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Abstract: Smart cities are being developed worldwide with the use of technology to improve the
quality of life of citizens and enhance their safety. Video surveillance is a key component of smart city
infrastructure, as it involves the installation of cameras at strategic locations throughout the city for
monitoring public spaces and providing real-time surveillance footage to law enforcement and other
city representatives. Video surveillance systems have evolved rapidly in recent years, and are now
integrated with advanced technologies like deep learning, blockchain, edge computing, and cloud
computing. This study provides a comprehensive overview of video surveillance systems in smart
cities, as well as the functions and challenges of those systems. The aim of this paper is to highlight
the importance of video surveillance systems in smart cities and to provide insights into how they
could be used to enhance safety, security, and the overall quality of life for citizens.
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1. Introduction

Cities the world over are becoming smart with the integration of advanced informa-
tion technologies and data-driven solutions. A smart city, such as an urban area equipped
with a well-developed infrastructure, improves the quality of life of its citizens, enhances
sustainability, and optimizes urban services such as transportation, energy distribution,
communications, and public safety. One of the key components of a smart city is a video
surveillance system (VSS), which enables the detection and identification of various situa-
tions that are relevant to smart city applications, including public safety, crime prevention,
traffic management, and environmental monitoring.

The modern city suffers from high population density, which causes various problems
for urban living. For instance, roads that carry too many vehicles are always congested,
and this may cause accidents between vehicles and pedestrians. At the same time, air
and water pollution from vehicles and factories threatens the health of citizens. However,
receiving healthcare is challenging as the number of clinics and hospitals is limited relative
to the population. For healthcare issues, telemedicine has been adopted in many countries
and the recent COVID-19 pandemic has accelerated its adoption. Furthermore, crimes and
fires frequently occur and require a rapid response to prevent damage, which eventually
increases the social cost required to maintain more police and fire stations. These modern
city problems could be solved effectively by a VSS.

Recently, some of the published VSS survey papers focused on one specific area such
as attacks and preventive measures on VSS [1], anomaly detection [2–5], crowd behavior
analysis [6], and drone surveillance system [7]. Some survey papers highlight the benefits
of using specific datasets in VSSs [8,9]. In contrast, our survey proposes a VSS architecture
and investigates system components and recent technologies required for surveillance tasks
in urban areas.

Table 1 describes possible use cases for the VSS to solve the aforementioned prob-
lems such as in the areas of healthcare, traffic management, public safety, environment
monitoring, and crowd management. Efforts have previously been made to develop VSS
solutions for these problems. Figure 1 shows the representation of topics in the literature
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that are related to the categories in Table 1. Studies that are oriented toward public safety
initiatives like crime prevention and detection, public safety analytics, and the surveillance
of restricted areas represent the largest portion. Other studies related to environmen-
tal monitoring, healthcare, crowd management, and traffic management have also been
carried out.

Table 1. Smart city video surveillance applications.

Healthcare • Elderly care and telemedicine
• Disaster and pandemic control

Traffic management
• Car accident and congestion detection
• Parking lot management
• Optimization of traffic flow

Public safety
• Public space and crime monitoring
• Building and greenspace monitoring
• Crowd monitoring

Environmental monitoring • Air quality and weather monitoring
• Fire and smoke detection
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Traditional VSSs relied on human supervision for monitoring and analyzing video
feeds in real time, and often encountered problems in processing large amounts of data.
Law enforcement and other authorized departments would install cameras and other visual
equipment in areas of the city, such as public parks, transportation hubs, and high crime
areas, to monitor and respond to unusual situations [10].

In contrast, recent VSSs have evolved with advanced technologies, called intelligent
surveillance systems [11], which automatically record and save video data in a secure
blockchain, and then analyze and interpret the video data using computer vision techniques
based on deep learning performed by edge or cloud computing. The intelligent VSS aims to
detect and track objects, recognize faces, identify anomalies, and predict potential incidents
or emergencies. It also sends alarms for proactive monitoring, rapid response, and efficient
resource allocation by city authorities [6]. Surveillance system applications for smart cities
require functions such as object detection and classification, object tracking, human action
recognition (HAR), anomaly detection, and video storage management:

• Object Detection and Classification: Object detection and classification techniques,
that employ traditional computer vision and machine learning in edge or cloud com-
puting, are utilized to identify various types of objects in a city scene. These objects
may include people, vehicles, street plants, animals, and environmental factors. Differ-
ent technologies and algorithms may be applicable, depending on the characteristics
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of the object, such as shape, color, and movement, to accurately detect and classify
objects in video frames.

• Object Tracking: Object tracking is the process of continuously following and moni-
toring objects as they move across consecutive frames of a video. Valuable information
such as trajectory, speed, and interactions with other objects or individuals can be
obtained by tracking moving objects; for example, a hit-and-run vehicle can be tracked
using a video stream from roadside closed-circuit televisions (CCTVs). Deep learning
methods are often employed for object tracking and use tracking based on a single
point of the object, tracking based on shape changes, or kernel-based approaches.

• HAR: HAR plays a significant role in healthcare and crowd monitoring applications,
and it focuses on identifying and responding to potentially harmful actions or emer-
gencies. HAR systems analyze and understand human actions rather than focusing
solely on characteristics like movement, body shape, or skin color. Therefore, deep
learning has recently been used to extract meaningful features and recognize human
actions from the visual information available in video sequences.

• Anomaly Detection: Anomaly detection is important for real-time monitoring and the
identification of unusual or suspicious activities. It makes proactive measures possible
and prompts responses to potential threats or incidents in a smart city. Anomaly detec-
tion methods can be applied to many tasks, such as road and traffic anomaly detection,
concealed weapon detection, crowd surveillance, and the detection of suspicious ac-
tivity. These methods often utilize machine learning or deep learning techniques to
detect behavioral patterns that deviate significantly from the expected behavior.

• Video Storage Management: For a VSS, ensuring the integrity, security, and accessibil-
ity of video data is critical. Therefore, VSSs use the blockchain to ensure data integrity,
security, and controlled access by authorized personnel while efficiently storing and
managing large volumes of video data using distributed storage management.

In this survey, we present an overview of a general VSS architecture with key com-
ponents for smart city applications, and we discuss their challenges based on studies
published in 2018 or more recently. State-of-the-art techniques that are applicable to the
VSSs are discussed in current research and development. Despite previous efforts, the VSS
still faces several challenges that include system accuracy, scalability, real-time processing,
variability, privacy, data storage, and retrieval problems that can impact their effectiveness
and implementation. For instance, a high false alarm rate incurs a significant administrative
workload, which requires a new approach like multi-modal features and unsupervised
learning methods for better detection accuracy. Additionally, drones are being used as
surveillance equipment, and they may be useful in future surveillance systems with better
accessibility. However, further study on drones is needed, considering the drones’ limited
resources and privacy issues. Furthermore, scalability in video storage and management is
critical, as a VSS generates a huge amount of video data in real time.

This paper is organized as follows: Sections 2 and 3 presents an overview and a
description of the VSS for a smart city. Then, Section 4 describes the features of the VSS
with applicable technologies from previous studies. In Section 5, we present the remaining
challenges for future works, and we conclude our study in Section 6.

2. Video Surveillance Systems in Smart Cities

As the VSS using cameras to monitor activity in a specific urban area is incorpo-
rated with many smart city applications, the VSS contributes to improving public safety,
healthcare, traffic management, urban management, and efficiency:

• Healthcare: Healthcare organizations use the VSS for emergency medical care, remote
patient monitoring, and quarantine monitoring. Depending on a particular state of
a patient detected by the camera and analyzed by deep learning algorithms such as
walking, falling down, or being motionless, medical care may be given to the patient
immediately. For this, video data are recorded and sent to a nearby edge node or
to a cloud server. Deep learning methods like convolutional neural network (CNN)
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or deep neural network (DNN) decide whether the patient status requires the help
of a healthcare center. Additionally, the VSS is a valuable tool to ensure compliance
with quarantine guidelines and to monitor potential risks to public health during
an outbreak of an infectious disease like COVID-19. For instance, health authorities
can realize public quarantine to prevent the spread of the disease using the VSS with
cameras placed outside the houses of quarantined individuals.

• Traffic management: Traffic management involves monitoring traffic accidents and
rule violations on the road, while calculating and analyzing traffic jams using the
VSS. Typically, cameras placed on roads and major intersections monitor traffic condi-
tions and provide real-time video feeds, which can pre-process the video data using
background extraction and region of interest (ROI) algorithms for real-time traffic
control. Various algorithms analyze the pre-processed video data for its purpose,
such as computer vision and deep learning techniques. For example, supervised deep
learning methods such as CNN, mask R-CNN (MRCNN), and deep CNN (DCNN)
monitor common accidents and identify similar patterns during accident monitoring.
Additionally, unsupervised deep learning methods like incremental spatiotemporal
learner (ISTL) discover new types of accidents to broaden the scale of the system.
Furthermore, motion-detection methods based on You Only Look Once (YOLO) and
CNN can predict the future movement of cars in motion in particular scenarios.

• Public safety: Video cameras placed in various public areas, such as streets, parks,
transportation hubs, and commercial districts, enable the continuous monitoring of
citizen activities for public safety, which particularly identify criminal activities such
as theft, vandalism, and public disturbances, as well as detect suspicious movements
among crowds. For this, real-time processing of recorded footage occurs on a nearby
edge node or cloud server, where motion-based methods, like frame differentiating,
optical flow, and deep learning algorithms, are mostly applied for human action
detection. In addition, deep learning methods such as long short-term memory (LSTM),
CNN, recurrent neural network (RNN), and DNN can be employed for encoder and
classifier tasks, enabling the identification and categorization of prohibited human
movements in an environment. Controlling cold weapons in public environments is
essential to public safety. For hand-held cold weapons, they look similar to mobile
phones, wallets, and cards, so deep-learning-based fine-grained algorithms are recently
promising. In addition, the deployment of green plants and buildings in the urban
area is primarily developed by color-based, shape-based, and texture-based computer
vision methods. For instance, color-based classification methods, such as support
vector machine (SVM) and k-nearest neighbor (kNN), are used to monitor plant
diseases, and texture-based methods, such as Gabor filtering and local binary patterns
(LBP) histograms, are used for the analysis of buildings in the city.

