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Abstract: Multispectral information fusion technology is a practical approach to enhance pedes-
trian detection performance in low light conditions. However, current methods often overlook the
impact of illumination on modal weights and the significance of inter-modal differential informa-
tion. Therefore, this paper proposes a novel illumination-aware cross-modality differential fusion
(IACMDF) model. The weights of the different modalities in the fusion stage are adaptively adjusted
according to the illumination intensity of the current scene. On the other hand, the advantages of the
respective modalities are fully enhanced by amplifying the differential information and suppressing
the commonality of the twin modalities. In addition, to reduce the loss problem caused by the
importance occupied by different channels of the feature map in the convolutional pooling process,
this work adds the squeeze-and-excitation attention mechanism after the fusion process. Experiments
on the public multispectral dataset KAIST have shown that the average miss rate of our method is
substantially reduced compared to the baseline model.

Keywords: pedestrian detection; cross-modality; illumination aware; multispectral fusion; deep
learning

1. Introduction

Due to the influence of low light, backlight, uneven light, and dim light, the quality
of images/video generation is poor, seriously affecting the performance of image-based
object detection [1]. One solution is to improve the quality of the image using low-light
image enhancement algorithms such as LLNet [2], ABSGNet [3], and URetinex-Net [4].
Another method utilizes multiple sensors to obtain information about detected objects in a
light-varying environment. Pedestrian detection is one of the critical application fields of
computer vision. However, traditional computer-vision-based pedestrian detection models
have relatively high requirements for the circumstances of the input images or videos [5,6].
With the spread of intelligent surveillance and autonomous driving, the demands for
pedestrian detection in complex scenarios (e.g., low illumination conditions) are becom-
ing increasingly urgent [7]. Integrating another modality can significantly improve the
efficiency of the pedestrian detection task compared to a single visible modal information
input. For example, spectral images can detect a substance’s light radiation and reveal
the target object’s basic colour properties. In contrast, thermal images can be acquired
based on the thermal radiation difference of an object without relying on an external light
source [8–11]. Consequently, it is complementary to visible modal detection due to its
ability to capture thermal features under poor lighting conditions. As shown in Figure 1,
the visible light sensor does not detect all pedestrians on a poorly lit road at night. In
contrast, in the same scenario, using an infrared camera can identify pedestrians on the
dark side of the road.
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Figure 1. Images with different modes in the same scene. Left: image acquired in visible light mode.
Right: image captured in infrared light mode in the same scene.

The critical issue in the current research on multispectral pedestrian detection is
how to fuse multimodal information. At what stage to fuse visible and thermal image
information is the first concern to be considered for combined multimodal detection [12,13].
According to the stages of model processing, there are three major types: early fusion,
halfway fusion, and late fusion [14]. Early fusion at the model level refers to integrating
features immediately after they are extracted. Since deep learning will inherently involve
learning specific representations of features from raw data, this leads to the fact that fusion
may sometimes be required before features are extracted, i.e., data fusion. Therefore,
both feature-level and data-level fusion is referred to as early fusion. Halfway fusion is
performed during the feature extraction process by the model to feed into the detector. Late
fusion is also called decision-level fusion, where a deep learning model is first trained on
different modalities and then fuses the outputs of multiple models. Ref. [12] elaborated
on four convolutional neural network fusion architectures that integrate dual branches
of convolutional neural networks in different DNN (deep neural network) stages. The
experimental results demonstrate that halfway fusion is superior to other fusion approaches
(e.g., early fusion, late fusion, and score fusion). Early multimodal data fusion does not
fully demonstrate the complementarity between the modalities and may lead to redundant
vector inputs. In contrast, late fusion has high requirements for the strategy of fusion.
Six fusion architectures that fuse visible and thermal modalities at different stages were
compared in [15], leading to the same conclusion. In the following years, the advantages of
halfway fusion were demonstrated in [16–20]. Therefore, the fusion strategy of the model in
this paper is also chosen in this way. Integrating multispectral information more effectively
in the halfway fusion process has recently become the research focus. In [21], the region
proposal network (RPN) was utilised as a feature extraction module based on halfway
fusion and classification using a boost decision tree (BDT) to improve the performance of
the pedestrian detector. A gated fusion unit between the two single detectors was proposed
in [22] to fuse visible and thermal spectral image features efficiently. Nevertheless, most
existing methods integrate the information of two modalities without considering the
influence of current scene factors (e.g., illumination) on inter-modal fusion. In well-lit
scenes, the visible modal information plays a more significant role than the infrared mode.
Conversely, the infrared light information should dominate in low-illumination scenes.
Therefore, the integration mechanism should be adaptive rather than static. In addition,
since the visible and infrared light image pairs are in the same scene, there is a large amount
of redundant information. We argue that the fusion of features between modes should not
just be superimposed or concatenated; more attention should be paid to the differences
between the two, since differential information from the same scene can better show the
strengths of the respective modalities. Furthermore, involving the lighting conditions of
the current scene can further extend the advantages of the differentiating information of
the modes.

