation model based on the TSBERTTrain
algorithm (Algorithm 1). While the log triples are ordered according to the time stamp
ts and transformed into a sequence of log event semantic vectors using the log event
semantic matching algorithm based on T-SBERT model (Algorithm 2), they are converted
into sequences of log event semantic vectors, then the sliding window mechanism is utilized
and sliding window training data are constructed based on the log event semantic vector
sequences. The Bi-LSTM model is trained to generate the Bi-LSTM-ADM model using the
BILSTMADMTrain algorithm (Algorithm 3).

Anomaly detection stage: The logs to be detected are first transformed into a set of log
triples using the log parser, then the log event semantic matching algorithm is used to obtain
a log event semantic vector sequence. Finally, the log event semantic vector sequence is used
to complete the log anomaly detection by the LogADSBERTDetect algorithm (Algorithm 4).

The framework of the proposed log anomaly detection method LogADSBERT is shown
in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 16

Si∧j∈ [h,q)}, the result vector set predicted by the Bi-LSTM-ADM with inputting 𝑊௦೔ is 𝑅௘ೕశభ=
{𝑟௘ೕశభ|j∈[h,q)}. Given the threshold ξ, the log sequence anomaly detection is performed as follows.

1. For each 𝑣௘ೕశభ∈𝑉௘ೕశభ and ∀𝑟௘ೕశభ∈𝑅௘ೕశభ, if the similarity between 𝑣௘ೕశభ and 𝑟௘ೕశభ is greater
than the threshold ξ, it can be determined that the log event sequence Ti is normal;

2. Otherwise, the log event sequence Ti is abnormal.

5. Algorithms of LogADSBERT
The proposed LogADSBERT consists of two stages: the model training and the anom-

aly detection. The specific implementation process of these two stages is described as fol-
lows.

Model training stage: The log parser parses the logs into a set of log events and a set
of log triples. The set of log events is used as training data for Sentence-BERT and is
trained to generate the T-SBERT log event vector generation model based on the TSBERT-
Train algorithm (Algorithm 1). While the log triples are ordered according to the time
stamp ts and transformed into a sequence of log event semantic vectors using the log event
semantic matching algorithm based on T-SBERT model (Algorithm 2), they are converted
into sequences of log event semantic vectors, then the sliding window mechanism is uti-
lized and sliding window training data are constructed based on the log event semantic
vector sequences. The Bi-LSTM model is trained to generate the Bi-LSTM-ADM model
using the BILSTMADMTrain algorithm (Algorithm 3).

Anomaly detection stage: The logs to be detected are first transformed into a set of
log triples using the log parser, then the log event semantic matching algorithm is used to
obtain a log event semantic vector sequence. Finally, the log event semantic vector se-
quence is used to complete the log anomaly detection by the LogADSBERTDetect algo-
rithm (Algorithm 4).

The framework of the proposed log anomaly detection method LogADSBERT is
shown in Figure 1.

System
logs𝑙1𝑙2
…𝑙n

𝑙1’𝑙2’
…𝑙q’

System
logs

LogParser

Log event set

Log triple setp1p2
…pn

t1t2
…tm

T-SBERT

Training
SBERT

Log event
semantic
matching

Bi-LSTM

Training LSTM

Log event
sequencee1’e2’

…eq’
Log event semantic

vector sequences
ve1’
ve2’
…

veq’

Consult

Test results

Model training

Anomaly detection

Sliding window
mechanism

Log event
semantic

dictionary

Sliding window
detection data
(w1’, veh+1’)
(w2’, veh+2’)

…

(wx’, veq’)Template semantic
vector matching

A
nom

aly
detection

U
pdata

Generating

Sliding window
mechanism

Log event
sequencee1e2

…eq

Log event semantic
vector sequences

ve1
ve2
…

veq

Sliding window
training data
(w1, veh+1)
(w2, veh+2)

…

(wx, veq)

Predictive
feedback

Increm
ental

update

Figure 1. The framework of the LogADSBERT anomaly detection method.

5.1. Sentence-BERT Training Algorithm
In the model training stage, the Sentence BERT model is trained to convert log events

into log event semantic vectors, and then the Bi-LSTM model is trained.

Figure 1. The framework of the LogADSBERT anomaly detection method.

5.1. Sentence-BERT Training Algorithm

In the model training stage, the Sentence BERT model is trained to convert log events
into log event semantic vectors, and then the Bi-LSTM model is trained.

TSBERTTrain(T): The log event semantic vector generation model T-SBERT is gener-
ated based on the Sentence-BERT model using the log event dataset T. First, the text corpus
(TC) is initialized to be empty, the log event set T is preprocessed to obtain the text corpus,
and TC is fed into the Sentence-BERT model to generate the T-SBERT model. The specific
process of T-SBERT model generation is shown in Algorithm 1. The log event semantic dic-
tionary D is initialized to be empty and is used to store the mapping relationship between
log events and log event semantic vectors.

