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Abstract: Image super-resolution (SR) reconstruction technology can improve the quality of low-
resolution (LR) images. There are many available deep learning networks different from traditional
machine learning algorithms. However, these networks are usually prone to poor performance
on complex computation, vanishing gradients, and loss of useful information. In this work, we
propose a sub-pixel convolutional neural network (SPCNN) for image SR reconstruction. First, to
reduce the strong correlation, the RGB mode was translated into YCbCr mode, and the Y channel
data was chosen as the input LR image. Meanwhile, the LR image was chosen as the network
input to reduce computation instead of the interpolation reconstructed image as used in the super-
resolution convolutional neural network (SRCNN). Then, two convolution layers were built to obtain
more features, and four non-linear mapping layers were used to achieve different level features.
Furthermore, the residual network was introduced to transfer the feature information from the lower
layer to the higher layer to avoid the gradient explosion or vanishing gradient phenomenon. Finally,
the sub-pixel convolution layer based on up-sampling was designed to reduce the reconstruction
time. Experiments on three different data sets proved that the proposed SPCNN performs superiorly
to the Bicubic, sparsity constraint super-resolution (SCSR), anchored neighborhood regression (ANR),
and SRCNN methods on reconstruction precision and time consumption.

Keywords: image super-resolution; convolutional neural network; sub-pixel; residual network

1. Introduction

Images, as one of the important media to transmit information, are widely used in
industrial production, biomedical, robot vision, and other fields. Image processing is
complex and involves various devices. As a result, the images obtained from practical ap-
plications are usually of poor quality, with problems such as low resolution, blur, distortion,
noise, and loss of detail. To generate a single high-quality and high-resolution (HR) image,
the image super-resolution (SR) reconstruction technology is proposed by using multiple
low-quality and low-resolution (LR) images with complementary information. It has been
widely applied in remote sensing [1], medical imaging [2], and monitoring [3].

In the past decades, many SR methods have been proposed, and they can be divided
into four categories according to the interpolation, reconstruction, and machine learning or
deep learning methods, as shown in Figure 1.

The interpolation-based method utilizes the correlation between adjacent pixels in
the spatial domain, including the nearest neighbor interpolation, the bilinear interpolation,
the bicubic interpolation, the multi-surface fitting, and the displacement field-based up-
sampling algorithm [4]. These methods are fast but prone to distortion in the edge regions
owing to a lack of useful information. To recover the lost high-frequency information,
the reconstruction-based algorithms tend to model the imaging process from multiple LR
images, but the entire solution process is an ill-conditioned inverse problem. There are
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two typical categories in the reconstruction-based methods, that is, the frequency domain
algorithms and the spatial domain ones. The former performs worse than the latter due
to a lack of prior knowledge. Typical algorithms in the latter include the non-uniform
interpolation method (NUI) [5], projection onto convex sets (POCS) [6], iterative back
projection (IBP) [7], and maximum a posteriori (MAP) [8]. However, the reconstruction-
based methods are too complex to be applied in real applications. To solve the amplified
factor restriction and textural details preservation problems in the mentioned methods,
machine learning algorithms are proposed to learn the mapping relationship between the
HR and LR images. Support vector regression [9], sparse representation [10], and anchored
neighborhood regression (ANR) [11] are popular methods in this category. However, a
great number of parameters need to be adjusted manually, and the model is also complex,
resulting in weak generalization ability.
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Compared with machine learning, deep learning can not only effectively deal with
large amounts of data but also reduces the number of parameters that need to be manually
adjusted in neural network training, thus remarkably improving the generalization ability.
With the development of deep learning, different networks have been put forward to
reconstruct SR images. A three-layer structure network using deep convolutional neural
networks (SRCNN) was first applied in image SR reconstruction based on feature extraction-
nonlinear mapping-image reconstruction [12]. However, there are still some shortcomings,
such as loss of high-frequency detail information, blurring of textural details, and low real-
time efficiency. To improve the real-time performance deficiency of SRCNN, the faster SR
convolutional neural network (FSRCNN), an end-to-end reconstruction network based on
the original image, was proposed by introducing a deconvolution layer, reconstructing the
mapping layer, using a smaller size filter and adding more mapping layers [13]. Although
FSRCNN owns a faster training speed, it has a slow convergence rate and is a shallow neural
network. Meanwhile, an efficient sub-pixel convolutional neural network (ESPCN) was put
forward to deal with the computational complexity of SRCNN in which the convolution
operation is performed on an LR image [14]. In addition, to train different scale images
together, a very deep convolutional network (VDSR) was proposed by improving the
VGG convolutional network based on ResNet [15,16]. At the same time, a deep recurrent
neural network (DRCN) was put forward to deepen the number of network layers, and it
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achieves better reconstruction results than SRCNN with the same weight parameters in the
convolutional layer of the recursive loop [17]. As the ResNet is not suitable for low-level
computer vision problems, an enhanced deep SR (EDSR) was proposed by utilizing an
enhanced ResNet and training with L1 regular loss function [18]. EDSR saves computing
resources by removing the unnecessary batch normalization layer in the original ResNet
and obtains better training results. Furthermore, to solve the image smoothing and detail
distortion problems arising from magnifying images too many times, the SR reconstruction
based on a generative adversarial network (SRGAN) uses a perception loss instead of
minimum mean square error (MSE) in the traditional methods [19]. To further improve
the network reconstruction performance, a cascade structure and a new Charbonnier
loss function are combined in the Laplacian pyramid SR network (LapSRN) to gradually
optimize the LR image [20]. In addition, to solve the arbitrary scaling factors in most
existing SR methods, the Meta-SR was put forward by introducing a meta-upscale module
to replace the traditional upscale one [21]. At the same time, to deal with the problem of
false textural and artificial features in SR methods, SR neural texture transfer (SRNTT) was
proposed by formulating the reference-based SR (RefSR) problem as neural texture transfer
and by performing multi-level matching in neural space, so as to promote multi-scale neural
transmission [22]. The advantage of SRNTT is that there is no strict alignment requirement
between the reference image and the blurred image, and the constraints on the existing
RefSR method are also relaxed. Then, in agriculture, DAFTGAN [23] was proposed, which
combines DenseNet [24] and ResNet in a single layer, significantly reducing the number of
parameters used in training the deeper network structure. To utilize feature information
at different levels and deal with the gradient disappearance problem, a multi-hierarchical
features fusion network (MHFFN), by introducing a dual residual block, is designed for
single image SR [25].

