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Abstract: This paper presents a novel fault diagnosis method for oil-immersed on-load tap changers
(OLTC) to address the issue of limited diagnostic accuracy. The proposed method combines the
analysis of mechanical vibration signals and high-frequency current signals from the contact pair,
aiming to improve the precision of fault diagnosis. To begin with, an experimental platform was
used to simulate the OLTC contact, enabling the collection of mechanical vibration signals and
high-frequency current signals under different operational states. These signals underwent wavelet
packet transform for denoising, followed by correlation analysis to investigate their interrelationships
across various states. Features were then extracted and analyzed using ensemble empirical mode
decomposition and the Hilbert–Huang transform. Subsequently, a support vector machine (SVM)
was employed to analyze both the mechanical vibration signal and high-frequency current signal,
facilitating the classification of the OLTC contact state. The results demonstrated that the joint analysis
of electrical and mechanical signals provided a comprehensive representation of the actual contact
state under different conditions. The SVM classification achieved an error below 10% in predicting
the values of the two signal types, validating the efficiency and feasibility of the proposed fault
diagnosis method for OLTC contacts. The findings presented in this paper offer valuable insights for
on-site fault diagnosis of practical OLTCs.

Keywords: contact pair; on-load tap changer; Hilbert–Huang transform; support vector machine;
electromechanical combination; fault diagnosis

1. Introduction

The on-load voltage regulating a transformer plays a crucial role in power systems by
regulating voltage and reactive power flow to ensure smooth operation. The oil-immersed
on-load tap changer (OLTC) is a key component of the on-load voltage-regulating trans-
former responsible for voltage regulation. However, it is prone to wear, spark, and ablation
during the tapping process, which can degrade its performance. Statistics show that be-
tween 2005 and 2015, faults caused by OLTC performance failure accounted for 20% to 41%
of total faults in on-load voltage-regulating transformers, with contact performance failure
contributing to over half of these faults [1,2]. Therefore, real-time monitoring and diagnosis
of the OLTC contact state are essential for understanding the operational status of on-load
voltage-regulating transformers.

Currently, offline hanging core maintenance is the primary method for maintaining
OLTC, but it is time-consuming and labor-intensive. To address this, an online monitor-
ing and fault diagnosis technology for OLTCs has emerged, significantly reducing costs
and improving maintenance efficiency. Various signal processing and fault diagnosis
methods have been proposed by scholars, including hidden Markov chain [3], short-time
Fourier transform (STFT) [4], wavelet transform (WT) [5,6], empirical mode decomposition
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(EMD) [7,8], Hilbert transform (HT) [9,10], K-means cluster analysis [11,12], fuzzy C-means
clustering (FCM) analysis [13,14], and others. These methods primarily rely on mechanical
vibration signals for fault diagnosis of OLTC, but they have not yielded satisfactory results.

While STFT analyzes vibration signals using time-domain localized window functions,
its resolution cannot be optimized simultaneously in the time and frequency domains
due to limitations of the window function based on Heisenberg’s uncertainty criterion.
WT overcomes this limitation by allowing modifications in the window function with
frequency, enabling analysis in the time–frequency domain. However, its analysis results are
constrained by the choice of the basic wavelet. EMD is an adaptive signal time–frequency
processing method suitable for analyzing nonlinear and nonstationary signals. It addresses
WT’s limitations when selecting a basic wavelet and enhances the decomposition accuracy
in the time–frequency domain. However, mode aliasing can occur when dealing with
vibration signals containing significant pure white noise. K-means clustering analysis
is a concise and efficient partition clustering algorithm for analyzing vibration signals,
but its results are sensitive to the predetermined number of clusters (K). Fuzzy C-means
(FCM) clustering analysis, as the primary method of unsupervised clustering, optimizes
clustering results by eliminating the need to predefine the K value compared to K-means
clustering. However, it may encounter issues of local optimization during the clustering
process. Apart from these algorithms, some deep learning methods are also applied for
fault prognosis [15,16]. However, these methods are not applicable for the diagnosis of
OLTC contact pairs due to sample limitations.