Electronics 2023, 12, 3580 7 of 16

Algorithm 1: TSBERTTrain(T)

Input: Log event set T
Output: Log event semantic vector generation model T-SBERT
(1) Initialize the text corpus TC = ∅;
(2) Initialize log event semantic dictionary D = ∅;
(3) Initialize the Sentence-BERT model instance;
(4) FOR ti ∈ T DO
(5) Split ti into word lists WL;
(6) FOR EACH word IN WL DO
(7) word = lowerCase(word);
(8) IF word is a stop-words or no semantic identifiers THEN
(9) Remove word from WL;
(10) END IF
(11) END FOR
(12) Add the corresponding WL of the processed sentence to the corpus;
(13) Add the corpus to the TC;
(14) END FOR
(15) Train Sentence-BERT model to get T-SBERT using text library TC;
(16) RETURN T-SBERT;

5.2. Log Event Semantic Matching Algorithm

Before the Bi-LSTM model training and anomaly detection, each log event in a se-
quence of log events needs to be converted into a log event semantic vector.

LESVMatch (ti, T-SBERT): Log Event Semantic Vector Matching Algorithm based
on T-SBERT implements the process of transforming log events to log event topics in
the training and detection stage. For log event ti, the log event semantic dictionary D
is first queried to see if there exists a mapping relationship for ti → vj . If there is no
mapping relation for ti → vj , then ti is processed with the log event processing described in
Algorithm 1 and inputted into the log event semantic vector model, and the corresponding
log event semantic vector vj

′ is obtained and returned. At the same time, the new mapping
relationship for ti

′ → vj
′ is added to the log event semantic dictionary D. If there exists a

mapping for ti → vj , then the corresponding log event semantic vector vj is returned. The
specific algorithm of log event semantic vector matching is shown in Algorithm 2.

Algorithm 2: LESVMatch(ti, T-SBERT)

Input: Log Event ti, Log event semantic vector model T-SBERT
Output: Log event semantic vector vj
(1) IF ki IN D THEN
(2) RETURN D(ki);
(3) END IF;
(4) Split ki into the word list WL;
(5) FOR EACH word IN WL DO
(6) lowerCase(word);
(7) IF word is a stop-words or no semantic identifiers THEN
(8) Remove word from WL;
(9) END IF
(10) END FOR
(11) Add the corresponding WL of the processed sentence to the corpus;
(12) vj = T-SBERT (corpus);
(13) The mapping { ti → vj } is added to the log event semantic dictionary D;
(14) RETURN vj;

5.3. Bi-LSTM Training Algorithm

After the T-SBERT training is completed, the Bi-LSTM also needs to be trained for
learning the normal log behavior patterns.

Electronics 2023, 12, 3580 8 of 16

BILSTMADMTrain(S, h): The log event prediction model training algorithm uses the
sliding window training pairs generated from the sequence of log event semantic vectors
(Definition 5) to train the Bi-LSTM model to obtain the log event prediction model Bi-
LSTM-ADM. The initial sliding window length is h. The log event sequence Ti = {e1, e2, . . .,
eq} will be converted into the log event semantic vector sequence Si = <ve1 , ve2 , . . . , veq >
by Algorithm 2. Sliding with the size of the sliding window h to construct the training
data pair (TDP), the sliding window is denoted as W(Si, vej). The training data pair TDP
constructed by vej+1 is denoted as (wi, vej+1), and the training data pair TDP is stored in
the list to form the training data pair list (TDPL). The Bi-LSTM model is trained with
TDPL to obtain the log event prediction model Bi-LSTM-ADM, which is then used for log
event prediction for further anomaly detection. The specific process of Bi-LSTM training to
generate Bi-LSTM-ADM is shown in Algorithm 3.

Algorithm 3: BILSTMADMTrain (S, h)

Input: Sliding window length h, Log event semantic vector sequence set S = {<ve1,1, ve1,2, . . .,
ve1,q1 >,<ve2,1, ve2,2, . . ., ve2,q2 >, . . ., <ve f ,1, ve f ,2, . . .,ve f ,q f >}
Output: Log prediction model Bi-LSTM-ADM
(1) Initialize the TPDL=∅;
(2) Initialize the Bi-LSTM model;
(3) FOR Si∈S

∧
i∈[1, f] DO

(4) FOR j=h, h+1, . . ., q − 1 DO
(5) According to Definition 5 to generate the log event semantic vector sliding

window W (Si, vej);
(6) IF W (Si, vej)=∅ THEN
(7) CONTINUE;
(8) END IF
(9) Generate the TDP = (wi, vej+1) and add the TDPL;
(10) END FOR
(11) END FOR
(12) Using TPDL as training datasets to train Bi-LSTM to generate Bi-LSTM-ADM;
(13) RETURN Bi-LSTM-ADM;

5.4. Anomaly Detection Algorithm

In the anomaly detection stage, the log will be detected using the T-SBERT model, log
event semantic matching algorithm, and Bi-LSTM-ADM model.