• Environmental monitoring: Air pollution and weather condition monitoring in urban
areas rely on color-based computer vision methods to analyze live video feeds and
detect visual cues related to air quality and weather patterns. For example, the VSS
can identify the presence of smog or haze, which may appear as a discolored or
hazy layer in the atmosphere. By focusing on specific color ranges indicative of
air pollutants, real-time alerts can be provided when pollution levels exceed certain
thresholds. Additionally, the system can detect rain, snow, fog, or other weather
phenomena, providing valuable data for weather monitoring and forecasting. For
early fire detection, it is important to detect even low-level flames as quickly as possible.
Surveillance cameras are strategically placed in and around potential fire-prone zones
to continuously monitor for signs of fire. Then real-time image processing techniques
are applied to analyze the video frames and identify potential fire-related patterns. A
combination of color-based methods, such as YOLO, CNN, and SVM classifiers, along
with shape-based methods, like generative adversarial network (GAN) discriminator
and DNN, can be employed to distinguish fire areas and non-fire areas. By leveraging
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both color and shape information, the VSS can minimize false alarms and improve the
accuracy of fire detection.

3. Video Surveillance System

A VSS in a smart city is designed to monitor the urban environment using various
devices such as public or private CCTVs, the dash cams of cars or unmanned aerial vehicles
(UAVs), and even smartphone cameras. Figure 2 presents a VSS architecture, which consists
of end camera devices, an edge computing system that first processes video data and then
analyzes the data for a fast response to users, a cloud computing system with enough
computing resources and storage to enable users to analyze the video data intensively
using deep learning, and a blockchain system that provides secure storage and consensus
between anonymous users on the video data.
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Figure 2. Overview of video surveillance system.

The technologies and devices that are related to the VSS vary according to its purpose
and scale. For example, edge computing is widely used in scenarios where real-time
transmission and immediate action are critical, such as in hospitals, and for environmental
monitoring. In a traffic monitoring system, the video captured by roadside cameras is
analyzed using deep learning techniques. Additionally, for early fire detection, a color-
based deep learning classification method is utilized to determine if the frames of the
incoming videos contain red color and to serve as an initial stage of fire detection.

3.1. Monitoring Device

As cameras have become common in many areas of cities, visual data can easily
be collected from the surroundings for smart city applications. Monitoring devices are
classified into two types: moving and fixed monitoring devices. Fixed monitoring devices
are typically located inside and outside of buildings, on streets, and at road intersections
to continuously monitor designated areas. In contrast, moving monitoring devices are
designed to move freely and monitor areas that are not directly visible. Figure 3 categorizes
monitoring devices for the smart city VSS with respect to their mobility; some cameras, like
CCTVs, are static, whereas others, such as those on vehicles and mobile phones, are moving.
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Some examples of fixed monitoring devices would include pan-tilt-zoom (PTZ) cam-
eras, Internet Protocol (IP) cameras, dome CCTVs, wireless CCTVs, and bullet CCTVs [12].
IP cameras, in particular, are becoming popular because they not only capture video footage,
but also transmit and receive data over a computer network or the Internet, which makes it
easier to access footage from remote locations. Due to their excellent scalability, IP cameras
can be used to cover wide urban areas [13].

Moving monitoring devices, like UAVs, mobile phones, and cars, incorporate loca-
tion information from GPS or other tracking algorithms [14]. UAVs, which are mainly
drones, can collect complete and consistent data, unlike the more limited fixed monitoring
devices. Drones can move freely in the sky, cover large and hard-to-reach areas, and are
easily deployed and retrieved with the click of a button. Drones provide an aerial view;
their real-time data and mobility make them valuable tools for enhancing security and
improving various aspects of urban management, which are used popularly for purposes
such as object and people detection, data collection, general traffic and wildlife monitoring,
radio surveillance, and search and rescue operations during disasters [15–18]. For object
and people detection, drones equipped with high-resolution cameras and AI-based im-
age recognition algorithms can detect and track objects, vehicles, and individuals in real
time. Drones in the environment monitor air quality, pollution levels, and changes in the
environment over time. Additionally, they are used for the quick and efficient delivery of
emergency medical supplies, packages, or small goods in congested urban areas.

Crowd-sourcing based on smartphone cameras is not common, but it is a very inno-
vative approach to monitoring the smart city. In [19], smartphones were used for a video
data collector to record urban incidents such as traffic updates, accidents, thefts, and street
disturbances using citizens’ smartphone cameras. Smartphone users could store recorded
video data on a cloud server via a dedicated application or web portal. Other users of the
system could then access the shared information individually or receive an alarm about
incidents from the cloud.

3.2. Edge Computing and Pre-Processing

Edge computing is gaining popularity in VSSs, as it provides an efficient and effective
way to process video data. In traditional VSSs, video data is typically sent to a central server
or a cloud for processing, analysis, and storage. Sending all the data to a central server can
be slow and costly, as it requires a high-speed network connection, large storage capacity,
and powerful computing resources. However, edge computing involves processing and
analyzing video data closer to where the data are generated, such as on local camera devices,
which may include smartphones and network entities like base stations and wireless access
points [20]. Edge computing is particularly powerful for real-time data-driven applications;
for example, deep learning is used on edge nodes to detect system failures, and to regulate
traffic jams based on current road conditions. Therefore, data can be stored and processed
locally, which eliminates the need to upload all the data to the central server. This reduction
in network burden enhances the efficiency of network bandwidth utilization [21].



Electronics 2023, 12, 3567 7 of 34

Edge computing offers several advantages that make it well-suited for use in public
safety organizations such as hospitals and police departments. For instance, when a
child goes missing, local edge devices can be used to quickly retrieve and examine data
recorded by surveillance cameras within each region; this can be an effective strategy for
law enforcement agencies [22]. In addition, during an ambulance ride, edge computing may
involve using onboard medical devices and sensors to monitor a patient’s vital signs, collect
data about their current condition, and transmit that data to the nearest hospital in real
time. This gives healthcare providers at the receiving facility access to critical information
about the patient’s condition before the patient arrives [23].

In smart city surveillance systems, edge nodes are typically positioned between the
monitoring devices and the cloud server [24]. Edge computing analyzes data locally and
sends only relevant or summarized data, thereby reducing the processing load on the
cloud server [25]. Cloud computing offers scalability by providing virtually unlimited
computational resources and robust storage capability. It is suitable for handling large
volumes of data, computationally intensive tasks, or scenarios where edge computing
resources may be limited [26]. Moreover, cloud computing allows for the centralized
management and control of the entire smart city surveillance system. If an edge node
experiences a failure or disruption, the cloud server can seamlessly take over the processing
tasks, which ensures continuous operation and minimizes downtime [27].

Pre-processing is an essential step in video processing, as it optimizes video data
before they are analyzed by computer vision algorithms. Due to the significant overhead
of directly processing raw data using algorithms, it is often necessary to pre-process the
data before the main processing step. The goal of pre-processing is mainly to remove noise
and irrelevant information from the video stream and enhance the relevant information to
improve the accuracy of the computer vision algorithms. Pre-processing involves various
operations that have often been employed in previous studies, such as ROI segmentation,
video compression, noise reduction, image resizing, and reformatting. Specifying an ROI
retains the quality of the most pertinent information in a transmission and reduces the
amount of data transmitted, which increases the efficiency and bandwidth of a network
utility [28–32]. Video compression involves reducing the size of video data to make it
easier to store and transmit without sacrificing too much quality, which optimizes the
use of bandwidth and reduces the cost of data storage and the transmission time [29,33].
Image resizing and reformatting effectively improves the quality of a video image by
adjusting the brightness, contrast, and color balance. This method is especially useful in
low-light environments where video quality may be poor. Furthermore, noise caused by
low illuminance or signal interference can be reduced by removing random fluctuations in
the video signal [34,35].

3.3. Cloud Computing and Deep Learning

Cloud computing plays an important role in VSSs by providing a scalable, flexible,
and cost-effective way to store, process, and analyze video data. The storage of video
footage can be offloaded to cloud-based storage solutions; this is one way that cloud
computing is used in video surveillance. This eliminates the need for an on-premises
storage infrastructure and allows for easy access to footage from any location that has
an Internet connection. Moreover, cloud-based storage provides high availability and
redundancy, which ensures that the data are always accessible and protected from data
loss [31]. Although cloud computing is beneficial for efficient data transfer, protection,
processing, and storage, it still requires a large network bandwidth and may suffer from
long response times due to network latency. Therefore, edge computing is essential for
providing solutions that are feasible for real-time intelligent video surveillance. Edge
computing processes data at the edge of a network in advance. The processing is closer
to the data source, which reduces latency and workload on the central cloud for faster
response times [36,37].
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Deep learning has revolutionized video surveillance in recent years. With the help
of advanced deep learning algorithms, it is now possible to analyze and understand
large amounts of video data in real time, which enables improved safety and security
measures [38]. Deep learning algorithms can accurately detect and track objects in video
streams, even in complex and cluttered environments, and can detect and classify different
types of objects, such as people, vehicles, and animals. Deep learning can be performed by
various types of neural networks such as CNNs [39–42], DNNs [43,44], and RNNs [45,46],
to recognize objects, track movements, and analyze behavior in video data [47]. To train on
video data in a supervised learning task, it is necessary to pre-process and annotate the
data. The annotated data are then fed into a neural network and the network parameters
are adjusted to optimize the performance on the given task. Afterward, the trained model
is deployed on the edge or in a central cloud for VSS [48].

The CNN is the network most widely used for VSSs. It is used to grade objects for
classification, identify actions in video frames, perform similarity matching, and calculate
image characteristics. A CNN consists of multiple layers of convolutions and pooling
operations that enable it to learn and identify features in images, such as edges and shapes.
By stacking these operations in multiple layers, CNNs can learn increasingly complex
representations of images, which enables them to identify and classify objects within the
images [28–30,32]. Meanwhile, DNNs are used for a wide range of tasks, including natural
language processing (NLP), and image and speech recognition. The main purpose of DNNs
is to understand intricate patterns in data by constructing deep hierarchical representations
of the information. DNN models are trained using a backpropagation technique that adjusts
the network weights based on the errors the network makes when making predictions.
This iterative process allows the DNN to gradually refine its predictions and improve its
overall performance [49,50]. RNNs are used for sequential data analysis, such as NLP and
speech recognition.