From this perspective, this paper proposes the illumination-aware cross-modality
differential fusion model. Specifically, information from multispectral images is extracted
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separately by a dual-branch convolutional network, with halfway fusion having been
selected. The features of different modalities are passed through the cross-modal differential
fusion module to fully amplify the differential information of sensors and suppress the same
information. We trained the illumination intensity classification sub-network in advance
(see Section 3.3 for details). The illumination intensity information of the current scene is
obtained by passing the visible image of the scene through this pre-trained sub-network.
The illumination information adds a weight value to the features of both modalities. The
processed multi-channel feature map is followed by adding the SE [23] attention mechanism
to mitigate the loss caused by the different importance occupied by different channels of
the feature map during the convolution pooling process and, finally, fed to the detector.
This paper’s main contributions can be summarised as follows:

1. We explore a new mechanism for the adaptive calculation of the two modal weights
required depending on the different illumination levels of different scenery.

2. This paper proposes the IACMDF algorithm that combines the illumination infor-
mation of a scenario with the differential information of different modalities of the
same scene.

3. The experimental results show that the proposed method is competitive and performs
better than the baseline methods.

The remainder of this paper is as follows. Section 2 presents an overview of related
work on multispectral pedestrian detection. We present a detailed description of our
proposed IACMDF model in Section 3. Section 4 illustrates how the proposed method
compares with other methods on a benchmark dataset, as well as some exploratory and
ablation experiments. Section 5 summarises our conclusions.

2. Related Work

In this section, we first review the main multispectral pedestrian methods based on
visible and infrared light. Afterwards, this work focus on analysing the illumination-aware
modal weight recalculation strategy during network fusion and exploring the potential
scope for improvement.

2.1. Multispectral Pedestrian Detection

In recent years, multispectral pedestrian detection has received increasing attention
from researchers. In 2015, Hwang et al. [24] proposed the KAIST multispectral dataset.
They extended the aggregated channel feature pedestrian detector to extend the ACF [25]
method by enhancing the thermal intensity of the thermal images and HOG (histogram
of oriented gradient) features as additional channel features. Liu et al. [12] demonstrated
that halfway fusion is more advantageous than other fusion strategies by designing four
CNN-based architectures that fuse features extracted from two subnets. MSDS-RCNN [26]
adopted a halfway fusion architecture with dual streams to combine the pedestrian detection
task with the semantic segmentation task to improve detection accuracy. Since then, halfway
fusion has become the default strategy in deep-learning-based multispectral work [27–29].
Zheng et al. [22] proposed a novel gated fusion unit (GFU) based on halfway fusion, which
learns a combination of feature maps generated by coloured SSD [30] and thermal SSD.
CIAN [31] proposed a cross-modal interaction attention mechanism to exploit modal corre-
lations and adaptive fusion features. Kim et al. [32] deployed EfficientDet as a backbone
and proposed a fusion framework for multispectral pedestrian detection based on Efficient-
Det, which improves the detection accuracy of pedestrians in visible and thermal images
by adding and cascading visible and thermal features. Zhang et al. [33] proposed guided
attention feature fusion (GAFF) to guide multispectral feature fusion. GAFF achieves a
fully adaptive fusion of thermal and visible features without hand-made assumptions or
additional annotations. Kim et al. [34] proposed a novel single-stage detection framework
that used multi-label learning to learn input-state-aware features by assigning an individual
label based on a given state of the input image pair. Uncertainty-aware cross-modal guidance
(UCG) [35] modules have been proposed to encode the similarity of feature distributions
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by guiding the two modalities to obtain more distinguishing features. Zhang et al. [36]
introduced the regional feature alignment (RFA) module, which adaptively compensates for
feature mapping misalignment in two ways. To handle the position shift problem in visible
and thermal image alignment, AR-CNN designed a region feature alignment module to align
the region features of both modalities. Shojaiee et al. [37] extracted different feature vectors
from the visible and thermal domains of a nighttime pedestrian head image. The features
from both parts were fused at the feature level. Roszyk et al. [38] designed various fusion
structures and demonstrated the advantages of halfway fusion. Yang et al. [39] proposed
a cascaded information enhancement module. From the perspective of feature fusion, the
interference of colour and thermal modal backgrounds on pedestrian detection was reduced,
and an attention mechanism enhanced pedestrian features of colour and thermal modal
backgrounds. Most of these methods are based on a simple dual-branch architecture. They
do not explore the correlation between modalities at a deeper level nor associate the scene’s
illumination with multimodal fusion.