Existing research methods primarily concentrate on investigating and implementing
algorithms for processing mechanical vibration signals or high-frequency current signals.
Through enhancements to these algorithms, the accuracy of feature signal detection can
be significantly improved, thus enhancing the diagnostic accuracy of the tap changer
contact status. However, the field of rotating machinery fault diagnosis has witnessed
numerous studies on unifying mechanical and electrical signals with various time scales and
physical characteristics as fault features to determine the machinery’s operational status.
Unfortunately, the application of such methods in OLTC diagnostic approaches remains
scarce. Therefore, this paper proposes a novel fault diagnosis method for OLTC contact by
combining mechanical vibration signals and high-frequency current signals. By collecting
and analyzing vibration signals and current signals, characteristic parameters related to
contact faults can be obtained, enabling effective fault diagnosis and determination. The
key advantage of the proposed method is its ability to comprehensively and accurately
describe the condition of the moving contact by combining both mechanical vibration
signals and high-frequency current signals. Furthermore, the implementation of SVM is
straightforward, even when the available condition signals are limited. This combination
of techniques enhances the effectiveness of fault detection and diagnosis in OLTC systems.

To validate the proposed method, an experimental platform simulating OLTC contact
was established. Different signal states, including mechanical vibration signals and high-
frequency current signals, were collected from the platform. Wavelet packet transform
(WPT) was employed to denoise these signals, while correlation analysis explored their
relationships under various conditions. Features were extracted and analyzed using ensem-
ble empirical mode decomposition (EEMD) and Hilbert–Huang transform (HHT). Finally, a
support vector machine (SVM) was used to jointly analyze the mechanical vibration signal
and high-frequency current signal, allowing classification of the contact state of OLTC. In
summary, the main innovations of this paper are as follows:

(1) The combination of mechanical vibration signals and high-frequency current signals
for OLTC contact fault diagnosis.

(2) The establishment of an experimental platform to collect comprehensive signal data.
(3) The application of WPT for denoising and correlation analysis to explore the relation-

ships between signals.
(4) The utilization of EEMD and HHT for feature extraction and analysis, and the use of

SVM for joint analysis and classification of signals, enabling accurate fault diagnosis.
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The remainder of this paper is structured as follows. Section 2 describes the experi-
mental setup, while Section 3 outlines the signal acquisition and preprocessing procedures
as well as basic signal collection of the OLTC. The process for signal feature extraction is
presented in Section 4. In Section 5, a comprehensive analysis of the results is provided.
Finally, the conclusions drawn from this study are summarized in Section 6.

2. Experimental Setup

The oil-immersed OLTC serves as a crucial component in voltage-regulating trans-
formers, facilitating the operation of voltage regulation. Its primary function is to adjust
the turns ratio on the high-voltage side of the transformer by switching between dynamic
and static contacts. This adjustment allows the desired voltage regulation outcome to be
achieved. However, with an increase in the number of voltage regulation cycles, faults
such as loosening and wearing begin to emerge within the OLTC contacts. Additionally,
during the tapping process, both the moving and static contacts of the OLTC experience
characteristics of sliding electrical contact while carrying current, which can lead to spark
generation and ablation. To accurately simulate the structure and internal environment of
an oil-immersed OLTC, we constructed an experimental platform using a simulated OLTC
contact device. The contacts within this device were fabricated from a silver copper alloy
containing 2% silver to closely mimic actual OLTC contacts. The transmission medium
used within the oil tank of the experimental platform was Karamay 25 mineral oil, which
is commonly employed in on-site transformer oil tanks. Furthermore, insulating paper
was affixed to the inner wall of the oil tank in order to replicate the conditions found in
practical scenarios. Consequently, we achieved the construction of a laboratory test system
capable of simulating the genuine operation of an OLTC, as illustrated in Figure 1. The
system included the following:

(1) A contact switching device.
(2) A data acquisition system.
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Figure 1. Schematic of an OLTC switching signal acquisition system.