In summary, although the existing deep learning-based image SR reconstruction meth-
ods already show improvements in calculation efficiency [13,14,16,17], support multi-scale
training [15,20,21], and better restore textural details [18,19,21], there still exist difficulties
in vanishing gradients, gradient explosion, complex computation, and other problems as
the network layers deepen. More importantly, the LR image in the mentioned networks
is first amplified to an HR image with the same size as the target SR image, which will
increase the computational complexity.

In this paper, we propose a sub-pixel convolutional neural network (SPCNN) for
SR image reconstruction. First, the LR image is used as the network input to reduce the
time consumed by image amplification in the image preprocessing steps of SRCNN and
DRCN. Then, we build two convolutional layers as feature extraction layers to obtain
more information. Meanwhile, to achieve more features on different levels, four non-
linear mapping layers are designed. Subsequently, to reuse feature information and avoid
vanishing or exploding gradients arising from network layer deepening, the Residual
network is introduced with a shortcut connection to directly transfer information from
lower network layers to higher layers. Finally, to reduce image reconstruction time and
maintain the feature correlation unchanged, we design a sub-pixel convolutional layer
based on up-sampling to reconstruct the HR image, which rearranges the same information
in multiple feature images according to pixel.

This article is organized as follows. Section 2 describes the proposed method and
provides more detail. Comparative experiments on different data sets and discussions are
presented in Section 3. The main conclusion is summarized in Section 4.

2. Method

Inspired by SRCNN with three layers and DRCN with deep layers, this paper proposes
an image SR reconstruction method based on sub-pixel convolutional neural networks
named SPCNN. There are five main parts to our proposed method, as shown in Figure 2.
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First, the LR image is adopted as the network input and is transformed into YCbCr
mode. Then, two convolutional layers for feature extraction and four nonlinear mapping
layers for achieving more features are designed. Furthermore, the residual network is
introduced to maintain the features in lower layers. Finally, a sub-pixel convolutional layer
is put forward to obtain the HR image from the LR image feature space. Therefore, the
proposed network contains a total of 7 layers, and each layer is defined as Conv (input,
output, filter), in which input is the number of input channels; output denotes the number
of output channels, and filter represents the size of the convolution kernel.