2.2. Illumination Awareness in the Fusion Model

Several researchers have realised that the illumination factor plays a substantial role in
multispectral fusion models. Different illuminance values determine new fusion weights
during the fusion process. Chen et al. [15] introduced an illumination-aware network to
give the illumination metric of the input image, adaptively merging the visible and thermal
networks employing a gate function defined over the illumination values. Guan et al. [40]
proposed a multispectral pedestrian detection framework based on light-aware pedes-
trian detection and semantic segmentation. They used a novel light-aware weighting
mechanism to describe the light conditions and integrated illumination information into
a dual-stream CNN to obtain human-related features under different light conditions.
MBNet [41] facilitates the optimisation process in a more flexible and balanced way, im-
proving the detector’s performance, utilising a light-aware feature alignment module that
adaptively selects complementary information based on lighting conditions. To overcome
the effects of environmental factors such as real time and resistance to low light conditions,
Zhuang et al. [42] proposed a lightweight one-stage illumination and temperature-aware
multispectral network (IT-MN). Yang et al. [29] proposed an efficient cross-modal fusion
module called bidirectional adaptive attention gate (BAA-Gate). Based on the adaptive
interaction of BAA-Gate with the illumination weighting strategy, it adaptively adjusts the
recalibration and aggregation intensity in BAA-Gate to enhance the robustness to illumi-
nation changes. Tang et al. [43] utilise the light probability to construct an illumination
aware loss to guide the training of the fusion network, the cross-modal differential aware
fusion module and the semi-modal fusion strategy fuse entirely the joint and complemen-
tary information under the light perception loss constraint. Yan et al. [14] incorporate an
adaptive illumination-aware weight generation module to lift the contributions of visible
and thermal modalities by extracting the illumination information from the two modalities.
These integrate scene illumination information directly into the fused network, taking little
account of the variable weighting of the scene information obtained by different sensors at
different illumination levels.

3. Methods

In this section, details of the proposed illumination-aware cross-modality differential
fusion (IACMDF) multispectral pedestrian detection framework are provided. The overall
architecture of the model is first described, followed by the IACMDF module formed by
combining the illumination-aware (IA) module with the cross-modality differential fusion
(CMDF) module. Finally, the work introduces the illumination intensity classification
sub-network required in the IACMDF.
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3.1. Overall Architecture

How to adaptively fuse multispectral image pairs has been the most widely researched
topic in multispectral pedestrian detection. Researchers have experimentally demonstrated
that halfway fusion is more effective than early and late fusion. Meanwhile, most re-
searchers have adopted some representative detection models as the baseline network
for fusion algorithms. The choice of a representative baseline algorithm makes it easy to
conclude whether or not the proposed model is suitable. The proposed detection model is
also based on an SSD-like halfway fusion model.