Details of the two parts are described as follows.
Based on the experimental platform of an OLTC contact simulation device, the me-

chanical vibration signals and high-frequency current signals under four simulated states
(normal, loose, slight wear, and severe wear) were collected at the same time. Firstly, three
CT1005LC accelerometer sensors were evenly installed on the outer wall of the simulation
device at a spacing of 120◦, and the height was kept horizontal with the position of mov-
ing and static contacts so as to collect mechanical vibration signals under various states.
Secondly, a CT5204 amplifier was used to power the accelerometer sensors and amplify
the collected mechanical vibration signal. Then, an MCC1608G data acquisition card was
used to convert the amplified mechanical vibration analog signal into digital signal. Finally,
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it was transmitted to the laptop through the data line for storage and analysis. For the
acquisition of high-frequency current signals, firstly, the high-frequency current transducer
(HFCT) was installed on the grounding cable of the experimental platform of the OLTC
contact simulation device to collect high-frequency current signals in four states. Secondly,
the high-frequency current signal collected by HFCT was transmitted to an MDO-2204
oscilloscope for display through a BNC cable. Finally, the oscilloscope transmitted the
high-frequency current signal to the laptop through the USB data line for storage and
analysis. The physical image of the OLTC contact simulation device is shown in Figure 2.
For precision moving control of the OLTC contact pair and denoising, the method proposed
in [17] is referenced in this paper.
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Figure 2. Test devices to simulate the fault of an OLTC contact pair. 1—sliding guide rail; 2—DC
motor; 3—oil tank; 4—oscillograph; 5—PC; 6—silver copper contact.

3. Signal Acquisition and Preprocessing
3.1. Signal Acquisition

Utilizing the experimental platform of the OLTC contact simulation device, we con-
ducted simulations to replicate various states of the OLTC contact. Firstly, we manually
loosened the contact to simulate the loose state. Next, the single-chip microcomputer
control system was programmed to automatically switch the moving and static contacts
back and forth for 3000 cycles, imitating the state of slight wear on the OLTC contacts. Fur-
thermore, to replicate the severe wear fault state, the contacts were automatically switched
for 10,000 cycles. During each state of the OLTC contact (normal, loose, slight wear, and
severe wear), we collected both the mechanical vibration signal and high-frequency current
signal simultaneously. To accomplish this, we employed a vibration acceleration sensor and
a high-frequency current transformer (HFCT) to capture the mechanical vibration signal
and high-frequency current signal generated during the switching process of the moving
and static contacts within the experimental device. The collected mechanical vibration
signal was then amplified by an amplifier and converted from analog to digital using
a data acquisition card. Subsequently, the digitized signal was saved to a laptop via a
transmission line. Similarly, the high-frequency current signal was collected using the
HFCT and displayed on an oscilloscope before being saved to the laptop. Finally, the
electromechanical signals collected in all four states were concurrently analyzed on the
laptop. The signals obtained for the different states are presented in Figure 3.
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3.2. Signal Preprocessing

Due to the limitation of the experimental environment, the collected mechanical
vibration signal and high-frequency current signal were affected by white noise and pulse
interference. In order to improve the accuracy of OLTC contact fault diagnosis, wavelet
packet transform (WPT) was used to denoise the two kinds of signals. WPT is a signal
processing algorithm based on WT optimization. It solves the problem of WT not being
able to decompose high-frequency components and improves the processing ability of
nonlinear and nonstationary signals.

Let x(t) be a signal whose corresponding decomposition coefficient is pl
n. G and H are

the wavelet decomposition filters. G is related to the wavelet function, and H is related to
the scale function. The mathematical expression is (1)~(3) [18–22]:

p1
0(t) = x(t) (1)

p2n−1
l (t) = ∑

k
H(k− 2t)pn

l−1(t) (2)



Electronics 2023, 12, 3573 6 of 17

p2n
l (t) = ∑

k
G(k− 2t)pn

l−1(t) (3)

where t = 1, 2, 3, . . ., 2L−l; n = 1, 2, 3, . . ., 2l; L = log2N. Through the above analysis,
the frequency fs of the original signal will be decomposed by WPT in n-layers, and the
frequency domain is divided into 2n segments.