2.1. Image Preprocessing

The enlarged image instead of the LR image is used in SRCNN and DRCN, which will
require more convolution calculations during the network training process. Therefore, to
reduce the time consumed by convolution calculations, the LR image is directly adopted as
input in our method. In addition, as the LR image is colorful in RGB mode and there is a
strong correlation in the spatial domain, here we first transform the image from RGB mode
into YCbCr mode. More importantly, we choose the Y channel image as the final network
input according to experimental analysis showing that it can achieve similar reconstruction
results to that of YCbCr [26].

2.2. The Network Structure

To obtain more feature information, two convolutional layers, Conv1 and Conv2, are
constructed in the feature extraction stage, as shown in Figure 3. Here, 64 convolution
kernels of 5 × 5 are employed in both Conv1 and Conv2 to ensure the low-dimensional
feature information is as rich as possible. The network takes the Y channel image as the
input of Conv1, and conducts feature extraction operations with 64 convolution kernels of
5 × 5 to obtain a low-dimensional feature image set F1(Y) by the following formula

Fi(Y) = Tanh(Wi ×Y + Bi), (1)

in which, Wi and Bi are the weights and biases of the network, respectively. The size of
Wi is ci × ni × fi × fi, with ci representing the number of channels of the input image;
ni is the number of network convolution kernels, i.e., the number of output channels; fi × fi
denotes the size of the convolution kernel, and Tanh (x) is the activation function and is used
in all convolutional layers for activation. Similarly, let F1(Y) be the input of Conv2 and feature
image set F2(Y) can be achieved by operating with 64 convolution kernels of 5 × 5, to provide
supplementary information for the reconstruction of the subsequent HR image.
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The Conv3 layer takes the feature image set F1(Y) as the identity mapping F2(Y) as the
convolution branch input, and performs the convolution calculation with 32 convolution
kernels each of size 5 × 5, to obtain the feature image set F3(Y). Conv4 takes F3(Y) as input
and performs a second mapping with 32 convolution kernels of size 5 × 5 to obtain the
feature image set F4(Y). Furthermore, the remaining layer Conv5 takes F3(Y) and F4(Y) as
input and performs a third mapping with 32 convolution kernels of size 3 × 3 to obtain
a feature image set with higher dimensions and richer texture details F5(Y). Conv6 takes
F5(Y) as input and performs the last non-linear mapping with 32 convolution kernels of
3 × 3 to obtain a high-dimensional global feature map set F6(Y). The operations of Conv4
and Conv6 are similar to Conv1, described as Formula (1). The specific operations of Conv3
and Conv5 are shown by the following formula

Fi(Y) = ReLu[0, Wi × (k1 × Fi−1(Y) + k2 × Fi−2(Y)) + Bi)], (2)

in which i is the layer number, and k1 and k2 denote the proportion of i − 1 and i − 2 layers
feature maps in this layer image channel. To maintain data consistency, let k1 + k2 = 1. The
size of Wi is (k1 × Fi−1(Y) + k2 × Fi−2(Y))×ni× fi× fi, and Re(x) is the activation function.

To further obtain the final HR image, the sub-pixel convolution layer Conv7 is intro-
duced to reconstruct the HR images. In Conv7, the global feature map set F6(Y) is used
for reconstruction to obtain the final HR image ISR. In fact, the number of image channels
becomes r2 after being processed by the convolution layer and the remaining layer, and
these images can be rearranged in a sub-pixel convolution layer to complete the image
reconstruction. The specific operation is shown by the following formula

ISR = PS(Wi × Fi−1(Y) + Bi), (3)

in which the size of Wi is r2·c× ni × fi × fi and c is the number of input channels of the
initial LR image. PS denotes the sub-pixel convolution operation, meaning that the channel
image is rearranged according to pixel position, and the image features are integrated. ISR

represents an HR image after reconstruction.

2.3. Remaining Network

Generally, deepening the network structure is a strategy to improve the reconstruction
performance of deep learning-based methods. As the number of network layers rises,
richer feature information can be extracted, and the deep network can extract some abstract
information that the lower-layer network cannot obtain. However, the increasing depth of
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the network will cause vanishing or exploding gradients, and the model will degenerate
into an identity mapping, that is, the deep network will degenerate into a shallow network.
Therefore, the remaining network structure is introduced into the nonlinear mapping stage
to deepen the network and to improve the reconstruction performance. The remaining
network includes a convolution layer with a shortcut connection and ReLU activation
function, as shown in Figure 2. In the residual network structure, the low-level network
input Y is directly connected with the output layer through a shortcut connection, so that
the output result becomes (Y) = F(Y) + Y and reuses feature information. When (Y) = 0, then
H(Y) = Y, which is an identity mapping, so as to ensure no decrease in network accuracy
with the increased depth.