Figure 2 illustrates the overall architecture of the proposed dual-stream multispectral
pedestrian detection model based on halfway fusion. The model consists of feature extrac-
tion, feature fusion, and a detection head. The input to the model requires pairs of visible
and thermal images of the same scene. Features are extracted separately using independent
dual-branch backbone networks. The backbone network selected for comparison in this
work was a VGG16 network pre-trained on ImageNet. The extracted features are fed into
the IACMDF module for fusion at the conv4_3, conv6, conv7, conv8, conv9, and conv10
layers. The SE attention mechanism is added after all the fused feature maps, and finally,
the SSD-like detection head is input to obtain the result.

Figure 2. The overall architecture of the proposed model.

In some previous multispectral pedestrian detection models, convolutional layers
with shared parameters were used in the feature extraction stage to improve detection
efficiency, which reduced the feature extraction capability. So, this paper uses mutually
independent dual-branch networks using independent convolution to extract features from
multispectral images. As shown in Equation (1), where F represents the feature map after
the fusion of the two modalities, f s and f i denote the mode-shared and mode-independent
convolution parts, respectively. IV and IT indicate the image information of visible and
thermal optics, respectively, and ⊗ denotes a fusion mechanism. This model architecture
reduces the number of parameters in the model to a certain extent but at the expense of
detection accuracy. As shown in Equation (2), the proposed model is more concerned with
the mechanism of fusion, focusing on making its fusion strategy more effective, which
means it performs better in cross-sectional comparisons with other baseline models using
the same evaluation metrics on public data sets.

F = fs[ fi(Iv)⊗ fi(It)] (1)
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F = fi(Iv)⊗ fi(It) (2)

3.2. IACMDF Module

Effectively fusing the two information modes becomes the most critical task for multi-
modal pedestrian detection. Different scenes have different illumination rates. Thus, the
contribution of the information in the two image modes is not the same. Furthermore,
the contribution of the individual channels of the picture varies at different illumination
levels from a microscopic point of view. Adding or multiplying functionality can lead
to worse results than in a single mode. Inspired by MBNet [41], we take the principle of
utilising differential amplification circuits. By complementing the two modal features and
augmenting one modality with the other, the algorithm can increase its sensitivity to the
information of the other modal feature and improve the degree of information interaction
between the two channels.

The proposed IACMDF module is a further exploration on this basis. As shown
in Figure 3, the IACMDF module consists of a hot-swappable combination of a cross-
modality differential fusion module (CMDF) and an illumination-aware module (IA). The
differential information is a well-represented difference between the two modalities. The
CMDF module is to amplify the difference between the two modes to improve the overall
performance. Furthermore, the CMDF module links the RGB feature extractor and the
thermal feature extractor. It should play a balanced role in the impact of both modes. FD
represents the difference between the visible light’s and infrared light’s modal picture
features and is designed for the symmetry of the CMDF module. To enable the integration
of the differential information into the corresponding channels, the new fused features are
obtained by global average pooling of the differential information, activating it, and then
dot-multiplying it with the modal differences, and finally, summing it with the respective
channels. Global average pooling converts the feature map into a global representation to
apply attention at the channel level. So the purpose of using global averaging in pooling
here is to compress the FD into a global difference vector, which can be interpreted as a
channel descriptor with statistics representing the difference between the RGB and thermal
modes. Equations (3) and (4) show that F

′
R and F

′
T represent the features of the processed

visible and thermal images, respectively. GAP represents global average pooling, and σ is
the sigmoid activation function. FR and FT denote the features of the visible and thermal
images, respectively.

F
′
R = FR + [σ(GAP(FT − FR))× (FT − FR)] (3)

F
′
T = FT + [σ(GAP(FR − FT))× (FR − FT)] (4)

Since the illumination intensity of different scenes is different, the weights of the two
models should be determined according to the current scene illumination information.
The overall role of the IA module is to obtain the sizes of the weights required for each
modality to be fused by the illumination of the current scene. The IA module comprises a
pre-trained illumination intensity sub-network and an illumination gate. Using the pre-
trained illumination intensity classification sub-network, we can obtain two values from 0
to 1 representing the light intensity from the input visible light modal image. These two
values represent the probability that the current scene is strongly or weakly illuminated.