LogADSBERTDetect(Si, h, ξ, Bi-LSTM-ADM): In the anomaly detection implementa-
tion algorithm, for the sequence of log events Ti = {e1, e2, . . ., eq} to be detected, the sliding
windows set of log event semantic vectors Wsi is generated using Algorithms 1 and 2. The
set consisting of semantic vectors of log events corresponding to Wsi is denoted as Vej+1 .
The prediction set of result vectors obtained from the input of Wsi to the Bi-LSTM-ADM is
Rej+1 = {rej+1 |j∈[h,q)}. Given the threshold ξ, the sequence anomaly determination method
is as follows: for ∀vej+1∈Vej+1 and rej+1∈Rej+1 , if the similarity between vej+1 and rej+1 is
greater than ξ, then it is determined that there is no anomaly in Ti; otherwise, there is an
anomaly in Ti. The specific process of log anomaly detection algorithm implementation is
shown in Algorithm 4.

Electronics 2023, 12, 3580 9 of 16

Algorithm 4: LogADSBERTDetect (Si, h, ξ, Bi-LSTM-ADM)

Input: Sequence of log event semantic vectors Si = <ve1 , ve2 , . . . , veq >, Sliding window size h,
Threshold value ξ, Bi-LSTM-ADM model
Output: TRUE-normal/FALSE-abnormal
(1) FOR j = h, h + 1, . . ., q − 1 DO
(2) Generate the event semantic vector sliding window W(Si, vej) and add the

value vej+1 into Vej+1 ;
(3) IF W(Si, vej) = ∅ THEN
(4) CONTINUE;
(5) END IF
(6) Input W(Si, vej) into Bi-LSTM-ADM to obtain the prediction vector rej+1 ;
(7) Add rej+1 to the set of prediction result vectors Rej+1 ;
(8) IF Similarity(vej+1 , rej+1) < ξ THEN
(9) RETURN FALSE;
(10) END IF
(11) END FOR
(12) RETURN TRUE;

6. Evaluation

In this section, we evaluate the proposed LogADSBERT by conducting experiments on
the real log datasets. We implement the LogADSBERT together with the existing log anomaly
detection methods based on deep learning, such as DeepLog [19] and LogAnomaly [20].

6.1. Experimental Setting
6.1.1. Evaluation Metrics

The evaluation metrics for this experiment are the false positive, false negative, preci-
sion, recall, and F1-Score.

1. False positive: the number of normal log sequences marked as abnormal, which are
denoted as FP.

2. False negative: the number of abnormal log sequences marked as normal, which are
denoted as FN.

3. Precision: the proportion of log sequences with real anomalies that are correctly
marked out; the computation of precision is shown in Equation (1).

Precision =
TP

TP + FP
(1)

4. Recall: the proportion of log sequences with real anomalies that are successfully
marked; the computation of recall is shown in Equation (2).

Recall =
TP

TP + FN
(2)

5. F1-Score: the reconciliation average of the detection result accuracy and detection
result completeness, which is denoted as F1-Score; the calculation of F1-Score is shown
in Equation (3).

F1-Score =
2× Precision× Recall

Precision + Recall
(3)

6.1.2. Environment and Hyperparameters

The operating system of the experimental equipment is Windows 10 64-bit, the memory
size is 32 GB, the CPU is AMD Ryzen 5 3600 4.2 Ghz six cores and twelve threads, and the
GPU is Nvidia GTX 1660S. The IDE is PyCharm 2021 with python 3.6. The Sentence-BERT
model, Bi-LSTM model, and Self-Attention mechanism were constructed based on the
framework of Pytorch 1.4. The experimental comparison method is DeepLog, LogAnomaly.

Electronics 2023, 12, 3580 10 of 16

The experimental parameters were set according to the characteristics of the log data, the
structure of the model, and the final experimental results. We tried a variety of different
parameter combinations and found that the following parameters can achieve the best
detection results. Table 1 shows the specific hyperparameter Settings.

Table 1. Experimental hyperparameters.

Hyperparameters Value

Learning rate 0.001
Batch size 2048

Epoch 300
l (Neural network layers) 2

α (Hide layer cell size) 64
h (Sliding window size) 10

6.1.3. Experimental Datasets

The log datasets used in this experiment come from Hadoop Distributed File System
(HDFS) [34] and OpenStack [35]. The HDFS log dataset comes from more than 200 of
Amazon’s EC2 nodes and contains 11,175,629 log entries. The OpenStack log datasets
platform project contains 1,335,318 log entries. We selected some of the data that have been
processed by domain experts for our experiments. The duplicate logs were removed from
the log dataset. The log data needed to be further parsed and processed before it could
be used for our experiments. We used the open-source log parser LogParser to parse logs.
According to relevant research in the field, the unsupervised or semi-supervised learning
methods can avoid data imbalance and data noise to a certain extent using normal log data
as training data, and they can improve the accuracy and efficiency of detection. Therefore,
we chose normal logs as the training data. The specific information of the log sequence is
shown in Table 2.

Table 2. Setup of log datasets.

Log Datasets
Number of Sessions Number of Log

EventsTraining Data Normal Abnormal

HDFS 7333 14,296 4251 46
OpenStack 514 4904 425 40

6.2. Result

1. Precision, Recall, and F1-Score

Figure 2 shows the precision, recall, and F1-Score of LogADSBERT on the HDFS
dataset. It indicates that LogADSBERT is better than DeepLoog and LogAnomaly in all
performance metrics. In the F1-Score, LogADSBERT improves by 7.0% and 4.3% compared
to DeepLog and LogAnomaly, respectively. There are improvements in both precision and
recall for LogADSBERT. Specifically, LogADSBERT improves 8.8% and 5.1% more than
DeepLog in precision and recall, respectively. Moreover, LogADSBERT improves 5.5% and
3.0% more than LogAnomaly in precision and recall, respectively.