3.4. Blockchain

Since Bitcoin was introduced in 2008, researchers have been developing blockchain
technologies and demonstrating their usefulness for various industries. The blockchain
is also used for video surveillance in smart cities in contexts where IoT sensors, actuators,
and surveillance devices collect and process data. The collected data and the deep learning
models are made available through servers to users/stakeholders [51]. Large amounts
of sensitive data can cause bottlenecks, single points of failure, and cybersecurity issues
on a network. Blockchain technology is often considered to solve these concerns due to
its decentralized, secure, immutable, persistent, and fault-tolerant characteristics [52–54].
To prevent data tampering by unauthorized access and the loss of important records,
permissioned or private blockchain systems are often preferred for smart cities. For the VSS,
the blockchain can provide scalable storage and grant users restricted access to data without
being influenced by external factors such as cybersecurity threats, data privacy concerns,
and system downtime. To ensure data integrity, provide authentication/authorization, and
enable cryptocurrency transactions [55], the key features of blockchains are:

• Authorization and authentication: This characteristic ensures that data are exchanged
only between authorized devices within the VSS for the security, integrity, and reliabil-
ity of blockchain networks. By verifying the identity of devices or users with the use
of membership information, authentication prevents unauthorized access to sensitive
data. This process typically involves verifying credentials or digital signatures to
ensure the legitimacy of participants within the blockchain network [56–58]. Fur-
thermore, authentication and authorization are also used in data sharing and system
integration between separate VSSs. By registering on the same blockchain, users of
distinct VSSs can communicate securely by using an authentication process that allows
only authorized devices to access shared data, which further enhances the security
and integrity of the video surveillance ecosystem [59].
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• Data integrity: This characteristic ensures that the video surveillance data stored on
the blockchain are accurate, complete, and unaltered. This can be carried out using
various techniques, such as digital signatures, cryptographic hashing, data encryption,
and tamper-evident seals. These methods detect unauthorized changes made to the
data and prevent any malicious attempts to alter the video footage [60,61].

• Distributed storage: This characteristic is based on peer-to-peer (P2P) networking,
and it is used for storage like the InterPlanetary File System (IPFS). Distributed storages
need to be specified for the process of accessing and cross-referencing data from
multiple sources and integrating it into a single system. This makes data easier to store
and distribute and enables stakeholders to access and share it seamlessly [62]. In other
words, video data can be shared directly between devices without a centralized server
through P2P distributed storage. This improves efficiency and reduces the risk of data
loss or tampering. P2P distributed storage is used in various applications, including
file sharing, content distribution, and communication platforms [63].

• Smart contracts: The smart contract is a blockchain feature that has been utilized
to automate secure operations without user intervention. It increases transparency,
efficiency, and flexibility in various distributed applications. Smart contracts are self-
executing programs that are executed by a third party; their result is inspected by other
blockchain nodes and finally written into a block. This blockchain feature enables
various secure and reliable operations without having a trusted party in the distributed
system [64]. Smart contracts can be used to manage assets, budgets, and even traffic
congestion. For instance, smart contracts can increase transparency and ensure the
proper use of a city’s budget, by automatically allocating funds for road maintenance,
by taking traffic patterns and road usage as inputs in a function of the smart contract.
Accordingly, city resources are scheduled efficiently for the city’s infrastructure [65].

4. Features of Video Surveillance System in Smart Cities

This section discusses the key functionalities of a VSS for monitoring a city environ-
ment using cameras, edge/cloud computing, and deep learning algorithms. These func-
tions mainly include surveillance video analysis such as HAR, object detection, anomaly
detection, object classification, object tracking, and the secure video data management.

4.1. Object Classification and Recognition

Object classification plays a vital role in VSSs as it helps identify and localize specific
objects within a video stream. After objects have been detected in a video stream, object
classification is used to identify and categorize them into predefined classes that include
people, vehicles, plants, animals, and environmental factors in a city area. By classifying
objects into different categories, we gather the necessary information required for further
analysis and processing [66].

The object classification process consists of several steps, such as image acquisition,
image pre-processing, feature extraction, and object recognition. The image pre-processing
step utilizes video compression, noise reduction, and image enhancement algorithms.
Feature extraction is carried out to identify patterns in the image, and object recognition
involves comparing the features that have been extracted to a database of known objects
to identify the object of interest. If feature extraction is done before object recognition, the
recognition can be realized by several factors, such as motion, shape, color, and texture, as
described in the following sub-sections. A summary of sub-sections is described in Table 2.

4.1.1. Motion-Based Object Detection

Motion-based object detection is a technique commonly used by VSSs to detect and
track objects such as pedestrians, vehicles, and animals based on their motion characteris-
tics. Motion-based object detection involves analyzing the changes in motion within a video
sequence to identify regions or objects of interest. Various motion detection algorithms
can be used, such as frame differencing, background subtraction, or optical flow. These
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algorithms are computationally less complex and suitable for a dynamically changing
environment [67]. The background subtraction method is useful in scenarios where the
background is relatively static but the foreground objects exhibit motion such as street
scenes and indoor environments [68]. The frame differencing and optical flow algorithms
both compare consecutive frames to detect changes in pixel values, but optical flow al-
gorithms are more suitable for dynamically changing environments, which can process
complex motion patterns [69–71]. In [72], the authors introduced the frame differencing
and W4 algorithm for detecting moving pedestrians and vehicles in a noisy environment
with a complex background. This algorithm calculates the difference between frames
using the frame differencing and the W4 algorithm separately, and combines the outcome
of each technique using a logical OR operation. Finally, morphological operations with
connected component labeling are used to remove the noise and detect the final object in
the combined outcome.

In the comparison of the proposed approach with the inter-frame and three-frame
methods, it was evaluated across three datasets: one focused on pedestrians in a street
(walking), another featuring a commercial street scenario (meetings), and a third centered
around a four-road intersection scenario (traffic). The findings revealed that, in various
environments, the proposed method exhibited an improvement in accuracy ranging from
2% to 4% when contrasted with the inter-frame and three-frame difference methods. No-
tably, the highest accuracy was achieved in tracking people during meetings, while the
least accurate results were observed in the context of tracking traffic. These variations in
accuracy were influenced by factors such as the distance between the camera and the object
being tracked, as well as the speed of the object’s movement.

Recently, deep-learning-based approaches like CNN and DNN have often been used
for motion-based object detection. For example, the CNN finds the location of a moving
car in a traffic system, predicts the forward path of the car, and optimizes the crossroad
throughput [28,30]. In [73], YOLOv4 was used to detect multiple vehicles in a traffic system
that employed a CSPDarknet53 classifier and spatial pyramid pooling to connect to a
YOLOv3 head. In order to reduce accidents on the road, a YOLOv4 repository was used to
build a custom object detector, which contains the details for all the parameters related to
the road. It achieves a high detection accuracy with the precise positioning of a bounding
box and fast computation. According to the results of the implementation, it was used to
distinguish between the vehicles on the road, and the accuracy was 97% in the test on the
road where the density of the car is high.

Some research studies have combined deep learning with other approaches to improve
performance. Zahra et al. [29] proposed the ESSE (efficient shallow segmentation-based
encoding) framework for video surveillance to identify suspicious people or vehicles and
to detect traffic patterns and road conditions. ESSE uses a CNN and a modified high-
efficiency video coding (HEVC) encoder together. First, the CNN segments salient regions
in video frames captured by a camera. Then, a modified HEVC encoder is used to minimize
the video file size while maintaining the high quality of the salient regions. Utilizing a
modified HEVC encoder yielded a notable accomplishment, achieving a cross-road object
pixel accuracy of 92.31%. In contrast, employing the default HEVC encoder led to a
slightly lower object pixel accuracy of 86.78%. The enhancement of object pixels through
these encoders offers the advantage of minimizing inaccuracies in object detection and
contributing to an overall improvement in system accuracy.

Using the lightweight DNN with edge computing can reduce the computational cost
of object detection [49]. Whereas the aforementioned methods usually use one camera to
detect a moving object based on the difference between recorded frames, in [74], federated
edges were used to position multiple cameras to detect an object from multiple angles.
Federated edges in smart city surveillance allow multiple cameras to work together to
detect objects from various angles. For example, federated edges can be used to monitor
traffic and the license plates of vehicles entering restricted areas. By selecting the most
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appropriate camera and prioritizing the highest-rated video feeds, the system saves time
and resources, thereby improving efficiency.

Some studies have used a combination of traditional computer vision algorithms [75].
In [76], the adaptive motion estimation segmentation (AMES) and the proposed sequential
outline separation (SOS) methods were used to detect multiple moving objects. AMES is
a computer vision technique that analyzes the motion information between consecutive
frames and then uses that information to separate moving objects from the background.
Meanwhile, SOS iteratively analyzes the structure of the outline and separates it into distinct
levels based on indentation or other hierarchical indicators. During the evaluation of the
system’s ability to detect multiple cars on the road, the SOS-based moving object recognition
algorithm achieved a high classification accuracy of 97.45%, surpassing the results of
traditional block-matching approaches. These conventional techniques are commonly
employed in image and video processing for tasks like motion estimation and compression.
They function by dividing an image or video frame into smaller blocks, subsequently
analyzing and comparing these blocks between successive frames to gauge the extent of
motion. In comparison, the accuracy of the block-matching methods in classifying cars on
the road reached 96.61%.

In [34], a double-mode surveillance system was proposed. The system checks audio
and video simultaneously using a laser Doppler vibrometer and a PTZ camera to detect re-
mote human movements in an indoor environment. The laser Doppler vibrometer acquires
remote audio by detecting the vibrations in the area, in which humans are in motion. The
PTZ camera is capable of adjusting its position, which enables the dynamic monitoring and
tracking of the specific area on which the laser Doppler vibrometer is focused.