Electronics 2023, 12, 3576 7 of 15

Figure 3. Illustration of the proposed IACMDF module.

As shown in Figure 4, the illumination gate calculates the required weighting based
on the values obtained from the illumination intensity sub-network. The value of IC is
the intensity classification, and IV denotes the intensity value of the illumination. If the
light intensity strong value is higher than the weak, IC is positive and the value of IV is
equal to the strong value. Conversely, IC is minus one, and IV is the weak value. The
weight values for the two modalities are mapped through the value of IV , essentially the
probability value of classifying the current scene as strong or weak in light intensity. WR
and WT represent the weight of the visible and infrared light modes at the fusion time,
respectively. Equation (5) shows the procedure for obtaining the WR values. This work has
controlled the final output value to sbetween 0.85 and 1.15 by adding a limiting factor α.
Specifically, the range of IV values is [0, 1]. The value of the limiting factor α has been set
to 0.15 based on extensive experiments. The possible values of IC are positive or negative,
multiplying them together and adding 1 to the range of values [0.85, 1.15]. Equation (6)
shows the procedure for obtaining the WT values.

WR = 1 + α× IC × IV (5)

WT = 2−WR (6)

Figure 4. Details of the illumination gate interior.
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The obtained weight values are multiplied with the processed visible and thermal
light image features and then connected to obtain the fused feature map. Finally, we do
not feed this feature map directly into the detector but perform another 3 × 3 convolution
with ReLU activation. As shown in Equation (7), where the φ denotes concatenating the
re-weighted features and FF is the final weighted fusion feature map.

FF = Relu(Conv2d(φ(WRF
′
R, WT F

′
T))) (7)

The detection head uses multiple features fused with different resolution maps as
input to detect pedestrians of different sizes. The loss term for localisation is the same as
SSD [30]. For classification loss, the network adopted a binary cross-entropy loss function
in an end-to-end manner. The prediction scores in the classification task are calculated by
taking the average GRB and hot confidence scores corresponding to the same bounding
box. The final loss item is the sum of the two loss items in a ratio of 1:1.

3.3. Illumination Intensity Classification Sub-Network

The objective of the illumination intensity classification sub-network is to estimate the
light intensity of a scene. The input to the network is the visible light image. The output is
two values, i.e., the probability of the current scene being strongly or weakly illuminated,
normalised by the softmax function to [0,1]. The architecture of the network is shown in
Figure 5. In order not to consume too many computational resources on this sub-network,
the illumination intensity classification sub-network consists of four convolutional layers, a
global average pooling layer, and two fully connected layers. The numbers of convolutional
kernels in the four convolutional layers are 16, 32, 64, and 128, respectively, and the size of
the convolutional kernels is 3 × 3. The stride size is set to 2. This work used Leaky ReLU as
the activation function. A global average pooling operation is used in the middle of the
convolution and fully connected layers to integrate image feature information. Finally, two
fully connected layers calculate the illumination intensity probability. The illumination
intensity sub-network is essentially a classifier. Therefore, this work used cross-entropy
loss to constrain the training process of the sub-network, as shown in Equation (8), where ỹ
represents the label of the input image, encoded by one-hot, the training labels with intense
illumination are set to [1,0] and the labels with weak illumination are set to [0,1], the y
denotes the sub-network probability value of the solid or weak illumination output. The Θ
refers to the softmax function.

L = −ỹ log Θ(y)− (1− ỹ) log(1−Θ(y)) (8)

Figure 5. Illumination intensity sub-network structure.

4. Experiments

In this section, we first present the multispectral pedestrian dataset and evaluation
metrics and give the implementation details. The experimental results on the public dataset
are then compared with the baseline multispectral detection models. Finally, the validity of
each proposed component is verified by an ablation study.