Figure 3 illustrates the precision, recall, and F1-score of the three methods on the Open-
Stack dataset. The performance of LogADSBERT compared to DeepLog and LogAnomaly
on the OpenStack dataset is more pronounced than on the HDFS dataset. There is al-
ready a more pronounced gap between LogADSBERT and the better-performing method,
LogAnomaly, in terms of precision and F1-Score, with a difference of 7.1% and 7.0%, respec-
tively. In addition, LogADSBERT achieves 100% in terms of recall performance, whereas
the other methods achieve more than 90%.

Electronics 2023, 12, 3580 11 of 16

Electronics 2023, 12, x FOR PEER REVIEW 11 of 16

than DeepLog in precision and recall, respectively. Moreover, LogADSBERT improves
5.5% and 3.0% more than LogAnomaly in precision and recall, respectively.

Figure 2. Accuracy on HDFS.

Figure 3 illustrates the precision, recall, and F1-score of the three methods on the
OpenStack dataset. The performance of LogADSBERT compared to DeepLog and
LogAnomaly on the OpenStack dataset is more pronounced than on the HDFS dataset.
There is already a more pronounced gap between LogADSBERT and the better-perform-
ing method, LogAnomaly, in terms of precision and F1-Score, with a difference of 7.1%
and 7.0%, respectively. In addition, LogADSBERT achieves 100% in terms of recall perfor-
mance, whereas the other methods achieve more than 90%.

Figure 3. Accuracy on OpenStack.

According to the above analysis, LogADSBERT is superior to DeepLog and
LogAnomaly in precision, recall and F1-Score. The reason is that LogADSBERT based on
the Sentence-BERT model can capture more important log semantic features, and Bi-
LSTM with an attention mechanism can enhance the extraction of the logs’ semantic fea-
tures to improve the accuracy of the anomaly detection.
2. Statistics of FP and FN

Tables 3 and 4 show the number of FP and FN of LogADSBERT, DeepLog, and
LogAnomaly on the data set HDFS and OpenStack, respectively.

Table 3. Statistics on the number of FP and FN on the HDFS dataset.

Evaluation Metrics DeepLog LogAnomaly LogADSBERT
False positive (FP) 451 303 59
False negative (FN) 265 174 47

Figure 2. Accuracy on HDFS.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 16

than DeepLog in precision and recall, respectively. Moreover, LogADSBERT improves
5.5% and 3.0% more than LogAnomaly in precision and recall, respectively.

Figure 2. Accuracy on HDFS.

Figure 3 illustrates the precision, recall, and F1-score of the three methods on the
OpenStack dataset. The performance of LogADSBERT compared to DeepLog and
LogAnomaly on the OpenStack dataset is more pronounced than on the HDFS dataset.
There is already a more pronounced gap between LogADSBERT and the better-perform-
ing method, LogAnomaly, in terms of precision and F1-Score, with a difference of 7.1%
and 7.0%, respectively. In addition, LogADSBERT achieves 100% in terms of recall perfor-
mance, whereas the other methods achieve more than 90%.

Figure 3. Accuracy on OpenStack.

According to the above analysis, LogADSBERT is superior to DeepLog and
LogAnomaly in precision, recall and F1-Score. The reason is that LogADSBERT based on
the Sentence-BERT model can capture more important log semantic features, and Bi-
LSTM with an attention mechanism can enhance the extraction of the logs’ semantic fea-
tures to improve the accuracy of the anomaly detection.
2. Statistics of FP and FN

Tables 3 and 4 show the number of FP and FN of LogADSBERT, DeepLog, and
LogAnomaly on the data set HDFS and OpenStack, respectively.

Table 3. Statistics on the number of FP and FN on the HDFS dataset.

Evaluation Metrics DeepLog LogAnomaly LogADSBERT
False positive (FP) 451 303 59
False negative (FN) 265 174 47

Figure 3. Accuracy on OpenStack.

According to the above analysis, LogADSBERT is superior to DeepLog and LogAnomaly
in precision, recall and F1-Score. The reason is that LogADSBERT based on the Sentence-
BERT model can capture more important log semantic features, and Bi-LSTM with an
attention mechanism can enhance the extraction of the logs’ semantic features to improve
the accuracy of the anomaly detection.

2. Statistics of FP and FN

Tables 3 and 4 show the number of FP and FN of LogADSBERT, DeepLog, and
LogAnomaly on the data set HDFS and OpenStack, respectively.

Table 3. Statistics on the number of FP and FN on the HDFS dataset.

Evaluation Metrics DeepLog LogAnomaly LogADSBERT

False positive (FP) 451 303 59
False negative (FN) 265 174 47

Table 4. Statistics of the number of FP and FN on the OpenStack dataset.