The corresponding frequency information of each decomposition is [0, f s/2n], [f s/2n,
(2f s)/2n], . . ., [(k−1)f s/2n, (2kf s)/2n], . . ., [(2n−2)f s/2n, (2n−1)f s/2n], [(2n−1)f s/2n, f s]. The
p generated by decomposition is the wavelet packet coefficient, and the original data of
the signal are taken as the lowest wavelet packet coefficient. If there are many frequency
signals, the signals of each frequency band can be decomposed as long as n is large enough.
Secondly, by selecting the appropriate threshold and threshold function, the high-frequency
component generated by decomposition is threshold quantized. Through repeated com-
parative experiments, this study finally selected the heuristic threshold heursure and the
threshold function ddencmp. Finally, the low-frequency component and the quantized
high-frequency component were reconstructed as a whole to obtain the denoised signal, as
shown in Figure 4.
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As shown in Figure 4, when the OLTC contact evolved from normal state to serious
wear fault state, the amplitude of the mechanical vibration signal gradually increased
and the signal component became more and more complex. The amplitude of the high-
frequency current signal remained basically unchanged, but the characteristic component
of high-frequency current signal was gradually missing.

3.3. Relevance Analysis

In order to describe the relevance between the signals collected under various states
when the OLTC contact evolves from the normal state to the fault state, it is necessary to
analyze the relevance of the two types of signals collected by the OLTC contact under four
states. In mathematical statistics, the related coefficient is −1 ≤ r ≤ 1, and the greater the r
value, the higher the relevance between the two signals. The related coefficient is defined
as follows [23]:

r =
n∑ xy−∑ x∑ y√

n∑ x2 − (∑ x)2
√

n∑ y2 − (∑ y)2
(4)

where r represents the related coefficient; x and y represent two sets of signal data sets in
different states; and n represents the number of samples in the data sets.

In this paper, x specifically represents the mechanical vibration signal data sets and
high-frequency current signal data sets collected by OLTC contacts under normal conditions,
and y represents the mechanical vibration signal data sets and high-frequency current signal
data sets collected by OLTC contact under loose, slight wear, and severe wear conditions.
The relevance analysis results are shown in Table 1.

Table 1. Relevance analysis results between different states of OLTC contacts.

OLTC Moving Contact Status
Related Coefficient (r)

Mechanical Vibration Signal High-Frequency Current Signal

Normal condition 1 1
Loose state 0.565 0.634
Slight wear 0.470 0.553
Severe wear 0.261 0.319

The analysis showed that with the increase of OLTC contact fault degree, the relevance
between the collected mechanical vibration signal and high-frequency current signal in
fault state and its corresponding signal in normal state gradually decreased. With the
aggravation of the fault degree of the OLTC contact, the characteristic components of the
collected mechanical vibration signal and high-frequency current signal in the normal state
and the characteristics of the collected mechanical vibration signal and high-frequency
current signal in the fault state increased gradually.

4. Signal Feature Exaction
4.1. EEMD-Based Signal Decomposition

EEMD is an improved signal decomposition method based on EMD. It adds evenly
distributed white noise to the original signal and ensures that the white noise added in
each independent test is different. Several independent tests are then carried out, and
the average value of all tests are calculated to cancel the noise contained in the signal.
Therefore, EEMD can better improve the mode aliasing problem when EMD decomposes
the signal to improve the feature extraction accuracy of the signal. The steps of EEMD
signal processing are as follows [24–26]:

Add the white noise signal ni(t) to the original signal x(t), i.e.,
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x1(t) = x(t) + ni(t) (5)

Decompose the added white noise signal x1(t) to generate intrinsic mode function
(IMF), i.e.,

x1(t) =
n

∑
j=1

c1j + r1n (6)

Add different white noise signals in each independent test and repeat step 1 and step
2 n times, i.e.,

xi(t) =
n

∑
j=1

cij + rin (7)

Calculate the mean value of each IMF obtained by n-times decomposition and take it
as the final result, i.e.,

cj =
1
n

n

∑
i=1

cij (8)

where n is the number of times to add white noise, c is the IMF value, and r is the decompo-
sition residual component.