4.1. Dataset and Metrics

This study requires a specific dataset of visible images paired with thermal images.
Therefore, the KAIST [24], CVC-14 [44], and LLVIP [45] multispectral pedestrian datasets
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were chosen to evaluate our model. The KAIST multispectral pedestrian dataset comprises
95,328 aligned visible and thermal paired images of the same scene in different urban
environments. A total of 1182 pedestrian instances with 103128 bounding boxes were
included. In the training phase, one frame was taken from every two frames to obtain
25,076 images as the training subset. In the test phase, one frame was extracted from every
20 frames, and a total of 2252 frames were obtained, of which 1455 frames were obtained
during the day and 797 frames during the night. Considering that the original dataset
was sampled to some extent as the images were taken from successive frames of the video
and there was no difference between adjacent images, and some of the annotations in the
original dataset were incorrect, the improved annotations proposed in [36] were used for
training. The evaluation process used the improved test annotations from ref. [26].

The CVC-14 dataset contains visible and thermal paired images and is a multispectral
pedestrian dataset taken with a stereo camera configuration. This dataset’s training and test
sets contain 7085 and 1433 images, respectively. The training set contains 3695 daytime and
3390 nighttime images, including annotated pedestrians in 1500 daytime and nighttime
images. The test set contains 1433 images, of which 706 were taken during the day and
727 at night. The annotations are provided separately for each mode as the camera is
not calibrated.

The LLVIP dataset is a recently proposed visible–infrared paired pedestrian dataset
from Jia et al. Most of this dataset was taken in low light conditions. It contains 33,672 im-
ages. All images are strictly aligned. The pedestrians in the dataset are labelled. Each
image pair is collected by a binocular camera consisting of a visible light camera and an
infrared camera.

The evaluation metric is the log-average miss rate (LAMR), which represents the
averaging of the miss rate of FPPI (false positive per image) in the range of [0.01, 1] for nine
points uniformly taken in logarithmic space, as suggested by Dollar et al. [46]. The lower
the average miss rate, the better the algorithm’s performance. LAMR is one of the most
popular metrics for pedestrian detection tasks. This work furthermore evaluates the model
using mean average precision (mAP), where higher scores indicate better performance. The
mAP represents the average of the mAP with an IoU threshold of 0.5 to 0.95 at intervals of
0.05. mAP50 denotes the mAP at an IoU threshold of 0.5, and mAP75 refers to the mAP
with an IoU threshold of 0.75.

4.2. Implementation Details

The experimental test environment was the Ubuntu 16.04 operating system, and
the server hardware configuration was NVIDIA P100 graphics cards. The illumination
intensity sub-network model was first trained and supervised using visible light images
from the training set. The classification categories were divided into strong and weak
categories based on the light intensity in the photo scene. The Adam optimizer updated
the model parameters, and the learning rate was first initialised to 0.001 and then decayed
exponentially. We trained the sub-network batch size set to 16 for 20 epochs. When training
the detection model, classification results were obtained directly from the input visible light
image for that image’s illumination.

The detection model adopted was a modified PyTorch-based SSD algorithm model,
and the backbone network used VGG16 pre-trained on ImageNet. We have redesigned
the feature aggregation module by adding a fusion layer. Based on the features of human
appearance, we set the predefined anchor frame parameters to have aspect ratios of 1

1 and
1
2 , fine scales of (20,2

1
3 ,2

2
3 ), and scale levels of 40, 80, 160, 200, 280, and 360. The initial

learning rate, momentum, and weight decay were 0.0001, 0.9, and 0.0005, respectively. The
model was trained using SGD (stochastic gradient descent) with a batch size set to 16 for
50 epochs. The image input size was adjusted to 512 (H)×640 (W). To prevent distortion in
the augmented images, we used geometric transformations such as horizontal flips and
random resizing crops with a probability of 0.5.
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4.3. Comparison Experiments