Evaluation Metrics DeepLog LogAnomaly LogADSBERT

False positive (FP) 107 61 28
False negative (FN) 34 29 0

Table 3 shows the number of FP and FN of the three methods on the HDFS dataset.
The FP and FN of DeepLog and LogAnomaly are both significantly higher than those of
LogADSBERT. Compared to the worst-performing method DeepLog, the FP and FN of

Electronics 2023, 12, 3580 12 of 16

LogADSBERT are reduced by 244 and 127, respectively, which means that LogADSBERT
makes an 80.5% and 80.0% improvement in the FP and FN, respectively.

Table 4 shows the number of FP and FN of the three methods on the OpenStack
dataset. The result is similar to that shown in Table 3. The number of FP and FN in
LogADSBERT is obviously less than that of DeepLog and LogAnomaly. It indicates that
LogADSBERT outperforms DeepLog and LogAnomaly in the FP and FN metrics on the
OpenStack dataset.

3. Effects of different parameters on LogADSBERT

The experiments on the effect of different parameters on the precision, recall, and
F1-Score of LogADSBERT needed to be carried out using a control variable. For simplicity,
the more commonly used HDFS dataset was adopted in the experiment. The results of the
experiment are shown in Figures 4–7.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 16

Table 4. Statistics of the number of FP and FN on the OpenStack dataset.

Evaluation Metrics DeepLog LogAnomaly LogADSBERT
False positive (FP) 107 61 28
False negative (FN) 34 29 0

Table 3 shows the number of FP and FN of the three methods on the HDFS dataset.
The FP and FN of DeepLog and LogAnomaly are both significantly higher than those of
LogADSBERT. Compared to the worst-performing method DeepLog, the FP and FN of
LogADSBERT are reduced by 244 and 127, respectively, which means that LogADSBERT
makes an 80.5% and 80.0% improvement in the FP and FN, respectively.

Table 4 shows the number of FP and FN of the three methods on the OpenStack da-
taset. The result is similar to that shown in Table 3. The number of FP and FN in LogADS-
BERT is obviously less than that of DeepLog and LogAnomaly. It indicates that LogADS-
BERT outperforms DeepLog and LogAnomaly in the FP and FN metrics on the OpenStack
dataset.
3. Effects of different parameters on LogADSBERT

The experiments on the effect of different parameters on the precision, recall, and F1-
Score of LogADSBERT needed to be carried out using a control variable. For simplicity,
the more commonly used HDFS dataset was adopted in the experiment. The results of the
experiment are shown in Figures 4–7.

Figure 4. Number of log events: t.

Figure 5. Sliding window size: h.

Figure 4. Number of log events: t.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 16

Table 4. Statistics of the number of FP and FN on the OpenStack dataset.

Evaluation Metrics DeepLog LogAnomaly LogADSBERT
False positive (FP) 107 61 28
False negative (FN) 34 29 0

Table 3 shows the number of FP and FN of the three methods on the HDFS dataset.
The FP and FN of DeepLog and LogAnomaly are both significantly higher than those of
LogADSBERT. Compared to the worst-performing method DeepLog, the FP and FN of
LogADSBERT are reduced by 244 and 127, respectively, which means that LogADSBERT
makes an 80.5% and 80.0% improvement in the FP and FN, respectively.

Table 4 shows the number of FP and FN of the three methods on the OpenStack da-
taset. The result is similar to that shown in Table 3. The number of FP and FN in LogADS-
BERT is obviously less than that of DeepLog and LogAnomaly. It indicates that LogADS-
BERT outperforms DeepLog and LogAnomaly in the FP and FN metrics on the OpenStack
dataset.
3. Effects of different parameters on LogADSBERT

The experiments on the effect of different parameters on the precision, recall, and F1-
Score of LogADSBERT needed to be carried out using a control variable. For simplicity,
the more commonly used HDFS dataset was adopted in the experiment. The results of the
experiment are shown in Figures 4–7.

Figure 4. Number of log events: t.

Figure 5. Sliding window size: h. Figure 5. Sliding window size: h.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 16

Figure 6. Number of neural network layers: l.

Figure 7. Hide layer unit size: α.

Figure 4 shows the effect of t on the three performance metrics of LogADSBERT.
When t = 40, the performance of LogADSBERT is optimal, and when t = 45, the perfor-
mance of the method decreases, but overall, the effect is not significant. Figure 5 shows
the effect of the sliding window size h on the three performance metrics of LogADSBERT,
where the accuracy of LogADSBERT is gradually improved as h increases. As shown in
Figures 6 and 7, the effects of the number of neural network layers l and the hidden layer
unit size α on the LogADSBERT’s precision, recall, and F1-Score all reach the highest rate
at l = 2 and α = 64. In summary, under the conditions of different hyperparameters of the
number of log events t, sliding window size h, the number of neural network layers l, and
the size of the hidden layer unit α, LogADSBERT can ensure the stability of the overall
performance and obtain a high accuracy, which means that LogADSBERT is robust. In
this way, it can cope with the various uncertainties and complex factors that need to be
faced in the actual network system application scenario to achieve accurate and stable
anomaly detection.
4. Performance comparison of new log event injection

In order to further validate the robustness and effectiveness of LogADSBERT, we
conducted experiments involving the addition of new log events on the HDFS dataset. We
once again used precision, recall, and F1-Score as the performance metrics, and the com-
parison methods employed DeepLog and LogAnomaly. The set of log events in the train-
ing stage covers the system log datasets and contains 13 log events, and the number of
newly added log events was 33. DeepLog does not provide a solution for newly added log
events, and here, it was set to mark the log sequence as abnormal when the newly added
log events were detected. The results of the experiments are shown in Table 5.