4.1.2. Shape-Based Object Detection

Shape-based object detection in video surveillance uses computer vision algorithms
to analyze the shapes and contours of objects that are captured in video footage, which
enables the detection and classification of specific objects of interest. These objects may
include people, vehicles, visually similar objects, and faces [77]. The DeepDC system [78]
uses a CNN-based algorithm and a GAN discriminator to classify people and vehicles on a
public street using a post-processing operation. In the system’s initial stage, a CNN-based
algorithm called DeepSphere is used for object segmentation. This means that it separates
the different objects (such as people and cars) in the scene. After the objects are segmented,
the GAN discriminator extracts deep features from the segmented objects and assigns them
to their respective labels. Comparing the test results, we can observe that when utilizing
only a CNN for object classification, the accuracy achieved is 89.12%. However, when
incorporating a GAN discriminator after the CNN, the accuracy significantly improves to
93.82%. This demonstrates the effectiveness of adding a GAN discriminator in enhancing
the classification performance of the model. To differentiate between people and cars on
the street, the system considers where they entered and exited the street, as well as what
activities they were engaged in while on the street.

Face recognition is one kind of shape-based classification that identifies and verifies
individual faces captured by surveillance cameras in a city environment. The method
proposed in [79] involves using LBPs to analyze facial features and match them against a
database of known individuals or generating unique identifiers for unidentified faces on
an edge node and then sending the detected faces to a CNN server for further processing
and analysis. The LBPs are used to analyze the local texture patterns of the video frames
input to the edge device itself, which helps in detecting the presence and location of faces
in the captured data efficiently. By combining LBP-based feature extraction with CNN-
based analysis on a server, it is possible to achieve accurate and robust face detection
and recognition.

Improving the precision of the machine identification of small and intricate objects
is a challenge. This task involves distinguishing subtle visual differences between objects
that belong to the same broad category. A deep-learning-based binary classifier involves
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distinguishing between two distinct classes or categories. It is particularly useful in de-
tecting small objects that share similar visual features like cards, cashes, bills, pistols, and
pocket knives [32]. By training a deep-learning-based binary classifier on labeled data,
where one class represents the target object and the other class represents the background,
it is possible to detect these small objects effectively. When employing binary classifier
algorithms like one-versus-all and one-versus-one in isolation, the objects generated by the
classifier are differentiated based on the algorithm’s traces. According to the test results,
after using the deep learning algorithm like the proposed method, the binary classifier
algorithm reduced the number of false detections by 56.5%. This approach for detecting
small objects in surveillance videos showed an accuracy of up to 88.5%. Additionally, CNN
models like fractional-based CNNs and subtractive CNNs can be utilized to distinguish
subordinate-level categories, such as bird species or dog breeds [80]. Fractional-based
CNNs upsample or reconstruct feature maps, which is particularly beneficial for capturing
intricate details that are crucial for distinguishing between subordinate-level categories.
Subtractive CNNs employ a process of subtracting or canceling out common features across
categories, which enables them to emphasize the unique characteristics of each category.

The object detection method in [81] uses a CNN with a probabilistic neural network
(PNN). A CNN is used to extract high-level features from the images, which are then
fed into multiple PNNs. Each PNN produces a binary decision for the image class. The
outputs of these binary decisions are then combined to make a final decision. The use
of multiple PNNs helps to enforce consistency between decisions and reduce the risk of
misclassification due to noise or other sources of uncertainty. Additionally, the use of PNNs
can help to reduce the risk of overfitting to the training data until 17%, which improves the
generalization performance of the model until 89%.

Although the above-mentioned methods are usually based on single-view object clas-
sification, Deng et al. [82] presented an insightful study that utilized a multi-view fusion
network and processed data from a three-dimensional perspective, rather than a two-
dimensional perspective. Their research focused on the precise identification of animals
in specific environments, such as at the beach or in the forest. To achieve higher classi-
fication accuracy, the researchers employed a multi-view fusion network that analyzed
and integrated information from multiple viewpoints, which enabled a more comprehen-
sive understanding of the data. By considering different perspectives simultaneously, the
network was able to capture a broader range of features and characteristics associated
with the animals. The suggested three-dimensional method requires more time for data
integration compared to the two-dimensional approach. However, the detection accuracy
has the potential to rise significantly, reaching up to 98% based on the dataset.

4.1.3. Texture-Based Object Detection

Texture-based object classification identifies and classifies objects based on their textu-
ral patterns in a video sequence. It involves analyzing the spatial distribution of textural
features in images or video frames to distinguish between different object categories. Manik
et al. [83] proposed a plant classification system based on gray level co-occurrence matrix
(GLCM) extraction using a kNN classifier in 2019. The GLCM is a technique in digital image
processing that is commonly used to extract texture features from images. It calculates the
co-occurrence matrix of gray level values in an image, from which four features can be
extracted: contrast, correlation, energy, and homogeneity. The features extracted from the
GLCM are then used as inputs to a kNN classifier, which is a type of supervised learning
algorithm used for classification tasks, that classifies a plant sample based on its similarity
to the k nearest plant samples in the training dataset. The effectiveness of this system
depends on the quality of the GLCM features and the training data used to train the kNN
classifier. During the experiment, the classification of plant types in leaf images relied on
GLCM characteristic extraction paired with a kNN classifier. When segmenting the data
into clusters with values of k = 3, k = 5, and k = 7, the most noteworthy outcome was
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achieved when k = 3, resulting in the highest accuracy of 83%. Conversely, with k = 5, the
accuracy dropped to 60%, and for k = 7, it reached 62%.

Uzair et al. [84] introduced the hyperspectral image classification approach to distin-
guish between the facilities in city. This approach focuses on green facilities specifically.
When it analyzes green facilities, it employs texture analysis to identify the types of leaves
that are present, especially in vegetable gardens. Hyperspectral image classification is
based on DCNN and Gabor filtering. The Gabor filtering is used to extract spatial features
from hyperspectral images. These features are then fed as input to a DCNN for classifi-
cation. The proposed method underwent testing across three distinct datasets, achieving
an average accuracy of 95.8%. This surpasses the performance of alternative approaches
such as 2D-CNN, machine feature learning, and deep feature fusion networks that utilize
different CNN architectures.

4.1.4. Color-Based Object Detection

Color-based object detection analyzes color distribution in an image or video frame
and identifies objects that match a predefined color model. The authors in [85] identified
plant diseases in a city area using a kNN classifier with color image segmentation in 2019.
The kNN classifier attempts to measure the similarity of a pixel with its closest neighboring
pixels; it uses a distance matrix for the similarity calculation. The segmented regions
are represented by three distinct colors: one color represents the leaf, the second color
represents the disease, and a third color represents the background. During the experiment,
the classifier parameters were set to utilize three nearest neighbors for the detection of five
types of plant diseases. The proposed approach achieved a recognition accuracy of 96.76%.
In comparison, systems based on SVM classifiers, which are commonly employed for plant
disease detection, have achieved a maximum accuracy of 92.1%.

The presence of fire in an urban area can be detected by analyzing the color of the
flames: images of the environment are first captured by a camera and then the flames in
those images are analyzed. In [86], fire detection was achieved by analyzing the spatial-
temporal features of flames in a captured video using an SVM classifier, which was then
trained on these features to accurately distinguish between fire and non-fire events. The
reported experiment results for the SVM classifier show an accuracy of 95.7%.

Table 2. Comparison between methods used in object classification applications.

Feature Classification Method References Description

Object
classification

Motion-based object
detection

Deep learning [28–30,49,73]

Analyzes patterns of motion and changes in
appearance over time, is suitable to
real-time systems, and provides
high accuracy

Frame
differencing [68,69,72] Computationally less complex and suitable

for dynamically changing environment

Optical flow [70,71]
Requires more complex computational
methods but is more accurate than frame
Differencing

Traditional
computer
vision algorithms

[34,74–76]

When algorithms are tailored to specific
tasks and applications, they can achieve
higher accuracy and efficiency in solving
the problem at hand
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Table 2. Cont.

Feature Classification Method References Description

Shape-based object
detection

GAN discriminator,
DNN,
multi-view,
deep learning

[32,78,79,81,82,87]
Deep learning algorithms are trained to
detect objects based on their shapes and
other features

Texture-based object
detection

Gabor filtering, LBP,
GLCM, LBP
histogram

[31,83,84]
Feature extraction uses an algorithm based
on the texture of the object, and objects are
classified by deep learning algorithms

Color-based object
detection

SVM,
kNN classifier [85,86]

Analyzes the color distribution in a video
frame and identifies objects that match a
predefined color model

4.2. Object Tracking

Object tracking in video surveillance is a process of automatically detecting objects of
interest in a video stream and following the objects over time. The goal of object tracking is
to keep track of objects as they move through the frames of the video, even when the objects
are partially or fully occluded. Object tracking in video surveillance can be realized by
numerous techniques for a wide range of applications, including security, traffic monitoring,
and gesture recognition [88]. For example, point-based, kernel-based, and silhouette-based
approaches can be applied to object tracking. The selection of an appropriate method for a
given task depends on the specific goals and requirements of the task [89]. A summary of
these three methods is described in Table 3.

4.2.1. Point-Based Object Tracking

The point-based approach involves identifying and tracking a specific point on an
object. Kalman filtering and particle filtering are frequently used in this approach. In [35],
a multi-object detection and tracking (MOTD) method was proposed in 2019. This method
uses Kalman filtering with a probability-based grasshopper algorithm (PGA) to track
multiple objects on roads and sidewalks. Initially, morphological operations and region
growing are used to extract objects from pre-processed frames. Then, Kalman filtering,
and the PGA estimate the motion of the tracked object using optimized parameters. The
Kalman filter improves the tracking rate until 86.78%, by utilizing previous state evaluations
to assess the current state of the object. In the experimental phase, when utilizing the
CAR dataset, the proposed system attained an accuracy of 69.22%. When contrasted
with a Kalman-filtering-based system and an optimal partial filtering combined with a
morphological operation-based system, the disparities in accuracy were minimal, with
differences of 4.22% and 11.2%, respectively. Cob-Parro et al. [90] proposed a system for
human movement tracking using a Kalman filter bank on a low-power embedded device
with an accuracy of 87.82% in 2021.