4.2. HT-Based Signal Feature Extraction

Hilbert–Huang transform (HHT) comprises two main techniques, namely, empirical
mode decomposition (EMD) and Hilbert transform (HT). The objective of HHT is to
decompose nonlinear, nonstationary signals into intrinsic mode functions (IMFs) using
EMD, followed by extracting the instantaneous frequency of the signal using HT. To
address the issue of mode aliasing during the EMD signal decomposition process, ensemble
empirical mode decomposition (EEMD) was employed as a replacement, enhancing the
accuracy of feature extraction. The optimized process of HHT for signal feature extraction
was as follows.

Firstly, the mechanical vibration signal and high-frequency current signal, after under-
going noise reduction, were separately decomposed using EEMD, resulting in the extraction
of IMF components.

Secondly, HT was applied to each IMF component, and the absolute value of the
transformed signal was obtained, representing its upper envelope (refer to Figure 5).
Figure 5 illustrates that as the OLTC contact transitioned from a normal state to a fault
state, the amplitude of the mechanical vibration signal gradually increased and the signal
components became more complex. The amplitude of the high-frequency current signal
and the fundamental frequency component, represented by the purple portion, remained
relatively unchanged. However, the characteristic components, depicted by the blue and
yellow portions of the signal, gradually decreased.

Then, HT was used to decompose the IMF component using the following formula,
and the corresponding Hilbert time–frequency spectrum was obtained [27], as shown in
Figure 6.

H(ω, t) = Re
n

∑
i=1

ai(t)ej
∫

ωi(t)dt (9)

It can be seen from Figure 6 that when the OLTC contact evolved from the normal state
to the fault state, the frequency of the mechanical vibration signal was mainly concentrated
in 0~450 Hz, the signal component became more complex, and the energy corresponding to
its frequency gradually increased. The frequency of the high-frequency current signal was
mainly concentrated between 0 and 100 Hz. Its corresponding energy amplitude remained
basically unchanged, but the frequency component decreased gradually.
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Figure 6. Hilbert time–frequency spectrum diagram in four states. (a) Time–frequency spectrum of
mechanical vibration signal in four states; (b) time–frequency spectrum of high-frequency current
signal in four states.

Finally, the Hilbert time–frequency spectrum was integrated on the time axis using
the following formula to obtain the Hilbert marginal spectrum [28], as shown in Figure 7.

h(ω) =
∫ T

0
H(ω, t)dt (10)
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where T is the length of the signal sequence; H(ω,t) is the relationship among signal
amplitude, frequency, and time in the whole frequency range of the signal; h(ω) is the
relationship between signal amplitude and frequency in the whole frequency range of
the signal.
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It can be seen from Figure 7 that when the OLTC contact evolved from the normal
state to the fault state, the energy amplitude of the mechanical vibration signal gradually
increased from 62.41 to 96.41 mV. The energy amplitude of the high-frequency current signal
gradually increased from 64.13 to 97.91 mV, and the energy amplitude of the mechanical
vibration signal and high-frequency current signal was mainly concentrated between 0 and
100 Hz.

The Hilbert marginal spectrum energy value is E(ω), and it can be finally obtained
through (11) [29]:

E(ω) =
∫ ω2

ω1

h2(ω)dω (11)

where ω1 and ω2 are the Hilbert marginal spectrum h(ω) frequency ranges.
The energy value was normalized, and the Hilbert marginal spectrum energy entropy

was defined according to the basic principle of information entropy, which can be expressed
by the following formula [29]:

Hj = −ε j log ε j (12)

where εj is the ratio of the IMF component energy to total energy in the j layer.
By calculating the Hilbert marginal spectrum energy entropy of the mechanical vibra-

tion signal and high-frequency current signal and inputting it as mechanical characteristic
quantity and electrical characteristic quantity into the SVM algorithm for OLTC contact state
diagnosis, the partial Hilbert marginal spectrum energy entropy of the electromechanical
signal are shown in Tables 2 and 3.
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Table 2. Hilbert marginal spectrum energy entropy of the IMF component of the vibration signal.