KAIST: The proposed model was trained and tested on the KAIST dataset and com-
pared with other excellent multispectral pedestrian detection models, including ACF + T +
THOG (optimised) [24], halfway fusion [12], IAF-RCNN [16], CIAN [31], MSDS-RCNN [26],
AR-CNN [36], MBNet [41], and MLPD [34]. As shown in Table 1 and Figure 6, the proposed
model is superior in terms of detection performance when compared to current excellent
multimodal algorithms. In the case of an IoU (intersection over union) threshold of 0.5,
compared to previous methods such as MLPD, the average miss rate of the proposed
IACMDF fusion model is 1.41% lower overall, 0.89% lower during the day, and 2.62%
lower at night. Furthermore, some qualitative results on KAIST are shown in Figure 7. The
proposed IACMDF locates pedestrians more accurately than other pedestrian detectors. In
multispectral pedestrian detection, a suitable fusion strategy plays a vital role in obtaining
the maximum performance gain. We argue that the combination of scene illumination inten-
sity information with inter-modal differential information can fully amplify the advantages
of each modality. To explore the possibility of obtaining better detection results, we tested
the VGG16 and ResNet50 backbone networks separately in our model. The experiments
showed that VGG16 was slightly better than the ResNet50 network on the proposed model.
We also evaluated the proposed model on different subsets, which included different scale
levels and occlusion levels of the KAIST dataset, as shown in Table 2. Compared to the
baseline model, the proposed method still achieves relatively better results. This also
validates the robustness and generality of the proposed method.

Table 1. Evaluation results on the KAIST dataset.

Method Backbone
Miss Rate (IoU = 0.5) (%)

Platform Speed (s)
All Day Night

ACF [24] - 47.32 42.57 56.17 MATLAB 2.73
Halfway fusion [12] VGG16 25.75 24.88 26.59 TITAX 0.43

IAF R-CNN [16] VGG16 15.73 14.55 18.26 TITAX 0.25
CIAN [31] VGG16 14.12 14.77 11.13 1080 Ti 0.07

MSDS-RCNN [26] VGG16 11.34 10.53 12.94 TITAX 0.22
AR-CNN [36] VGG16 9.34 9.94 8.38 1080 Ti 0.12
MBNet [41] ResNet50 8.13 8.28 7.86 1080 Ti 0.07
MLPD [34] VGG16 7.58 7.95 6.95 2080 Ti 0.012

IACMDF (ours) ResNet50 6.93 7.36 6.11 P100 0.048
IACMDF (ours) VGG16 6.17 7.06 4.33 P100 0.034

Figure 6. Comparison of detection results on the test set of the KAIST multispectral benchmark, in
terms of all-day (left), daytime (middle), and nighttime (right). Compared to other methods, the
proposed model provides consistently stable performance across all scenarios.
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Table 2. Evaluation results on different scale and occlusion levels of the KAIST dataset.

Method
Scale (MR%) Occlusion (MR%)

Near Medium Far No Part Heavy

ACF [24] 28.74 53.67 88.20 62.94 81.40 88.08
Halfway fusion [12] 8.13 30.34 75.70 43.13 65.21 74.36

IAF R-CNN [16] 0.96 25.54 77.84 40.17 48.40 69.76
CIAN [31] 3.71 19.04 55.82 30.31 41.57 62.48

MSDS-RCNN [26] 1.29 16.19 63.73 29.86 38.71 63.37
AR-CNN [36] 0.00 16.08 69.00 31.40 38.63 55.73
MBNet [41] 0.00 16.07 55.99 27.74 35.43 59.14
MLPD [34] 0.00 15.89 57.45 26.46 35.34 60.28

IACMDF (ours) 0.00 15.15 55.16 24.97 33.22 53.88

In addition, we provide the mAP50 metrics on the KAIST dataset in Table 3 to further
demonstrate the effectiveness and progressiveness of the proposed method. The results
of the proposed method and the benchmark method on the KAIST dataset show that the
proposed method obtains better results.

Table 3. The mAP50 evaluation metrics on the KAIST dataset.

Method mAP50 (%)

ACF [24] 40.00
Halfway fusion [12] 57.24

IAF R-CNN [16] 56.62
CIAN [31] 69.00

MSDS-RCNN [26] 67.19
AR-CNN [36] 75.31
MBNet [41] 75.93

IACMDF (ours) 76.22

CVC-14: In order to verify the robustness of the model, we used the trained KAIST
model on the CVC-14 dataset to fine-tune the training and compare it with other methods.
We adopted the protocol introduced by [9,34,36,41] for these methods to make a fair
comparison. As shown in Table 4, the proposed method still achieves competitive results
compared to suitable benchmark methods.