Issam et al. [91] proposed a method for the detection and tracking of moving objects
for street surveillance with an accuracy of 98%. Because it is not possible to calculate how
many objects will be on a street in advance, a general filter is created when the system
starts. When a new frame containing an object is encountered by the system, the initialized
filter determines if the object is new or not; if the object is new, the filter generates a new
particle filter for that object. This process repeats for each moving object, which ensures
that a dedicated filter is created for tracking purposes. Subsequently, when an object either
stops or exits the scene, the corresponding filter that is responsible for tracking that object is
removed. This methodology enables the efficient detection and tracking of multiple objects
in real-time video surveillance applications.

Due to the limited borders that the object was prohibited to reach or unexpected
obstacles, it is necessary to pre-calculate potential motion boundaries. Zhu et al. [92]
achieved this by utilizing a distance transform state and particle filtering to determine safe
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boundaries for objects like a person walking on the road. The distance transform state
calculates the appropriate distance between the object (dynamic state) and the environment
(environment state), and the particle filtering uses particle sets to represent the probability
distribution of the object’s state. A moving object is represented by rectangular bounding
boxes. The position and size of the bounding box is continuously updated according to
the object’s movement. As the object moves, the particles update to reflect the object’s
possible new positions. The distance transform state evaluates the safety of each particle’s
position. Another approach to object tracking in the presence of unexpected obstacles
is to utilize a correlation-filtering-based algorithm. By employing a correlation tracking
algorithm, the system can track the object based the characteristics of its appearance [93].
The basic idea of correlation-filter-based tracking is to train a filter using information about
the appearance of the object in the initial frame, and then to use this filter to locate the
object in subsequent frames.

4.2.2. Kernel-Based Object Tracking

Kernel-based object tracking is a popular approach for tracking objects in video
sequences. This approach estimates the location and motion of an object of interest in
consecutive frames of a video. In kernel-based object tracking, a kernel function measures
the similarity between the object being tracked and regions in subsequent frames of the
video sequence. By comparing the similarity scores of different candidate regions, the
tracker can determine the most likely location of the object in the current frame [94,95].
Chen et al. [96] presented a model that used low-rank representation with contextual
regularization to track moving objects in indoor and outdoor environments in 2017. This
approach separates the background and foreground using a custom-designed cost function.
As a result, the foreground mask can be precisely identified with a 96% accuracy rate in
46 sequences. Furthermore, they introduced sparse and low-rank representation with
contextual regularization (SLRC) in 2019 [97]. SLRC utilizes a specially designed cost
function to distinguish between the background and the foreground in multiple scenarios.
In the foreground model, objects in motion are identified as connected segments that
each have a relatively small size. At the same time, the background model adheres to
the principles of low-rank and sparse representation in each scenario. The new model
effectively breaks down complex video sequences into distinct background and foreground
elements. This significantly boosts the accuracy of detecting moving objects in individual
scenarios. Consequently, the system’s overall performance enhances up to 95% accuracy in
60 scenarios, which enables the model to simultaneously detect multiple moving objects
with exceptional precision, surpassing the capabilities of the previous system.

Object tracking algorithms that employ kernels have shown a remarkable real-time
performance with they use bounding boxes. Jha et al. [98] proposed an N-YOLO approach
with a correlation-based tracker to produce efficient bounding boxes that predict the
movement of the object in 2021. To achieve object localization and classification in urban
environments, N-YOLO divides an image into a grid of uniform size and extracts two
candidate bounding boxes per grid. By examining the content of each candidate bounding
box, the object contained within it can be recognized using the associated class identifier.
Then, we merge the detection results of each sub-image using a correlation-based tracking
algorithm. In the evaluation of YOLOv3 and N-YOLO using a road traffic dataset, the
results revealed that N-YOLO achieved a 7% accuracy enhancement according to the
balanced accuracy metric. Notably, the study underscored the significance of bounding
box quality in optimizing correlation-based object tracking. The N-YOLO showed the
most efficient bounding box among the various object detection algorithms examined.
Furthermore, the object tracker served a dual role by functioning as a merging manager for
detected objects, leading to improve linear scalability.
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4.2.3. Silhouette-Based Object Tracking

When objects have complex shapes, such as shoulders, fingers, and hands that cannot
be accurately described by simple geometric shapes, silhouette-based tracking can be used
to define the precise shape of the object and to enable accurate tracking.

This method is capable of processing occlusion and object fragmentation and merging,
as well as various complex object shapes [99]. Kanagamalliga et al. [100] used the contour
tracking method with optical flow with an accuracy 94%. The counter tracking method
extracts shape and optical flow features from a detected object. This approach obtains
an accurate bounding silhouette that indicates the tracked object. Contour-based object
tracking is then performed by locating the object region in each frame using an object model
created from previous frames, which can be used to monitor someone running or moving
in place. Because contour tracking is suitable for non-rigid object structures, the object
shapes are considered to be boundary silhouettes, and the tracking results obtained are
dynamically updated in the video frames.

Table 3. Comparison between methods used in object tracking applications.

Feature Classification Method References Description

Object
tracking

Point-based
Particle filter,
Kalman filter,
correlation filter

[35,70,90–93]
Identifies specific points on an object’s surface
and monitors their movement over time to
track the object’s position and motion

Kernel-based YOLO, sparse low-rank
Representation [96–98]

Uses a probabilistic model to estimate the
object’s position and motion based on a set of
kernel functions

Silhouette-based Contour tracking [100] Deals with objects having complex or
irregular shapes

4.3. HAR

Human action detection is a function that is essential for maintaining public safety
and essential for private healthcare. Suspicious or criminal behavior, accidents such as
someone falling, and dangerous situations can be detected with this function. However,
detecting human actions can be a challenging task because there are many variables to
consider, such as body shape and gait, that vary according to the individual’s psychological
and physical state [101].

In recent years, deep learning has emerged as a popular approach to addressing the
challenges of HAR. Deep learning techniques provide increased flexibility and effectiveness
in analyzing and understanding the patterns of human motion [102]. HAR applications
briefly shown in Table 4.

4.3.1. Abnormal Action Detection

Abnormal action detection in HAR refers to the task of identifying actions or behaviors
that deviate from what is considered normal or expected. Abnormal action detection
focuses on identifying actions that are uncommon, unusual, or potentially dangerous,
which include falling, stumbling, abnormal body movements, sudden changes in speed or
direction, and actions that are out of context in a given environment [76].

Yair et al. [103] designed a temporal CNN that uses spatiotemporal features to analyze
and recognize human actions that require immediate analysis, like sudden falls, or loss of
consciousness in a public area, using only a short video as input in 2022. Convolutional
short-term memory is used in this type of CNN, because correlation with previous frames
is not relevant as only one moment can be monitored at a time. Temporal CNN allows for
the simultaneous analysis of multiple frames, which enables the detection of changes in
displacement or object size over time. The accuracy of the proposed system was evaluated
using the Microsoft Research (MSR) daily activity 3D dataset. In comparison the proposed
system achieved an accuracy of 95.6%, compared to the lower accuracy, 90.8%, in [104].
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In HAR, it is possible to monitor the human body with the help of a wearable device
in addition to a camera [105]. Sensors are integrated into wearable devices, such as smart
watches or fitness trackers, and data on the movement of the user’s body are collected.
The collected data are then processed and analyzed using machine learning algorithms to
identify different human actions. The accuracy of the recognition depends on the quality
and quantity of data collected and the complexity of the machine learning model that
is used for analysis [106–109]. According to [106], wearable devices achieved about 96%
accuracy which surpasses that of the camera-based system presented in [103] for HAR. In
addition to wearable device monitoring, double monitoring with a camera will increase the
accuracy of action recognition. In [110], data collected by wearable devices was transferred
to a nearby edge using an UAV. After the data were transferred to the edge, they were
processed using various algorithms and methods to extract insights and identify any
potential issues or anomalies. If any issues were detected, appropriate actions could be
taken by nearby medical institutions, such as alerting the user or sending notifications to
healthcare providers.

4.3.2. Action Classification

Human-behavior-based action classification extracts meaningful features’ video data
input and employs deep learning algorithms to classify and identify specific actions or
behaviors, including surveillance systems, activity recognition, video analysis in sports,
healthcare, and public safety [111,112].

The CNN recognizes patterns in the input data that have a spatial structure [113],
whereas LSTM is used specifically to capture patterns that change over time in sequential
data. To combine the strengths of both models, a CNN-LSTM hybrid architecture was
developed in [114] to monitor and recognize human actions in indoor environments in
2022 with an accuracy of 90.89% on 30 frames. In this hybrid model, the CNN is used to
extract discriminative features from the input data, and then the LSTM is used to learn
and model temporal dependencies between these features. The CNN-LSTM hybrid model
dataset contains different physical activities, and thus can provide better monitoring of an
individual’s health. This architecture has proven to be effective in recognizing complex
actions that involve both spatial and temporal patterns.

In [115], a spatiotemporal transfer-learning-based framework was proposed to rec-
ognize similar or overlapping actions in sports activities, such as skipping rope, jumping
for football headshots, and skateboarding in 2022. Transfer learning involves the use of a
pre-trained CNN to extract deep features from video frames, which are then compressed
using a deep auto-encoder to reduce their dimensionality. This compressed representation
is then fed into an RNN with an LSTM to capture long-term temporal information and learn
the hidden patterns in the visual data stream. The RNN with LSTM model achieved an
accuracy of 96.3%. Examining the hybrid systems outlined in [114,115], it becomes evident
that the choice between RNNs and CNNs for human action classification hinges on the
nature of the task. When the task necessitates a strong emphasis on capturing temporal
dynamics—like discerning intricate actions or gestures that evolve over time—RNNs tend
to be better-suited. On the other hand, if actions can be differentiated effectively by visual
patterns and local features within individual frames, CNNs emerge as a favorable option.