2.4. Sub-Pixel Convolutional Layer

In SRCNN, the initial LR image is first interpolated by the bicubic algorithm, which
corresponds to a down-sampling operation on the reconstructed HR image. Assuming
that the sampling factor is r and c denotes the number of color channels, let H ×W × c,
rH × rW × c and rH × rW × c represent the dimensions of the real tensor of the initial LR
image, the LR image after bicubic interpolation, and the reconstructed HR image, respec-
tively. Evidently, the LR image after bicubic interpolation has the same tensor dimensions
as that of the reconstructed HR image, and it is extremely time-consuming. Therefore,
a sub-pixel convolutional layer is introduced to implement SR image reconstruction by
performing an up-sampling operation in the output layer of the neural network.

For the sub-pixel convolution layer, its input is the feature map with r2 channels, and
r denotes the up-sampling factor. By rearranging the r2 channels of each pixel into the
image area with size r× r, the LR feature images with real tensor dimensions H ×W × C·r2

are transformed into an HR image of rH × rW × C. Therefore, to achieve the image
reconstruction effect, the sub-pixel convolutional layer aims to rearrange the LR feature
vector in dimension r according to certain rules. For example, if the operation of the
sub-pixel convolution layer with r = 2, where the pixels at the same position in the feature
image are rearranged and integrated to form a corresponding block in the HR image. Here,
every 4 pixels form an area.

To be specific, let the LR image feature space conduct a convolution operation with
a filter Ws in size fs and a weight interval of 1

r . Partial weights in the filter Ws will be
activated, yet other weights of each pixel that are not involved in the calculation will not

be activated. When the number of activations is r2, there are at most
⌈

ks
r

⌉2
weights that

are activated according to the position distribution of the model. During the convolution
operation, the filter will scan the image according to the position of the sub-pixel, and the
scanned weights will be activated. Let mod(x, r), mod(y, r) be the horizontal coordinate
x and vertical coordinate y of an output pixel in HR image feature space. The sub-pixel
convolution operation, an actual up-sampling operation when mod( fs, r) = 0, can be
implemented as follows

FL(Y) = PS(WL ×Y + bL), (4)

PS(T)x,y,c = Tbx/rc,by/rc,C·r·mod(y,r)+C·mod(x,r)+c, (5)

in which Y is an LR feature image with real tensor dimensions H ×W × C·r2; the size of
WL is nL−1 × r2C× fL × fL, and PS (T) denotes the periodic permutation operator, i.e., the
sub-pixel convolution operation.

When fL = fs
r and mod( fL, r) = 0 are satisfied, the sub-pixel convolution operation

can be performed in LR image feature space with the filter Ws.

3. Experiments and Discussion
3.1. Quantitative Evaluation

The purpose of SR reconstruction is to improve the image resolution as large as
possible, at the same time keeping the image details as clear as possible. Thus, it is essential
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to select appropriate evaluation indexes for the reconstructed image. To quantitatively
evaluate the reconstructed image and the original image, some commonly used methods,
including the structural similarity (SSIM) [27] and peak signal-to-noise ratio (PSNR) [28],
are utilized.

The SSIM is designed to measure the image brightness, contrast, and structure. Assum-
ing that the original image is x and the reconstructed image is y, the direct SSIM between x
and y can be derived from the following formulas

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (6)

c1 = (k1 × L)2, (7)

c2 = (k2 × L)2, (8)

in which, µx and µy are the average brightness of image x and y, respectively. σx and σy are
the variances of images x and y, referring to the estimation of image contrast. σxy represents
the covariance between image x and y, meaning the structure of the estimated image.
c1 and c2 are fixed values; k = 0.01; k = 0.03; L = 255. The value of SSIM ranges from 0 to
1. The closer the value of SSIM is to 1, the more the reconstructed image is similar to the
original image; that is, a better reconstruction is obtained.