Table 4. Evaluation results on the CVC-14 dataset.

Method (Grey + Thermal)
Miss Rate (%)

All Day Night

MACF [9] 69.71 72.63 65.43
Halfway fusion [9] 31.99 36.29 26.29

Park et al. [9] 26.29 28.67 23.48
AR-CNN [36] 22.1 24.7 18.1
MBNet [41] 21.1 24.7 13.5
MLPD [34] 21.33 24.18 17.97

IACMDF (ours) 21.15 25.06 13.31

LLVIP: Table 5 shows the detection results of the proposed IACMDF and other uni-
modal networks. By fusing the complementary features of RGB and thermal modes based
on the IACMDF module, the mAP is higher than that of the unimodal-based detection
model at different thresholds of the IoU. We also compare with the multimodal-based CFT
model, which IACMDF improves on by 1.2% at mAP75 and 1.5% at mAP. This shows that
the proposed method can be well generalised to different types of images.
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Table 5. Evaluation results on the LLVIP dataset.

Method Dataset mAP50 (%) mAP75 (%) mAP (%)

SSD [47] RGB 82.6 31.8 39.8
SSD [47] Thermal 90.2 57.9 53.5

YOLOv3 [45] RGB 85.9 37.9 43.3
YOLOv3 [45] Thermal 89.7 53.4 52.8
YOLOv5 [45] RGB 90.8 51.9 50.0
YOLOv5 [45] Thermal 94.6 72.2 61.9

CFT [47] RGB + Thermal 97.5 72.9 63.6
IACMDF (ours) RGB + Thermal 97.3 74.1 65.1

Figure 7. Qualitative comparisons of detection results on the test set of KAIST multispectral datasets.
The top three rows are at night, and the bottom are during the day. Each group from top to bottom:
MLPD, IACMDF, ground truth.

4.4. Ablation Study

To analyse the proposed model in more detail and to verify the effectiveness of the
IACMDF module added in this paper, we conducted ablation experiments on the KAIST
dataset. Table 6 gives the experimental results for the baseline dual-branch network, the
addition of the SE attention mechanism module only, the addition of the CMDF module,
and the addition of the complete IACMDF module. There was some improvement in the
detection performance after adding only the SE attention mechanism module, with an over-
all MR reduction of 0.31%. The value of the average miss rate decreases significantly with
the addition of the CMDF module, and the model shows excellent detection performance
with the addition of the entire IACMDF module. The value of the miss rate for pedestrians
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was reduced by 2.02% compared to the baseline network in the overall situation, with
a 1.39% decrease during the day and 2.68% decrease at night. This ablation experiment
proves the effectiveness of the added module.

Table 6. Ablation study on the KAIST dataset.

IA CMDF SE
Miss Rate (%)

All Day Night

- - - 8.19 8.45 7.01
- - X 7.88 7.95 6.49
- X X 6.53 7.18 5.07
X X X 6.17 7.06 4.33

5. Conclusions

In this paper, we proposed a framework for the illumination-aware cross-modality
differential fusion model. The framework extracts the features of different modal images’
information through a dual-branch deep learning network first, and adaptively calculates
the weight values of the two modalities utilising a scene light intensity classification sub-
network with light values, and combines the difference information of the features of
different modalities of the same scene using a halfway fusion method. The fused features
are added to the SE attention mechanism before being fed into the final detection head,
ultimately improving the robustness of pedestrian detection in scenes with different illu-
mination scales, to reduce the losses caused by the different importance of the different
channels of the feature map during convolutional pooling. The experimental results show
that the proposed IACMDF model has a significant advantage in the average miss rate
metric compared to other baseline detectors. In practical applications, it is first necessary
to use two different modalities of the camera to capture information from the same scene.
Moreover, the information from the different modalities needs to be strictly matched. How-
ever, due to various practical reasons such as camera failure, shake, etc., modal photographs
from multiple sensors may not be strictly paired, which can have an impact on the actual
detection results. In future work, we will explore solutions to the unpaired problem.
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