IMF Component Normal Condition Moving Contact Loose Moving Contact Slight Wear Moving Contact Severe Wear

IMF1 2.9213 2.5627 2.3901 1.8172
IMF2 2.276 2.0142 1.9283 1.5116
IMF3 1.984 1.745 1.617 1.624
IMF4 1.7998 1.5637 1.3869 1.964
IMF5 1.507 1.3064 1.118 0.5927
IMF6 1.8617 1.014 0.9081 0.5677
IMF7 1.819 0.6592 0.4185 0.1278
IMF8 1.717 0.4237 0.605 0.0779

Table 3. Hilbert marginal spectrum energy entropy of the IMF component of the high-frequency
current signal.

IMF Component Normal Condition Moving Contact Loose Moving Contact Slight Wear Moving Contact Severe Wear

IMF1 0.6691 0.4375 0.3017 0.1699
IMF2 0.4206 0.4062 0.2856 0.1428
IMF3 0.5013 0.3608 0.2601 0.1641
IMF4 0.3918 0.4120 0.3015 0.1329
IMF5 0.3216 0.3306 0.2590 0.0918
IMF6 0.2961 0.3014 0.2310 0.0764
IMF7 0.2654 0.2938 0.2045 0.1028
IMF8 0.3013 0.2237 0.2407 0.0839

The analysis of Tables 2 and 3 reveals a noteworthy trend in the behavior of oil-
immersed OLTC contacts as they progressed from a normal state to a fault state. The
Hilbert marginal spectrum energy entropy, calculated through HHT, gradually decreased
for both the mechanical vibration signal and high-frequency current signal. This decline
can be attributed to the fact that, under normal conditions, the energy distribution of these
signals is relatively even and uncertain.

However, in the presence of faults, such as loose contacts or wear, the mechanical vi-
bration signal and high-frequency current signal resonate within their respective frequency
bands. Consequently, the energy becomes concentrated in these particular frequency bands,
leading to a reduction in the uncertainty of the marginal spectrum energy distribution. As
a result, the marginal spectrum energy entropy decreases.

It is important to note that the degree of fault in OLTC contacts due to wear is more
severe compared to that caused by loose contacts. This increased severity leads to a higher
concentration of energy in the corresponding frequency band, resulting in even lower
marginal spectrum energy entropy. Based on these findings, the marginal spectrum energy
entropy obtained through HHT can serve as an informative input vector for the SVM
algorithm. This approach enables the identification of the operational state and type of
fault in oil-immersed OLTC contacts.

5. Result Analysis and Discussion
5.1. Analysis of Generation and Propagation Process of Electromechanical Signal

In order to extract the feature quantity that can truly reflect the information contained
in the mechanical vibration signal and high-frequency current signal, this study used EEMD
to decompose the mechanical vibration signal and high-frequency current signal after noise
reduction.

When there is a change in the load of the on-load voltage-regulating transformer, it
becomes necessary to adjust the OLTC and modify the number of winding turns on the
high-voltage side of the transformer to ensure voltage stability at the output. The OLTC
operates by sliding the electrical contacts, resulting in a tapping process that generates
mechanical vibration signals due to collision and wear between the moving and static con-
tacts. Additionally, the opening and closing of these contacts can create the arc phenomena,
leading to the generation of high-frequency current signals. However, it is important to
note that mechanical vibration signals can also arise from the core and winding vibrations
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within the transformer. Furthermore, in a laboratory environment, the collected mechanical
vibration signals and high-frequency current signals may exhibit complex components
due to the presence of white noise and pulse interference. Therefore, it holds great sig-
nificance to analyze the propagation process of these two types of signals and preprocess
the collected mechanical vibration signals and high-frequency current signals to reduce
noise levels.