The quality of the reconstructed image can be evaluated by calculating the error
between the pixels of the image. PSNR can be obtained from the following formulas:

MSE =
∑W

i=1 ∑H
j=1[X(i, j)−Y(i, j)]2

W × H
, (9)

PSNR = log10

[
(2n − 1)2

MSE

]
, (10)

in which, X, Y are the pixel matrix of the original image and the reconstructed HR image,
respectively. MSE denotes the mean square error between X and Y. H and W are the height
and width of the image. n is the number of bits for each pixel. Here, the value of n is 8.
X (i, j) and Y (i, j) represent the desired real image and reconstructed image, respectively. The
larger value of PSNR, the smaller degree of distortion, the better the image reconstruction.

In addition, to verify the effectiveness of the model proposed in this article, Bicubic [29],
SCSR [30], ANR [11], and SRCNN [12] are chosen to compare different data sets.

3.2. Experiment Setup and Data Sets

To effectively verify the performance of SPCNN proposed in this article, the NVIDIA
graphics card GeForce GTX 1050 Ti is used to build an experimental environment under
the Ubuntu 16.04 operating system. The detailed configuration is shown in Table 1.

Table 1. Experimental hardware environment configuration.

Name Description

computer model Dell-Optiplex-3020
graphics card GeForce GTX 1050 Ti (4 GB)

RAM 8 GB
processor i3-4160 CPU

operating system Ubuntu 16.04 (64 bit)
main frequency 3.60 Ghz

Here, the initial values of relevant parameters in the network are set, as shown in Table 2.
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Table 2. Setup of parameters in the network.

Parameter Description Initial Value

batch_size every grouped data sets for training 64
epoch the maximum iterations of algorithm 100

Lr the initial learning rate used
in Adam [29] to update the weight matrix 0.01

gamma the learning rate attenuation factor in
MultiStepLR learning strategy 0.1

3.3. Comparison of Public Data Sets

To ensure the reliability of comparative experiments, the public data set VOC2012 is
selected as training samples. Here, 16,700 images are used as training data and 425 images
as testing data. Table 3 shows the evaluation indicators of five methods on data Set5.

Table 3. PSNR and SSIM comparison on data set5.

Images
Bicubic SCSR ANR SRCNN SPCNN Bicubic SCSR ANR SRCNN SPCNN

PSNR SSIM

baby 33.19 34.29 35.13 35.01 35.21 0.903 0.904 0.902 0.921 0.932
bird 32.58 34.11 34.60 34.91 35.11 0.926 0.939 0.949 0.949 0.953

butterfly 24.04 25.58 25.90 27.58 27.63 0.824 0.863 0.872 0.889 0.901
head 32.88 33.17 33.63 33.55 33.81 0.799 0.802 0.823 0.823 0.842

woman 28.56 29.94 30.33 30.92 31.06 0.891 0.905 0.917 0.923 0.933
Ave 30.39 31.42 31.92 32.39 32.56 0.869 0.883 0.897 0.901 0.912

According to the data in Table 3, the PSNR and SSIM of SPCNN are overall higher
than other algorithms. As for the PSNR, the average increases are 2.17 dB, 1.14 dB, 0.64 dB,
and 0.17 dB, respectively, for an average increase of about 1.03 dB. For the SSIM index,
there are smaller improvements of 0.043, 0.029, 0.015, and 0.011, respectively, for an average
increase of about 0.0245.

Figure 4 illustrates the data in Table 3. Evidently, there is a great difference in the
reconstruction effect of various images, but a similar trend for different methods can be
observed. The dashed lines prove that SPCNN performs better than the other four methods,
with a smaller increase in average PSNR and a larger growth in average SSIM value. As
the image number in Set5 is limited, the experimental results may be unable to verify the
effectiveness of SPCNN. Therefore, data Set14 is selected for an in-depth comparison.
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Figure 5 exhibits the quantitative comparison of PSNR and SSIM on data Set14. As
shown in Figure 5, compared to the other four methods, the average PSNR of SPCNN is
increased by 1.6 dB, 0.83 dB, 0.53 dB, and 0.14 dB, respectively, for an average increase of
about 0.775 dB. Meanwhile, SSIM increased by 0.062, 0.040, 0.027, and 0.013, respectively,
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with an average increase of about 0.0355. Although the average increase in the PSNR value
in Set14 is lower than that in Set 5, the average SSIM index has higher growth. There is
also a great change in image reconstruction owing to the greatly varying texture detail for
different data. For images with numbers 8 and 9, due to the robustness of SPCNN and
SRCNN compared with other algorithms, the change in their PSNR is quite gentle. As
can be seen from the dashed line, the average PSNR value and SSIM value of SPCNN are
greater than those of other algorithms.
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To further verify the reconstruction effect of our proposed method, Figure 6 displays
the results of five algorithms on images selected from data Set5 and data Set14. More
importantly, a partial detail is shown in amplification to clarify the reconstruction effect.
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Figure 6. Comparison of reconstruction effects on different data sets. Left are Baby and Butterfly
from data Set5; right are Baboon and Foreman from data Set14.