In healthcare, HAR can be used to monitor and assess patient movement and activity
levels. Monitored results can then be useful for elderly care, disease management, and
telemedicine. Rajavel et al. [116] introduced a cloud-based object tracking and behavior
identification system (COTBIS) for monitoring remote patients and elderly people. COTBIS
has four layers: the sensor layer, edge/fog computing layer, cloud layer, and consumer
layer. The sensor layer captures live video from surveillance cameras and records data,
which are then transmitted to the edge layer. The edge layer filters out the non-sensitive
data using its edge computing framework and sends only the necessary data to the cloud
layer. In the cloud layer, a CNN is used to analyze the data and make decisions. The
system then sends notifications of the remote patient’s activities and triggers alarms to
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alert the caretaker or ambulance service when necessary. Therefore, using cloud and edge
computing increases accuracy and reduces computation time. In the experiment, authors
monitored the movement of the patient at home using three different methods: a proposed
CNN classifier, an SVM classifier, and a linear regression classifier. Among these, the
proposed CNN method outperformed the others, achieving an accuracy of 94.5% in just
72.76 s. The SVM classifier also yielded good results, with an accuracy of 90.32% in 81.32 s.
Meanwhile, the linear regression classifier had a decent performance, achieving an accuracy
of 80.64% in 83.54 s.

Disease management benefits from the use of multiple cameras to monitor and col-
laborate with DNNs. Research has shown that using multi-camera setups can achieve up
to 98% accuracy in tracking human movements [117]. However, using multiple cameras
to monitor individual households on a regular basis may not be practical or cost-effective.
During a pandemic, a feasible solution using a single camera or a drone to monitor multiple
households in the same area emerges [118]. This approach could reduce costs while still
providing valuable information for disease management efforts with false positive rate
of 4%.

Table 4. Comparison between methods used in human action detection applications.

Feature Classification Method References Description

Human
action
detection

Abnormal
action
detection

Deep learning,
Blockchain [76,103,105,110]

To enhance security, it is important to identify
abnormal actions among people in both
outdoor and indoor environments

Action
classification behavior
analysis

Deep learning [113–117]

Identifying and classifying human actions
and behavior systems help to automate the
detection of suspicious behavior and improve
security and safety

4.4. Anomaly Detection

Anomaly detection in video surveillance involves identifying unusual or unexpected
events or behaviors in video footage captured by surveillance cameras. This detection
is crucial for maintaining safety. Taking action based on the detection of such activity
is an effective way to address the abnormal issues [2]. This section explores the latest
advancements in detecting abnormal behavior, including the identification, and monitoring
of anomalies in road traffic, the environment, and human activity as shown in Table 5.

4.4.1. Road and Traffic Anomalies

Anomalies occur frequently in traffic, so it is important to identify common problems
on the road and to develop strategies to prevent them [119]. Because not all accidents are
alike and the types of accidents can change over time, deep learning methods are utilized
to improve feature extraction and to keep up with the evolving nature of accidents. To
classify abnormal activities, it is common to identify the area of interest and to evaluate
activities as normal or abnormal using a specific method [120–122].

Zhou et al. [120] proposed a system called AnomalyNet for monitoring avenues in
2019. Their system considered people walking as normal, and considered the presence of
bicycles, electric cars, etc., entering the avenue as abnormal. AnomaylNet consists of a
motion fusion block, feature transfer block, and coding block. These blocks work together
with neural networks for feature learning, sparse representation, and dictionary learning
to perform action classification. The motion fusion block compresses multiple video clips
into a single image, which can then be used in a sequence of RGB frames to make a CNN-
less complex. The feature transfer block extracts deep features from the original data,
and the coding block optimizes the network to achieve fast and accurate results. When
evaluating the AnomalyNet system on the avenue dataset, which comprised 47 abnormal
events, it achieved an accuracy of 95.6%. In comparison, when applying the methods
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proposed in [123,124] to the same dataset, the accuracy rates were as follows: [123] achieved
92.3%, [124] achieved 91.8%, and [125] achieved 95.2%. In [121], a CNN was initially used
to extract features, and a MRCNN is employed for further classification with an average
accuracy of 97.5% in 2020. MRCNN can be used in areas where many people and cars
gather, because all the objects recorded in the video frame can be semantically segmented
one by one. The MRCNN solves instant segmentation problems, which involve both object
detection and pixel-level segmentation, where the goal is to identify and segment individual
objects within an image. By incorporating factors such as the object class, bounding box,
and mask, the MRCNN is able to achieve accurate results. Additionally, the advantage of
this approach is that it can provide precise classification within a relatively short timeframe.
Although, MRCNN is effective in well-lit environments, it may fail to detect objects or to
produce accurate results in low-light situations. In such cases, employing a DCNN may
be a better alternative [122]. DCNNs can classify images even under varying levels of
brightness, and they utilize advanced feature descriptors to enhance their classification
performance. The utilization of DCNN for tracking anomaly movements in low-light
environments resulted in an impressive accuracy of 92.15%. Meanwhile, the accuracy rates
of other methods such as KNN, SVM, NN, and CNN were 80.97%, 80.02%, 87.20%, and
90.65%, respectively.

Nawaratne et al. [126] presented a system that uses unsupervised deep learning called
ISTL. By using unsupervised deep learning techniques, the ISTL system can learn and adapt
to new instances without relying on pre-labeled training data. This ability to dynamically
incorporate new objects enables the system to process a wider range of objects and adapt to
evolving environments. For example, suppose a person on a bicycle and an electric cart
appear on a sidewalk. In experimental analysis, authors compared the performance of
the ISTL method against other techniques including Conv-AE, S-RBM, ConvLSTM-AE,
and unmasking methods. Interestingly, the outcomes varied depending on the dataset
being used. For instance, on the UCSD Ped2 dataset, the ISTL method exhibited the highest
accuracy at 91.8%. On the other hand, when considering the UCSD Ped1 dataset, the Conv-
AE approach achieved the highest accuracy of 81%. ISTL is capable of detecting anomalies
in real-time video surveillance with an accuracy of 91.1%, but unlike the automated systems,
it relies on human observation, which is one of its limitations.

4.4.2. Concealed Weapon Detection

Controlling and limiting the carrying of cold weapons in public is an important
measure for ensuring public safety. Using a single camera to detect objects held in a person’s
hand can lead to false alarms, as the camera may not be able to distinguish between items
such as a mobile phone, money, bills, cards, and a pistol or knife. To reduce the occurrence
of false alarms, differentiating between these object is necessary. To address this issue, a
two-level methodology based on deep learning was proposed in [32], which achieved 88.5%
accuracy. In the first step, a CNN is used to select candidate regions in the input. In the
second step, a binary-classifier-based binarization technology is employed to individually
analyze all the objects in the frame, which results in high accuracy. Binarizaton, also known
as thresholding, is the process of converting a grayscale or color image to a binary image,
in which each pixel is classified as either black (foreground) or white (background) based
on a specific threshold value.

To effectively detect cold weapons, a network of multi-view cameras may be needed,
rather than a single camera to monitor the carriage of weapons in public. The approach
presented in [127] involves fusing binocular images captured from multiple viewpoints to
create a comprehensive and informative representation of a scene. This composite image
provides three-dimensional information about objects within the scene, which can help
to reduce the occurrence of false positives during classification. In implementation, as
the number of images within the dataset increases, there is a corresponding rise in the
accuracy rate. For instance, while with a dataset of 124 images, the accuracy rate stood
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only at 80.62%; the accuracy rate notably improved, reaching 87.93% upon expanding the
dataset to 332 images.

The probability of false positives that occur due to problems in illumination was
discussed in [128]. This study proposed a new pre-processing technique called darkening
and contrast at learning and test (DaCoLT) in 2019 that utilizes brightness guidance to over-
come the negative effects of varying illumination. After it applied DaCoLT, a CNN-based
detection model was trained and evaluated on low-quality videos, and it demonstrated
high potential as an automatic alarm system by its satisfactory results. In low-brightness
environment, DaCoLT detects knifes with an accuracy 87.74%. In low-brightness environ-
ments, DaCoLT’s accuracy rate slightly lags behind that of system employing DCNN [122]
for anomaly motion detection. Additionally, the frame processing time of DaCoLT might
experience delays due to sudden knife movements.

In [129], a lightweight multi-class subclass detection CNN (MSD-CNN) was used to
classify incoming video data into abnormal frames (dangerous events such as carrying
guns or knives) and normal frames (events such as walking or office work) in 2022. This
MSD-CNN model is designed to be lightweight, to allow for the creation of multiple
instances of the model. By applying the model to each video sequence individually using
dynamic programming, one can simultaneously detect abnormal objects in multi-view
cameras without significantly increasing the computational overhead. The video sequence
is transferred from the main memory to the global memory for the implementation of
threading and the optimization of computational resources. The MSD-CNN achieves 90.7%
accuracy with respect to parameters such as different types of guns and knives, real-time
deployment, and multi-view cameras.

4.4.3. Fire and Environmental Monitoring

Ensuring environmental safety involves several measures, which include early fire
detection as a crucial aspect of public safety. Datta et al. [37] proposed blockchain and
edge/drone-based secure data delivery for forest fire surveillance (BESDDFFS) in 2021.
The BESDDFFS system utilizes the YOLOv3 algorithm for the drones to predict areas that
have potential for fire. If the calculated probability of a fire is greater than 50%, the data
are sent to an edge node via the leader drone. The edge node then verifies the data using a
Merkle tree-based validation algorithm. This way, the BESDDFFS system ensures secure
data delivery with up to 66% lesser delay, 36% greater throughput, and 12% greater ratio of
successfully delivered packets and accurate verification of potential fires than previously
proposed system [130], which helps in the early detection and prevention of forest fires.

Detecting flames is crucial to fire detection because the extent of damage caused by a
fire is determined by how quickly the flames are detected. Flames can be recognized by
analyzing the color, shape changes, and movement that are captured by the camera [131].
In 2019, Mahdi et al. [86] developed an automated system for detecting flames using a
combination of several techniques. Their system first utilizes the imperialist competitive
algorithm (ICA) to extract color-based candidate regions. Second, it applies a motion
intensity-aware motion detection technique to further refine the candidate regions. Finally,
an SVM classifier is applied after the candidate regions are identified and refined. The
SVM classifier is trained using supervised learning with labeled samples of real fire and
non-fire regions to distinguish between these two classes, based on the extracted features.
In their experiment, the researchers utilized various datasets, encompassing indoor fires,
outdoor fires, non-fire scenarios, and moving objects that closely mimicked the fiery color.
For instance, the outcomes of the Mivia dataset experiment achieved an accuracy of 95.32%,
outperforming another CNN-based system [132] that achieved 94.39% accuracy.