Figure 6. Number of neural network layers: l.

Electronics 2023, 12, 3580 13 of 16

Electronics 2023, 12, x FOR PEER REVIEW 13 of 16

Figure 6. Number of neural network layers: l.

Figure 7. Hide layer unit size: α.

Figure 4 shows the effect of t on the three performance metrics of LogADSBERT.
When t = 40, the performance of LogADSBERT is optimal, and when t = 45, the perfor-
mance of the method decreases, but overall, the effect is not significant. Figure 5 shows
the effect of the sliding window size h on the three performance metrics of LogADSBERT,
where the accuracy of LogADSBERT is gradually improved as h increases. As shown in
Figures 6 and 7, the effects of the number of neural network layers l and the hidden layer
unit size α on the LogADSBERT’s precision, recall, and F1-Score all reach the highest rate
at l = 2 and α = 64. In summary, under the conditions of different hyperparameters of the
number of log events t, sliding window size h, the number of neural network layers l, and
the size of the hidden layer unit α, LogADSBERT can ensure the stability of the overall
performance and obtain a high accuracy, which means that LogADSBERT is robust. In
this way, it can cope with the various uncertainties and complex factors that need to be
faced in the actual network system application scenario to achieve accurate and stable
anomaly detection.
4. Performance comparison of new log event injection

In order to further validate the robustness and effectiveness of LogADSBERT, we
conducted experiments involving the addition of new log events on the HDFS dataset. We
once again used precision, recall, and F1-Score as the performance metrics, and the com-
parison methods employed DeepLog and LogAnomaly. The set of log events in the train-
ing stage covers the system log datasets and contains 13 log events, and the number of
newly added log events was 33. DeepLog does not provide a solution for newly added log
events, and here, it was set to mark the log sequence as abnormal when the newly added
log events were detected. The results of the experiments are shown in Table 5.

Figure 7. Hide layer unit size: α.

Figure 4 shows the effect of t on the three performance metrics of LogADSBERT. When
t = 40, the performance of LogADSBERT is optimal, and when t = 45, the performance
of the method decreases, but overall, the effect is not significant. Figure 5 shows the
effect of the sliding window size h on the three performance metrics of LogADSBERT,
where the accuracy of LogADSBERT is gradually improved as h increases. As shown in
Figures 6 and 7, the effects of the number of neural network layers l and the hidden layer
unit size α on the LogADSBERT’s precision, recall, and F1-Score all reach the highest rate
at l = 2 and α = 64. In summary, under the conditions of different hyperparameters of the
number of log events t, sliding window size h, the number of neural network layers l, and
the size of the hidden layer unit α, LogADSBERT can ensure the stability of the overall
performance and obtain a high accuracy, which means that LogADSBERT is robust. In this
way, it can cope with the various uncertainties and complex factors that need to be faced
in the actual network system application scenario to achieve accurate and stable anomaly
detection.

4. Performance comparison of new log event injection

In order to further validate the robustness and effectiveness of LogADSBERT, we
conducted experiments involving the addition of new log events on the HDFS dataset.
We once again used precision, recall, and F1-Score as the performance metrics, and the
comparison methods employed DeepLog and LogAnomaly. The set of log events in the
training stage covers the system log datasets and contains 13 log events, and the number of
newly added log events was 33. DeepLog does not provide a solution for newly added log
events, and here, it was set to mark the log sequence as abnormal when the newly added
log events were detected. The results of the experiments are shown in Table 5.

Table 5. Experimental results of new log event injection.

Evaluation Metrics DeepLog LogAnomaly LogADSBERT

Precision 0.409 0.552 0.937
Recall 0.976 0.932 0.928

F1-Score 0.577 0.694 0.932

Table 5 shows that for LogADSBERT, two of the evaluation metrics, precision and F1-
Score, were significantly better than for the other two methods. In particular, the F1-Score
reached 93.2%, which is 23.8% higher than LogAnomaly. Since LogADSBERT is based on
the semantic features of log events for log anomaly detection, the new log events will be
matched by a T-SBERT-based log event semantic matching algorithm to obtain the most
similar log event semantic representations, so it can vastly reduce the impact of new log
events on the anomaly detection results. Additionally, in the experiments, DeepLog was
set to detect all log sequences of the new log events as abnormal log sequences, which
would certainly lead to a significantly better DeepLog detection rate compared with the
other methods, but this setting made the number of FP too high and, consequently, both

Electronics 2023, 12, 3580 14 of 16

the precision and F1-Score were much lower than for the other methods. The solution
strategy of LogAnomaly for new log events is to replace the log events by calculating the
Euclidean distance with the already determined log events; however, this method does not
represent the new log events well, and when the number of new log events is too large, the
overall performance decreases rapidly. In summary, LogADSBERT, a log anomaly detection
method based on Sentence-BERT, maintains strong robustness in the scenario of adding
new log events.