It can be seen from the left images in Figure 6 that there is a similar reconstruction effect
of the baby image for Bicubic and SCSR, but an obvious artifact phenomenon occurred for
the Bicubic algorithm in the eye details, indicating that its reconstruction is worse than
that of SCSR. Meanwhile, the detailed reconstruction result of ANR is closer to that of
SRCNN, but the PSNR value of ANR is slightly higher. As for SPCNN, it performs best,
and the reconstruction of eye detail is closer to the original image. Similarly, a serious
artifact phenomenon happened on the Butterfly image with the Bicubic method. SCSR,
ANR, and SRCNN have similar effects with the loss of some details. Especially there is an
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expansion in the bright white spot area compared with the original image. SPCNN retains
better-detailed information in the spot area and is closer to the original image.

One can see from the right images in Figure 6 that there is a similar blurred phe-
nomenon to Mosaic in the eye part of the Baboon image. Compared with the Bicubic
method, the reconstruction effect of SCSR, ANR, and SRCNN is improved. However,
SCSR and ANR lose more serious eye structural features, yet SRCNN can retain better
structural features. As for SPCNN, the structural features are better maintained, and there
is no obvious loss of textural detail. As there is less color feature and texture detail in the
foreman image, the reconstruction effect of different algorithms is relatively close, but the
fuzzy phenomenon still exists in the Bicubic method. SPCNN can retain more detailed
features on various images.

In summary, the Bicubic algorithm performs worst on image reconstruction with
texture detail loss and artifacts. SCSR and ANR have similar reconstruction abilities, but
edge information loss still exists. The overall reconstruction ability of SRCNN is improved
on all images, but SPCNN performs better in texture details, and there is no obvious
artifact phenomenon.

Figure 7 compares the time consumption of different algorithms on data Set5 and
Set14. One can see from Figure 7 that the average reconstruction time of SCSR is the
longest, with 35.92 s and 84.88 s on data Set5 and Set14, respectively, which cannot meet
the requirement of most industrial environments. The time consumption of SPCNN is the
shortest, with an average reconstruction time of about 0.09 s on data Set5 and 0.27 s on
data Set14, respectively, indicating that the proposed operations, choosing the LR image as
input and designing the sub-pixel convolution layer based on up-sampling, are effective
for reducing the reconstruction time.
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3.4. Comparison of Transport Data Set

A private intersection surveillance image traffic data set provided by the Ministry of
Transportation of Longhai is used. At the same time, the peak signal-to-noise ratio of PSNR
and the structural similarity of SSIM are used to evaluate these methods.

The surveillance video images provided by the Ministry of Communications mainly
contain two parts of data, at the entrance of a school and at the intersection of the China
Merchants Bureau. For the entrance of the school data, there are various surveillance
images taken at four time periods, 6 o’clock, 12 o’clock, 18 o’clock, and 23 o’clock. These
images are also affected by different factors, such as the images taken at 6 o’clock are
obscured by fog due to rain; images taken at 12 o’clock and 18 o’clock contain different
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lighting due to changing cloud formations in the sky, and the detailed information in
images taken at 23 o’clock are severely distorted by vehicle lighting. There are 100 images
taken at different times and places. Therefore, there is a total of 500 traffic images in the
transportation data set.

To conduct the comparison experiments, 450 images are selected as the training set,
and the remaining 50 images are used as the testing set. To display the results, three images
at different times and places are randomly selected, that is, 6, 12, 18, and 23 o’clock. Figure 8
reveals the comparison results of PSNR and SSIM of five methods on the traffic images.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 15 
 

 

images are also affected by different factors, such as the images taken at 6 o’clock are ob-
scured by fog due to rain; images taken at 12 o’clock and 18 o’clock contain different light-
ing due to changing cloud formations in the sky, and the detailed information in images 
taken at 23 o’clock are severely distorted by vehicle lighting. There are 100 images taken 
at different times and places. Therefore, there is a total of 500 traffic images in the trans-
portation data set. 