In [133], a modified version of the YOLOv3 algorithm was developed to detect and
classify regions affected by fire with an accuracy of 98.9% in 2021. The authors improved
the accuracy of the recognition method by training the algorithm on images that specifically
contained the red color that is typically associated with fire. By training the modified
YOLOv3 algorithm on fire-related images, the model becomes more adept at accurately
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calculating the probability of smoke appearing before any flames become visible. This
training approach allows the algorithm to utilize a dataset that contains images of both
flames and smoke, which enables it to effectively recognize and differentiate between these
two features. In [134], a DCNN model approach inspired by the GoogleNet architecture
was designed to detect both flames and smoke, and it achieved a 65% success rate in
detecting smoke.

Table 5. Comparison between methods used in anomaly detection applications.

Feature Classification Method References Description

Anomaly
detection

Road and
traffic Deep learning [119–122,126]

Analyzes video by identifying and
classifying unusual or anomalous
events that occur on a road network,
such as accidents, traffic
congestion, or hazardous conditions

Concealed weapon
detection Deep learning [32,127–129]

Identifies potential threats and prevents
accidents in public places by identifying
cold objects such as knives, swords, and
axes in real-time video through
deep learning

Fire and
environmental
monitoring

Deep learning, edge
computing [37,86,131,133,134]

Identifies potential fire hazards and
takes appropriate actions to prevent the
spread of fire and minimize property
damage and human casualties

4.5. Secure Video Data Management

Data security in a VSS refers to protecting from unauthorized access, tampering, or
loss the video footage, and other related data captured by surveillance cameras. Video
surveillance data typically contain sensitive information, including private, criminal, sexual,
national security, and financial information, which must be safeguarded to prevent data
breaches and ensure privacy. Unauthorized alterations can compromise the authenticity
and originality data media, which makes the safe management of data essential. However,
videos are often leaked or viewed by unauthorized persons, and this poses a significant risk
to the security of the videos. To address this problem, many organizations are turning to
blockchain systems, which offer tamper-proof and secure cryptography, and fault-tolerant
features to ensure system reliability and robustness [13]. Table 6 lists references from the
literature that use blockchain for authentication, authorization, and data storage security.

4.5.1. Authentication and Authorization of Video Data

Once a user and a device have been authenticated, the system can then use autho-
rization mechanisms to determine what actions the user is allowed to take. In order to
establish a secure and authorized environment for a surveillance system, blockchain tech-
nology can be utilized. Different types of blockchain architecture are available, including
public, private, and permissioned blockchains. In the context of video security, the use of
private or permissioned blockchains instead of a public blockchain is recommended, as
private blockchains use control mechanisms to regulate access to videos to ensure that the
blockchain network is only accessible to authorized participants [135].

Before the collection of data begins, the system registers all devices that will be used
and ensures that only registered devices can send data to the system [56]. Furthermore,
a surveillance system may be needed to limit video recording to a certain portion of the
camera’s field of view. This can be relevant in a sensitive location where privacy concerns
are high, such as a fitting room or a bathroom. The BlockSee system [57] sets camera
settings including camera position, direction of view, and zoom level. The camera setting
is guaranteed by camera manufacturers, certified installers, citizens, and court officials.
Each CCTV device connects to the blockchain with a unique hashed key value, and the
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client nodes must be authenticated by a membership service provider (MSP) [13]. The
MSP is managed by a city-wide oversight authority. After a client node is authenticated, it
gains access to the blockchain network. The authenticated client can then generate a task
to verify the authenticity of CCTV images stored on the blockchain. This task compares
the hash of the extracted image with the hash stored on the blockchain to verify if it has
been tampered with or not. In [136], a blockchain-empowered surveillance architecture
(BUMAR) system that employed UAVs to monitor fishing boats was introduced. The
BUMAR system uses a two-phase authentication process to verify the identity of the fishing
boats that are visible in the UAV monitored area. First, all valid boats are registered and
stored in the blockchain. When a fishing boat enters the UAV monitored area, the UAV
attempts to validate the boat using the two-phase authentication process. The result of this
validation is then reported to an edge server, and then the edge control server takes further
action based on the result. The authentication time of validating new UAV is faster than
using hash map and sequential search method.

4.5.2. Video Data Integrity

Video data integrity can be easily verified by comparing the hash of video data and
the hash written by an original publisher on a blockchain. To do this comparison, a video
recording camera device is initially configured to ensure that the recorded data is secure
and tamper-proof [137]. The basic concept is that if a camera is set up with secure settings,
all subsequent recordings made by that camera will be considered tamper-proof and all
recorded data will be saved in the blockchain. This makes it suitable for controlling a
specific area, such as a small district of a city or a household.

Kerr et al. [138] combined blockchain with digital watermarking to provide a secure
and reliable method for storing video evidence. This method is well-suited to the safeguard-
ing of CCTV data against unauthorized distribution for repurposing. In this blockchain
system with blocks created on the cameras, video segments are linked to these blocks using
watermarks that are embedded in the video stream. This ensures that the video evidence is
securely stored on the blockchain and cannot be tampered with or manipulated.

In Hao Li et al. [139], a video management system in city introduced to ensure the in-
tegrity and availability of video data. The system implemented to monitor the environment
in the central part of the city. All the cameras installed for the system and the users who
wish to view the video data are required to register with a trusted authority and to obtain
their unique key. After the registration process, the users are permitted to access the video
data. To enhance security, the recorded data from all registered and deployed cameras are
encrypted before they are stored on the blockchain. Specifically, the system encrypts the
ROI within the video and stores the video on a server that can only be accessed by autho-
rized devices that possess the corresponding key. The video security decryption speed can
reach 91.47 Mb/s on average. Lee et al. [140] developed a system that utilizes a Merkle-tree
to guarantee secure synchronization in a blockchain environment. CCTVs transmit all
recorded data to a cloud server, which encrypts the received data before sending it to all
the blockchain nodes using a Merkle tree. A Merkle tree is a data structure that allows
for efficient verification of data integrity and synchronization, and it accomplishes this by
dividing a large amount of data into blocks of a specific size and placing these blocks in
the corresponding leaf nodes of the tree. The synchronization between the cloud server
and the CCTVs are ongoing, which means that any new data recorded by the CCTVs are
transmitted to the cloud server and synchronized within the blockchain network. This
system provides an economical solution for transmitting CCTV data within smart city
public safety systems. It leverages the benefits of the Merkle tree data structure, blockchain
technology, and cloud servers to achieve secure synchronization while optimizing data
transmission efficiency.



Electronics 2023, 12, 3567 23 of 34

4.5.3. Distributed Video Data Storage

A city’s surveillance systems generate a significant amount of video data, which
require generous storage space. Due to the substantial size of the data and the associated
economic limitations, it is often infeasible to store all of the data on a blockchain. Therefore,
many surveillance systems adopt the IPFS and off-chain storage to save all the data. By
using the IPFS and off-chain storage, surveillance systems can reduce the costs associated
with storing large amounts of data on the blockchain while still benefiting from the security
and transparency that the blockchain provides [141]. In a typical blockchain system, blocks
store hashed references and relevant access details as transactions, whereas other data are
stored off of the blockchain. The off-chain storage is usually connected to the blockchain
for data integrity and confidentiality. This mechanism may involve the use of blurred keys,
which are cryptographic keys that have been obfuscated in a way that makes them difficult
to reverse engineer or duplicate [142].

The IPFS can be used as a decentralized storage layer for blockchain applications.
When a file is saved in the IPFS, the system generates a unique hash based on the file’s
contents. This hash can then be stored on the blockchain as a transaction, and this stored
transaction creates a tamper-proof record of the file’s existence. The hash can also be used
to retrieve the file from any node on the IPFS network, which provides a reliable and
decentralized storage solution for blockchain applications [143,144]. In [145], a proposed
surveillance system used blockchain and the IPFS to store videos with restricted access. In
this system, the blockchain technology allows for the creation and processing of licenses
for the videos, and the IPFS serve as a distributed and decentralized file storage system.
Access to the videos is restricted to authorized users through the use of a digital rights
management (DRM)-enabled video player.

Tsai et al. [146] optimized the storage space and computational power while still
retaining as much information as possible by using downsampling methods. To accomplish
this, a downsampling decision maker evaluates the space available and assigns a quality
level to each video. Then, a predictor determines the amount of space needed and the
computational resources required to perform the information analysis and video clip
downsampling at an appropriate time. Dave et al. [147] suggested a private blockchain for
storing personal information, such as people’s faces, that involved using chaotic masking
at fog nodes to blur privacy-sensitive objects before storing the processed data securely on
the blockchain.

Table 6. Comparison between methods used in video data management applications.

Feature Classification Method References Description

Data storage
security

Authentication,
authorization Blockchain [13,56–59,136]

Both authentication and authorization
are crucial to maintaining the security
and integrity of a VSS

Data integrity Blockchain [137–140] Helps to prevent or mitigate security
breaches and reduce false alarms

Distributed video
data storage

Blockchain,
off-chain, IPFS [141–147]

Sensitive information contained data
can be achieved through the use of
encryption, access controls, and other
security measures

5. Challenges and Future Work

Over the past 20 years, numerous research studies have focused on the development
of automatic VSSs. These studies have addressed challenging issues related to video
surveillance. As a result of these efforts, many approaches and algorithms have been
proposed and implemented successfully and have led to feasible and effective outcomes.
Although significant progress has been made further improvement in the effectiveness of
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VSSs are needed. In this section, we introduce, as our future work, tasks that still require
improvement in terms of robustness and accuracy.

5.1. Drone-Based Monitoring System

Drone-based surveillance systems are useful for recording video in areas that are
unreachable by fixed cameras on the ground. By transmitting recorded data to a nearby
server or edge node, video data can be analyzed in real time to detect objects or situations
and to respond [16]. In particular, it is possible to track moving people and animals even
when they disappear accidentally from the scene or exit the camera’s field of view [12].
Also, drones are useful for weather and air pollution monitoring systems as environment
monitoring, but monitoring error or data loss due to strong winds or heavy rain is prob-
lematic. Additionally, due to the possibility of access to the vulnerable personal data such
as home address and the human face, robust privacy and personal data protection are
necessary ensuring compliance with data protection laws, and transparently open the use
and limitations of the technology to the public.