7. Conclusions

In this paper, to solve the existing problems of log anomaly detection methods based
on deep learning, we proposed a Sentence-BERT-based log anomaly detection method,
LogADSBERT. The proposed anomaly detection model trained by inputting the log event
corpus not only extracts the log event information containing semantic features, but also
obtains the most relevant log event semantic information based on the log event semantic
matching algorithm for the newly added log events. The proposed method shows improved
accuracy compared to the existing anomaly detection methods, and it also shows robustness
when new log events are added.

With the rapid development of software systems, log anomaly detection needs to be
updated and iterated to meet new requests. In the future, the following aspects should
be focused on: (1) optimizing the preprocessing of log data to improve the efficiency of
anomaly detection; and (2) realizing multimodal log anomaly detection, where log anomaly
detection integrates multiple types of log data to conduct joint analysis and processing to
improve the accuracy and robustness of anomaly detection.

Author Contributions: Conceptualization, C.H. and H.D.; methodology, C.H. and X.S.; software,
C.H. and X.S.; validation, H.D., H.Z. and C.H.; formal analysis, X.S. and H.D.; investigation, H.Z.;
resources, X.S. and C.H.; data curation, H.L.; writing—original draft preparation, C.H., H.Z. and X.S.;
writing—review and editing, C.H. and H.D.; visualization, X.S.; supervision, H.D. and C.H.; project
administration, C.H. and H.D.; funding acquisition, C.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Jinling Institute of Technology High-level Talent Research
Start-up Project (JIT-RCYJ-202102), Key R&D Plan Project of Jiangsu Province (BE2022077), Jinling
Institute of Technology Science and Education Integration Project (2022KJRH18), and Jiangsu Province
College Student Innovation Training Program Project (202313573080Y, 202313573081Y).

Data Availability Statement: This research employed publicly available datasets for its experimental
studies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lam, H.; Russell, D.; Tang, D.; Munzner, T. Session viewer: Visual exploratory analysis of web session logs. In Proceedings of

the2007 IEEE Symposium on Visual Analytics Science and Technology, Sacramento, CA, USA, 30 October–1 November 2007;
IEEE: Piscataway, NJ, USA, 2007; pp. 147–154.

2. Yadav, R.B.; Kumar, P.S.; Dhavale, S.V. A survey on log anomaly detection using deep learning. In Proceedings of the 2020 8th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida,
India, 4–5 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1215–1220.

3. Anastasiou, D.; Ruge, A.; Ion, R.; Segărceanu, S.; Suciu, G.; Pedretti, O.; Gratz, P.; Afkari, H. A machine translation-powered
chatbot for public administration. In Proceedings of the 23rd Annual Conference of the European Association for Machine
Translation, Ghent, Belgium, 1–3 June 2022; pp. 327–328.

4. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3982–3992.

5. Jang, B.; Kim, M.; Harerimana, G.; Kang, S.U.; Kim, J.W. Bi-LSTM model to increase accuracy in text classification: Combining
Word2vec CNN and attention mechanism. Appl. Sci. 2020, 10, 5841. [CrossRef]

https://doi.org/10.3390/app10175841

Electronics 2023, 12, 3580 15 of 16

6. Roy, S.; König, A.C.; Dvorkin, I.; Kumar, M. Perfaugur: Robust diagnostics for performance anomalies in cloud services. In
Proceedings of the 2015 IEEE 31st International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 1167–1178.

7. Prewett, J.E. Analyzing cluster log files using logsurfer. In Proceedings of the 4th Annual Conference on Linux Clusters, St.
Petersburg, Russia, 2–4 June 2003; Citeseer: State College, PA, USA, 2003; pp. 1–12.

8. Rouillard, J.P. Real-time Log File Analysis Using the Simple Event Correlator (SEC). LISA 2004, 4, 133–150.
9. Liang, Y.; Zhang, Y.; Xiong, H.; Sahoo, R. Failure prediction in ibm bluegene/l event logs. In Proceedings of the Seventh IEEE

International Conference on Data Mining (ICDM 2007), Omaha, NE, USA, 28–31 October 2007; IEEE: Piscataway, NJ, USA, 2007;
pp. 583–588.

10. Wang, Y.; Wong, J.; Miner, A. Anomaly intrusion detection using one class SVM. In Proceedings of the Fifth Annual IEEE SMC
Information Assurance Workshop, West Point, NY, USA, 10–11 June 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 358–364.

11. Breier, J.; Branišová, J. Anomaly detection from log files using data mining techniques. In Information Science and Applications;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 449–457.

12. He, P.; Zhu, J.; He, S.; Li, J.; Lyu, M.R. Towards automated log parsing for large-scale log data analysis. IEEE Trans. Dependable
Secur. Comput. 2017, 15, 931–944. [CrossRef]

13. Chen, M.; Zheng, A.X.; Lloyd, J.; Jordan, M.I.; Brewer, E. Failure diagnosis using decision trees. In Proceedings of the International
Conference on Autonomic Computing, New York, NY, USA, 17–19 May 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 36–43.