To conduct the comparison experiments, 450 images are selected as the training set, 
and the remaining 50 images are used as the testing set. To display the results, three im-
ages at different times and places are randomly selected, that is, 6, 12, 18, and 23 o’clock. 
Figure 8 reveals the comparison results of PSNR and SSIM of five methods on the traffic 
images. 

As the background characteristics are similar in the transportation data set, there are 
similar results on images taken at the same place. The proposed SPCNN also performs 
best on almost all images except image number 13 at the intersection of China Merchants. 
On average, there is an increase of 1.32 dB on PSNR and 0.055 on SSIM for SPCNN, re-
spectively. 

It can be seen from Figure 8 that there are best reconstruction results on images taken 
at 18 o’clock (image number 7–9) due to less light interference. Meanwhile, as there are 
fewer vehicles on the road, the reconstruction result of images taken at 23 o’clock (image 
number 10–12) is similar to that of images taken at 18 o’clock. However, owing to more 
vehicles in the intersection surveillance image, its reconstruction effect is quite different 
on various images (numbers 13–15). In general, SPCNN performs best with higher aver-
age PSNR and SSIM values. 

 
Figure 8. Schematic diagram of different methods on traffic data. 

To further display the reconstruction effect of SPCNN on the traffic data set, Figure 
9 illustrates the reconstruction results at different time periods. In Figure 9a, the image 
reconstruction effect of the Bicubic algorithm is the worst, with obvious blurring in the 
image. The reconstruction effect of the SCSR algorithm and the ANR algorithm is rela-
tively close, but the details of the vehicle and the background building are lost. There is 
an obvious image-sharpening phenomenon appearing in SRCNN. The details of SPCNN 
are relatively complete, but there also exist certain distortions on the sky background. For 
the image in Figure 9b, as it concerns the vehicles on the road at monitoring, there is less 
sky detail in the image. Its reconstruction effect is consistent with that in Figure 9a; i.e., 
the Bicubic algorithm is worst, and SPCNN performs best. 

For the surveillance image of the intersection of China Merchants, there are more 
details than the surveillance image of the school. The reconstruction result of the Bicubic 
algorithm is still fuzzy; those reconstructed by SCSR and ANR also have artifacts, and 
SRCNN contains sharpening phenomena. The details of SPCNN are well preserved and 
are closer to the original image, especially in the text details. It can be seen from the bottom 
in Figure 9b that the text reconstruction effect of the Bicubic method cannot be effectively 
recognized. Although the reconstruction result of SCSR and ANR can be recognized, there 

Figure 8. Schematic diagram of different methods on traffic data.

As the background characteristics are similar in the transportation data set, there are
similar results on images taken at the same place. The proposed SPCNN also performs best
on almost all images except image number 13 at the intersection of China Merchants. On
average, there is an increase of 1.32 dB on PSNR and 0.055 on SSIM for SPCNN, respectively.

It can be seen from Figure 8 that there are best reconstruction results on images taken
at 18 o’clock (image number 7–9) due to less light interference. Meanwhile, as there are
fewer vehicles on the road, the reconstruction result of images taken at 23 o’clock (image
number 10–12) is similar to that of images taken at 18 o’clock. However, owing to more
vehicles in the intersection surveillance image, its reconstruction effect is quite different on
various images (numbers 13–15). In general, SPCNN performs best with higher average
PSNR and SSIM values.

To further display the reconstruction effect of SPCNN on the traffic data set, Figure 9
illustrates the reconstruction results at different time periods. In Figure 9a, the image
reconstruction effect of the Bicubic algorithm is the worst, with obvious blurring in the
image. The reconstruction effect of the SCSR algorithm and the ANR algorithm is relatively
close, but the details of the vehicle and the background building are lost. There is an
obvious image-sharpening phenomenon appearing in SRCNN. The details of SPCNN are
relatively complete, but there also exist certain distortions on the sky background. For the
image in Figure 9b, as it concerns the vehicles on the road at monitoring, there is less sky
detail in the image. Its reconstruction effect is consistent with that in Figure 9a; i.e., the
Bicubic algorithm is worst, and SPCNN performs best.