Furthermore, drones are increasingly being employed for search and rescue operations.
For instance, leveraging algorithms like the Firefly algorithm can aid in rapidly estimating
flood levels and spread rates [148]. In urban disaster situation, drones can also serve as
transporters, facilitating the delivery of emergency medical supplies in addition to the
surveillance [149]. As the drones can intentionally or unintentionally enter restricted flight
areas, they can be potential threaten to national security by spying secretly, disturbing flight
of passenger aircraft, destroying public infrastructure, etc., To prevent those misuses as
in [150–154], counter-drone technology is widely under study, which for example, enables
the configuration of guarded areas to either permit or block drones.

Despite the beneficial use of drones in smart cities, the inherent problems of drones
are also significant challenges such as limited flight duration due to short battery lifetime,
limited CPU resource and memory, and security concerns [7,155,156]. For instance, the bat-
tery limitation of the drones increases interest in solar energy operation for the sustainable
VSS [11], which, however, have serious drawbacks like weather condition. Alternatively, a
power line from a ground center to drones can be used for consistent power supply, but
which limit surveillance region and is unstable for strong wind.

5.2. Unsupervised-Learning-Based Surveillance System

In object classification, supervised deep learning methods are commonly used to
assign appropriate labels to objects. In supervised deep learning, a deep neural network is
trained on a dataset in which each object is labeled with its corresponding class. During
training, the algorithm learns to identify patterns and features that are unique to each
class. After the algorithm is trained, it can be used to classify new objects based on the
patterns and features it has learned. Indeed, as mentioned in [114,157], when new types of
operations and objects are not labeled or known in advance, unsupervised deep learning
techniques can be explored to improve object classification and recognition. Unsupervised
deep learning is a type of machine learning that uses unlabeled data to train models that
then identify patterns and relationships within the data.

The framework proposed in [97] uses an ISTL within unsupervised deep learning to
classify abnormal actions. The unique aspect of this learner is that it dynamically adjusts
and re-determines the anomaly value based on the characteristics of the data. Therefore, all
new incoming actions can be classified using updated values. In the context of detecting
anomalies in the marine domain [158], a challenge arises from the constrained availability of
labeled data for supervised approaches, leading to potential oversight in detecting certain
abnormalities. Employing an unsupervised guided background modeling approach can
help enhance background updates and improve the accuracy of foreground detection [159].
For example, it can be used to determine whether a car is parked on the road accurately
even in the circumstance of nearby tree shadows and poor lighting conditions.
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Although unsupervised-deep-learning-based systems have worked effectively, there
are several challenges like human intervention, scalability, interpretability, and domain
adaptation that still need to be addressed. For instance, unsupervised deep learning
requires human intervention to control unsupervised data, as accuracy decreases when clas-
sifying unlabeled data by its own metrics, and space is inefficiently added by unimportant
objects as new categories.

5.3. False Alarm Reduction

Alarms that are based on analytics plays an important role in a VSS for public safety.
VSSs can use advanced analytics algorithms to automatically analyze video footage in
real time and to identify potential security threats. When a potential threat is detected,
the system can trigger an alarm or notify security personnel of the potential threat, which
enables the personnel to take appropriate action. However, it is important to note that not
all alarms generated by the system are necessarily indicative of actual threats. In VSSs, false
alarms may be triggered by a variety of factors, which are listed in Table 7. False alarms
can be a major issue for security personnel, as they can waste time and resources and can
also lead to a decrease in the credibility of the system if they occur frequently. Furthermore,
employed deep learning can lead to numerous false alarms if there is a poor alignment
between the environment and the algorithm in [160].

Table 7. Examples of false alarms.

System Method Reason for False Alarm

[126] Deep learning Alarms are recognized as abnormal when unknown or new
normality appears

[121] Neural network What is considered an anomaly today may not be
considered an anomaly tomorrow due to the lack of data

[161] Deep learning Post-incident alarm triggering occurs from training crowd safety
analysis on only human movement

[116,118] In order not to create false alarms in the healthcare system, it is
necessary to use a human observer

[162] Intruders may deliberately trigger false alarms by covering or
tampering with cameras

Blockchain smart contracts, multi-factor authentication, and multi-class deep learning
can be used to mitigate false alarms. Smart contracts deployed on a blockchain help reduce
false alarms by providing a decentralized peer review and tamper-resistant framework for
alarm management. Smart contracts may include rules and conditions for alarm triggers,
to ensure that only valid and authorized events activate alarms [37]. Multi-step approaches
in VSSs can indeed add extra layers of verification to check the alarm trigger conditions
multiple times. This reduces false alarms and ensures that only genuine threats are detected.

The technology employed to minimize false alarms in VSSs is continuously advancing
and improving. Regular updates are essential for keeping system up-to-date and for
maintaining optimal performance. Therefore, ongoing research that focuses on action
and object classification is crucial to enhancing public safety while effectively reducing
false alarms.

5.4. Multi-Modal-Based System

In video surveillance, relying solely on camera sensors to monitor the environment
may limit performance. However, by integrating additional sensors such as sound, image,
and temperature sensors, a multimodal system may be created to enhance surveillance
capability by obtaining a more comprehensive understanding of the environment. Tradi-
tionally, machine learning algorithms have mainly focused on processing unimodal data,
such as text or images, in isolation. However, in many real-world scenarios, data from
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multiple modalities need to be considered together to obtain an accurate and complete
understanding of a situation.

Multimodal machine learning has been intensively studied to develop models and
algorithms that effectively leverage information from different modalities [163]. In a VSS, a
multimodal system captures a broader range of information by combining video data from
the camera sensor with other data from additional sensors. For example, wearable sensors
such as accelerometers, gyroscopes, and magnetometers capture detailed information about
a person’s movements and posture, whereas cameras capture visual information about
the person and their surroundings [114,116,164,165]. By combining the data from these
sensors, a system can recognize when a person is not in the camera’s field of view. In [166],
multi-sensors are used to distinguish falls and human daily motion from human motion.
Feature extraction is performed with the help of machine learning, and after that, movement
classification is performed with the help of logistic regression, and optimal classification
is performed in a short time. In [167], data gathered from physical motion, ambient, and
vision-based sensors undergoes individual pre-processing tailored to each type. These
specific pre-processors optimize the data for their respective category. Subsequently, the
outcomes from each pre-processor are merged, resulting in a reduction of errors stemming
from the intricate aspects of motion-related challenges.

In addition to monitoring forest fire detection through a single camera, establishing a
collaborative multi-model system that combines smoke sensors, temperature sensors, and
drought condition meters yields a substantial reduction in the risk of false alarms [168].
All sensors report the sensed data to a base-station, that utilizes Neuro fuzzy algorithms
to process the sensor data and a CNN to process the image data. The processed data are
then evaluated to determine if there is a risk of fire. If a fire risk is detected, the base station
generates an alarm that is promptly sent to the forest department for the necessary response.

While multimodal systems offer significant advantages, they also face several chal-
lenges including storage management, real-time processing, and format adjustments in
handling data from multiple diverse sources. For instance, different sensors typically have
different data formats, resolutions, and sizes, which requires standardized rule for data
fusion. Moreover, environmental conditions need to be considered as sensors may respond
differently to such as lighting, weather, and temperature changes. Required processing
power to handle data from multiple sensors in real-time increases according to degree
of modality.

5.5. System Resource Management

VSSs generate a huge amount of data that runs to millions of records. Analyzing and
managing such a large amount of data can represent a significant challenge in terms of
both cost and complexity. System resource management in video surveillance refers to the
effective allocation and utilization of various resources, including computational power,
storage, bandwidth, and network connectivity. Effective resource management ensures
that the VSS operates smoothly, delivers real-time monitoring and analysis capabilities,
and optimizes the use of the resources available. The following are some key aspects of
resource management in video surveillance:

• Networking: Networking is critical to the operation of VSSs that deal-with real-
time transmission of large amounts of data. By focusing on improving bandwidth
utilization, reducing delay, enhancing scalability, and ensuring network security,
robust and efficient networks can be established for the increasing demands of modern
applications and to support seamless connectivity for users. Content filtering [22],
compression [29], caching [169], and dynamic content delivery [50] techniques may be
used to ensure efficient bandwidth utilization. Indeed, edge-computing [23] methods
help to minimize delay and improve the performance of networked systems. In
addition, software-defined networking is profitable for controlling network traffic and
reducing the congestion of the network [11].
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• Storage: Large amounts of video data must be stored for future reference and analysis.
For the storage of video files in a surveillance system, the size of the system as well
as data retention requirements, data accessibility, cost, and compliance regulations
should be considered. There are several options available for storing videos, such as
local storage, cloud storage, blockchain, and IPFS, and each option has particular ad-
vantages and use cases. Of these, the blockchain technology provides a decentralized,
transparent, and immutable data storage system for enhancing video data security.
Blockchain uses cryptographic hash to create a block on a decentralized network of
nodes, which makes it difficult for anyone to manipulate surveillance video data
stored in the blocks. Comparing to data storage in centralized systems vulnerable
to single points of failure and attacks, the blockchain as a distributed system that
operates on a network of nodes spread across different locations and, maintained by
various participants, is robust to malfunction of a particular storage node.

6. Conclusions

Video surveillance is crucial to the advancement of smart cities. Its primary goal is
enhancing safety and improving residents’ quality of life. To ensure a secure environment,
a combination of different activities is needed. However, from a surveillance perspective,
cameras can be used to achieve various objectives, that include enhancing public security,
managing traffic effectively, and preventing abnormal actions. By deploying surveillance
cameras strategically, cities can monitor and respond to incidents promptly to build a
safer and more convenient urban environment for residents. In this paper, we provide
an in-depth review of VSSs and a presentation of related works that focus on state-of-
the-art technologies from camera devices to video analysis algorithms. We also address
the challenges that remain for the VSS as future research directions in order to inspire
subsequent research.
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