Firstly, the driving motor drives the OLTC to switch between the moving and static
contacts, which then produces the arc phenomenon, and the mechanical vibration signal
and high-frequency current signal are generated at the same time. The generated mechani-
cal vibration signal will not reach the inner wall of the oil chamber until it propagates for
a certain distance in the insulating oil in the OLTC oil chamber. Because the oil chamber
wall is relatively smooth, the vibration signal will be catadioptric when it reaches the oil
chamber wall from the mineral oil in the oil chamber, which makes the vibration signal
more complex. However, the damping of the mineral oil in the oil chamber can reduce the
complexity of the vibration signal to a certain extent. When the vibration signal passes
through the oil chamber wall and reaches the insulating oil in the transformer oil tank,
catadioptric reflection will also occur, and the vibration of the iron core and winding during
the transformer operation will also produce vibration signals in the transformer oil tank.
Therefore, the components of vibration signals collected outside the transformer oil tank by
the vibration acceleration sensor are more complex. When the moving and static contacts
of OLTC are tapped, the arc phenomenon will occur. The high-frequency current signal can
be collected by installing HFCT on the grounding cable of an on-load voltage-regulating
transformer. Then, the collected high-frequency current signal can be transmitted to an
MDO-2204 oscilloscope for display by a BNC cable. Finally, the oscilloscope transmits
the high-frequency current signal to the laptop through the USB data line for storage and
analysis. In addition, the arc generated by the switching operation of the OLTC moving
and static contacts will decompose the mineral oil in the oil chamber, resulting in C2H2,
H2, C2H4, and other fault gases, which will degrade the mineral oil in the OLTC oil cham-
ber, reduce the insulation degree of mineral oil, affect its arc-extinguishing effect and the
transmission of mechanical vibration signal, and increase the complexity and acquisition
difficulty of the mechanical vibration signal. Therefore, it is of great significance to denoise
the collected mechanical vibration signal and high-frequency current signal.

5.2. OLTC Contact Fault Classification Based on SVM

In order to diagnose the fault state of the OLTC contact, this study adopted the SVM
algorithm with the characteristics of high efficiency and high classification accuracy in small
sample data processing to analyze the mechanical vibration signal and high-frequency
current signal at the same time [30–32]. In this study, the Hilbert marginal spectrum
energy entropy of the electromechanical signal was taken as the input characteristic of
SVM, and the relative energy amplitude was taken as the output of SVM. According to
the experimental scheme, 20 groups of mechanical vibration signals and high-frequency
current signals were collected in different states, with each type of signal corresponding
to four states, making up a total of 160 groups of data. The overall experimental data
samples were small, which could fully utilize the advantages of SVM in the classification
and processing of small sample data.

SVM is a supervised learning method for solving binary classification problems. It
has the characteristics of good generalization and ability to avoid falling into the local
minima. Its basic principle is to map the input space to the high-dimensional space
according to the principle of structural risk minimization and find an optimal hyperplane
for classification so as to maximize the difference of training data samples [33]. The SVM
algorithm includes two parts: data training and data testing. Its data training strategy is to
maximize the interval of feature space, which can be transformed into a linear constrained
convex quadratic programming problem. Suppose the data training set T = {xi, yi}, where
(i = 1, 2, . . ., l), xi ∈ RN, and yi ∈ R. By nonlinear mapping Φ, the data set xi can be mapped
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to the high-dimensional feature space F by a kernel function [34]. Then, the given data are
analyzed by constructing a linear discriminant function f.

In the process of diagnosis, 120 groups of experimental data were selected for the
training of the SVM algorithm, and the remaining 40 groups of data were used for test
classification. Therefore, the experimental data ratio between the training set and test set
was 120:40 (3:1). According to the Hilbert time–frequency spectrum and Hilbert marginal
spectrum, electromechanical signals have different energy amplitudes at the same fre-
quency, so the relative energy amplitude was used to distinguish the state of the OLTC
contact. Because the input dimension of the SVM algorithm in this study was 3, the output
dimension was 1, and the number of samples was small, the Gaussian kernel function
was adopted. After many comparisons, the penalty factor C = 50 was obtained. Before
the numerical test, all data sets were standardized and preprocessed using the maximum–
minimum standardization method shown in Equation (13). Finally, the SVM algorithm was
applied to train and test the mechanical vibration signal and high-frequency current signal
at the same time. The results are shown in Figure 8. In this Figure, the dotted ellipse and
corresponding arrow indicate the misclassified sample.