For the surveillance image of the intersection of China Merchants, there are more
details than the surveillance image of the school. The reconstruction result of the Bicubic
algorithm is still fuzzy; those reconstructed by SCSR and ANR also have artifacts, and
SRCNN contains sharpening phenomena. The details of SPCNN are well preserved and
are closer to the original image, especially in the text details. It can be seen from the bottom
in Figure 9b that the text reconstruction effect of the Bicubic method cannot be effectively
recognized. Although the reconstruction result of SCSR and ANR can be recognized, there
are serious artifacts. For SRCNN, its reconstruction result is much clearer, and there is
a small distortion phenomenon. As for SPCNN, its reconstruction result can be clearly
identified and is closer to the original ones.
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Figure 9. (a) China Merchants intersection monitoring image text details. (b) Snapshots from top to
bottom are the monitoring images of the main entrance of the school at 23 o’clock and the monitoring
images of the intersection of China Merchant: China Merchants intersection monitoring image
text details.

In summary, the image reconstruction effect of the Bicubic algorithm is the worst; there
is an obvious blur phenomenon, and text details are severely lost. The reconstruction effect
of the SCSR algorithm and ANR algorithm are relatively close with an edge information
loss. Compared with the original image, the overall reconstruction effect of SRCNN is
improved, but there is a small amplitude distortion. At last, the reconstruction effect of
SPCNN is better in texture details, and there is no obvious artifact.

3.5. Comparison of Defect Data Set

Furthermore, these methods are compared to the aluminum profile defect data set. As
the industrial defect images are remarkably different from those natural scene images, the
network needs to be retrained. Here, 50 defect images are randomly chosen as testing data,
and the remaining 450 images are considered as training data. Figure 10 shows the PSNR
and SSIM results of five algorithms on images from six different defect types.
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It can be seen from Figure 10 that all the SR reconstruction algorithms do not perform
well on the defect data. The SSIM of the Bicubic algorithm only ranges from 0.5 to 0.7.
Although the index values of SCSR and ANR algorithms are improved, the PSNR value
is still lower than 20 dB, and the SSIM value is lower than 0.7. The SSIM of the SRCNN
algorithm is better than other algorithms, basically between 0.7 and 0.8, but some PSNR
values are still below 20 dB. The overall value of SPCNN is higher than that of other
algorithms. The PSNR values are all higher than 20 dB, and the SSIM value is basically
higher than 0.75.

There is a large gap between image reconstruction effects on different defects. There is
a significant difference between various algorithms, in which the SSIM values of SRCNN
and ANR are close, but SRCNN is worse than ANR in some images. As the dashed
line indicates, although the PSNR of SPCNN increases slowly, its reconstruction effect is
significantly improved on the SSIM value. Therefore, it means that the SPCNN contains
better adaptability to industrial application scenes.

To further verify the effectiveness of SPCNN, six different types of defect images are
selected for a comparative experiment, as shown in Figure 11. Obviously, these defect
images may contain a great number of bright spot noises, yet the image texture features are
less visible. The Bicubic algorithm performs worst with strong blur in the reconstruction
image. The reconstruction effect of SCSR and ANR is similar, but there are still some
artifacts. SRCNN performs better than SCSR, ANR, and Bicubic, but there is a sharpening
phenomenon. The reconstruction effect of SPCNN is slightly better than that of SRCNN,
which is close to the original image.
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4. Conclusions

Image reconstruction has been widely used in remote sensing imaging, medical imag-
ing, and public safety. To deal with the computational complexity, vanishing and exploding
gradients, and other problems appearing in current deep learning networks, we proposed
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the SPCNN for image SR. At first, the luminance channel of the low-resolution image is
taken as the network input directly to simplify computation. Then, a two-layer convolu-
tional network is introduced to enrich the information and feature extraction. Furthermore,
the residual network structure is used to solve the problem of vanishing and exploding
gradients. Finally, a sub-pixel convolutional layer based on an up-sampling operation is
proposed to reduce the image reconstruction time while the correlation of feature infor-
mation remains unchanged. Comparative experiments between the proposed SPCNN,
SRCNN, Bicubic, ANR, and SCSR on public benchmark data sets, private transportation
and defect data sets are conducted. The PSNR, SSIM, and visual effects reveal that Bicubic
performs worst, and SPCNN is the best one; ANR and SCSR are better than Bicubic, and
SRCNN is worse than SPCNN.

Our future work involves studying how to carry out SR reconstruction on video,
optimizing the neural network model to better extract the image feature information, and
generating suitable training data.
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