14. Ying, S.; Wang, B.; Wang, L.; Li, Q.; Zhao, Y.; Shang, J.; Huang, H.; Cheng, G.; Yang, Z.; Geng, J. An improved KNN-based efficient
log anomaly detection method with automatically labeled samples. ACM Trans. Knowl. Discov. Data (TKDD) 2021, 15, 1–22.
[CrossRef]

15. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M.I. Detecting large-scale system problems by mining console logs. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, Big Sky, MT, USA, 11–14 October 2009; pp.
117–132.

16. Xu, D.; Wang, Y.; Meng, Y.; Zhang, Z. An improved data anomaly detection method based on isolation forest. In Proceedings of
the 2017 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 9–10 December
2017; IEEE: Piscataway, NJ, USA, 2017; Volume 2, pp. 287–291.

17. Lou, J.G.; Fu, Q.; Yang, S.; Xu, Y.; Li, J. Mining Invariants from Console Logs for System Problem Detection. In Proceedings of the
USENIX Annual Technical Conference, Virtual, 14–16 July 2010; pp. 1–14.

18. Vaarandi, R.; Pihelgas, M. Logcluster-a data clustering and pattern mining algorithm for event logs. In Proceedings of the 2015
11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 1–7.

19. Du, M.; Li, F.; Zheng, G.; Srikumar, V. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017; pp. 1285–1298.

20. Meng, W.; Liu, Y.; Zhu, Y.; Zhang, S.; Pei, D.; Liu, Y.; Chen, Y.; Zhang, R.; Tao, S.; Sun, P.; et al. LogAnomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs. IJCAI 2019, 19, 4739–4745.

21. Brown, A.; Tuor, A.; Hutchinson, B.; Nichols, N. Recurrent neural network attention mechanisms for interpretable system log
anomaly detection. In Proceedings of the First Workshop on Machine Learning for Computing Systems, Tempe, AZ, USA, 12
June 2018; pp. 1–8.

22. Chen, S.; Liao, H. Bert-log: Anomaly detection for system logs based on pre-trained language model. Appl. Artif. Intell. 2022, 36,
2145642. [CrossRef]

23. Zhang, M.; Chen, J.; Liu, J.; Wang, J.; Shi, R.; Sheng, H. LogST: Log semi-supervised anomaly detection based on sentence-BERT.
In Proceedings of the 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 20–22 July 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 356–361.

24. Guo, H.; Yuan, S.; Wu, X. Logbert: Log anomaly detection via bert. In Proceedings of the 2021 International Joint Conference on
Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8.

25. Mizutani, M. Incremental mining of system log format. In Proceedings of the 2013 IEEE International Conference on Services
Computing, Santa Clara, CA, USA, 28 June–3 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 595–602.

26. Shima, K. Length matters: Clustering system log messages using length of words. arXiv 2016, arXiv:1611.03213.
27. Hamooni, H.; Debnath, B.; Xu, J.; Zhang, H.; Jiang, G.; Mueen, A. Logmine: Fast pattern recognition for log analytics. In

Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA,
24–28 October 2016; pp. 1573–1582.

28. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An online log parsing approach with fixed depth tree. In Proceedings of the 2017 IEEE
International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp.
33–40.

29. Makanju, A.; Zincir-Heywood, A.N.; Milios, E.E. A lightweight algorithm for message type extraction in system application logs.
IEEE Trans. Knowl. Data Eng. 2011, 24, 1921–1936. [CrossRef]

https://doi.org/10.1109/TDSC.2017.2762673
https://doi.org/10.1145/3441448
https://doi.org/10.1080/08839514.2022.2145642
https://doi.org/10.1109/TKDE.2011.138

Electronics 2023, 12, 3580 16 of 16

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; Curran Associates Inc.: New York, NY, USA; pp. 6000–6010.

31. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
32. Hoffer, E.; Ailon, N. Deep metric learning using triplet network. In Proceedings of the Similarity-Based Pattern Recognition:

Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, 12–14 October 2015; Springer International Publishing:
Berlin/Heidelberg, Germany, 2015; pp. 84–92.

33. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
34. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), Lake Tahoe, NV, USA, 3–7 May 2010; IEEE: Piscataway, NJ, USA,
2010; pp. 1–10.

35. Sefraoui, O.; Aissaoui, M.; Eleuldj, M. OpenStack: Toward an open-source solution for cloud computing. Int. J. Comput. Appl.
2012, 55, 38–42. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.5120/8738-2991

	Introduction
	Related Work
	Preliminary Knowledge
	Log Parser
	Self-Attention Mechanism
	Sentence-BERT Model
	Bi-LSTM Neural Network Model

	Definitions of LogADSBERT
	Algorithms of LogADSBERT
	Sentence-BERT Training Algorithm
	Log Event Semantic Matching Algorithm
	Bi-LSTM Training Algorithm
	Anomaly Detection Algorithm

	Evaluation
	Experimental Setting
	Evaluation Metrics
	Environment and Hyperparameters
	Experimental Datasets

	Result

	Conclusions
	References