x∗ =
x− xmin

xmax − xmin
(13)
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Based on the analysis in Figure 8, the SVM algorithm demonstrated accurate identi-
fication of the normal state and severe wear fault state of the OLTC contact based on the
mechanical vibration signal. Despite some misclassification of individual data samples
in the loose state and slight wear state of the OLTC contact, the overall accuracy of fault
identification remained high at 92.97%. Regarding the high-frequency current signal, SVM
also achieved accurate identification of the normal state and severe wear fault state of the
OLTC contact. Although there were misclassified data samples during the loose state and
slight wear state, the number of misclassifications was lower compared to the classification
based on mechanical vibration signals. As a result, the overall accuracy of fault identi-
fication was relatively high at 93.15%. When considering the fault classification results
obtained from both the mechanical vibration signal and high-frequency current signal
simultaneously using the SVM algorithm, it was observed that although a small number of
data was misclassified, they primarily occurred in adjacent regions, with only a few isolated
data points crossing boundaries. Hence, these errors were considered acceptable within
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the allowable range. The classification accuracy of both signals exceeded 90%, thereby
validating the feasibility and efficiency of the proposed method in this study.

In practical applications, an accelerated sensor can be utilized to measure vibration
signals by attaching a magnetic sensor to the outer surface of the actual OLTC. Similarly, a
high-frequency current transducer can be employed to collect current signals by clamping
it onto the low-voltage side of the transformer bushing. These collected signals can then
undergo preprocessing using ensemble empirical mode decomposition and Hilbert–Huang
transform, followed by programming. Additionally, the condition classification of the
OLTC contact pair can be easily programmed and implemented. As a result, the proposed
method is both feasible and straightforward to deploy on-site.

6. Conclusions and Future Work

In this study, we utilized an experimental platform designed for simulating OLTC con-
tacts. By deploying vibration acceleration sensors and high-frequency current transformers
(HFCTs), we simultaneously collected mechanical vibration signals and high-frequency
current signals from OLTC contacts in four distinct states. Subsequently, we applied noise
reduction preprocessing and feature extraction techniques to the collected signals. Our
objective was to diagnose faults in the OLTC contacts by integrating the mechanical vi-
bration and high-frequency current signals. The results obtained revealed the following
key findings:

(1) As the OLTC contact transitioned from a normal state to a fault state, the ampli-
tude of the mechanical vibration signal gradually increased, while the characteristic
components of the high-frequency current signal gradually diminished.

(2) Analysis of the Hilbert time–frequency spectrum and Hilbert marginal spectrum
demonstrated that the frequency range of the mechanical vibration signal was mainly
concentrated between 0 and 450 Hz when the OLTC contact progressed from a normal
state to a fault state. Additionally, the energy corresponding to the frequency of the
mechanical vibration signal gradually increased. Similarly, the frequency range of
the high-frequency current signal was primarily between 0 and 100 Hz, exhibiting an
increase in energy amplitude as well.

(3) The results obtained from classifying OLTC contact faults indicate that electromechan-
ical joint diagnosis enables a more comprehensive analysis of the contact’s condition.
Furthermore, when utilizing the SVM algorithm, the classification outcomes exhib-
ited high accuracy with error rates below 10%. These findings provide substantial
evidence supporting the feasibility and effectiveness of the electromechanical joint
diagnosis method.

The research on fault diagnosis of OLTC contacts through electromechanical joint
feature analysis holds significant potential for future development. In forthcoming studies,
there will be a focus on realizing the proposed methods and experimental systems. The
objective will be to enhance the ability and reliability of fault diagnosis by attempting the
integration of multimodal feature fusion and deep learning methods. Furthermore, the
combination of real-time monitoring and prediction techniques will be explored to further
improve fault diagnosis in complex noise environments during on-site applications.
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