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Abstract: Simultaneous localization and mapping (SLAM) is one of the core technologies for intel-
ligent mobile robots. However, when robots perform VSLAM in dynamic scenes, dynamic objects
can reduce the accuracy of mapping and localization. If deep learning-based semantic information is
introduced into the SLAM system to eliminate the influence of dynamic objects, it will require high
computing costs. To address this issue, this paper proposes a method called YF-SLAM, which is
based on a lightweight object detection network called YOLO-Fastest and tightly coupled with depth
geometry to remove dynamic feature points. This method can quickly identify the dynamic target
area in a dynamic scene and then use depth geometry constraints to filter out dynamic feature points,
thereby optimizing the VSLAM positioning performance while ensuring real-time and efficient
operation of the system. This paper evaluates the proposed method on the publicly available TUM
dataset and a self-made indoor dataset. Compared with ORB-SLAM2, the root-mean-square error
of the Absolute Trajectory Error (ATE) can be reduced by 98.27%. The system successfully locates
and constructs an accurate environmental map in a real indoor dynamic environment using a mobile
robot. It is a VSLAM system that can run in real-time on low-power embedded platforms.

Keywords: visual SLAM; object detection; dynamic environments; real-time performance

1. Introduction

Robots utilize their onboard visual sensors to perform simultaneous localization and
mapping (SLAM) [1] for perceiving the surrounding environment and exhibiting stable
performances within specific static scenarios [2]. However, in dynamic scenarios, such as
human–robot cooperation and multi-robot collaboration, the presence of other moving
robots, personnel, and unstable objects within the environment can significantly reduce the
accuracy and precision of mapping and localization. Dynamic objects can lead to erroneous
data associations, and the feature point matching between two frames of dynamic objects
can result in an incorrectly solved camera pose, thereby reducing system stability.

The robustness of VSLAM [3] systems in dynamic environments has become a focal
point for many researchers. The key to solving this issue is to effectively detect and filter
dynamic features, preventing the use of features extracted from moving objects during
the tracking process. To address dynamic objects within the environment, this paper
proposes the use of a deep learning network to extract dynamic components from input
data and explicitly discard them as outliers, not participating in pose estimation and
mapping. However, existing VSLAM systems require high computing power to support
neural networks, making them unsuitable for robots with low computing power platforms,
thereby failing to achieve real-time performance. This paper proposes the use of the
fastest and lightest known YOLO object detection algorithm, YOLO-Fastest, to detect prior
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dynamic objects in image frames within the VSLAM system. YOLO-Fastest is designed
to break through the limitations of computing power, enabling real-time object detection
calculations on low-cost edge devices. By incorporating YOLO-Fastest into the ORB-
SLAM2 [4], the most classic visual SLAM framework, and using methods such as target
detection during feature extraction, dynamic feature points within detection boxes can
be removed, reducing the occurrence of erroneous epipolar constraints and improving
accuracy through increased efficiency. This optimization method is referred to as YF-SLAM
in this paper.

To address this challenge, the main insights and contributions of this article are
summarized as follows:

• A single-stage YOLO-Fastest object detection network was designed in the VSLAM
system, which can quickly locate the area information of dynamic targets in keyframes.

• The system combines depth geometry constraint methods to distinguish dynamic
feature points from static feature points in the dynamic target area, effectively filtering
out dynamic feature points using only one image information and improving the
accuracy of mapping and localization.

• YF-SLAM can be easily deployed on low-computing platforms, which can significantly
reduce the time consumption of the VSLAM system and achieve real-time operation
of robots in dynamic environments.

This article is divided into four sections: Section 2 summarizes the relevant theoretical
work in the field of VSLAM. Section 3 provides a detailed introduction to the framework
and proposed methods of YF-SLAM. Section 4 reports the experimental results evaluated
on the TUM dataset and post-disaster rescue scenarios and compares them with VSLAM
frameworks such as DS-SLAM and DYNA-SLAM to complete the YF-SLAM experiment on
the search and rescue robot platform. The final section summarizes the application scenarios
and advantages of YF-SLAM in this article and looks forward to future improvement goals.

2. Related Work

The epipolar geometry [5] is the geometric constraint relationship between two-
perspective geometric modeling, which is mainly used to achieve binocular stereo vi-
sion based on triangulation, depth estimation, etc. Figure 1a shows the polar constraints,
wherein the real point X in the 3D world is called the object point, the CLCR line connecting
the optical centers between two cameras is called the baseline, and the intersection point
between the baseline and the imaging surface is called the poles EL and ER. If the object
point has an imaging point of XL on one camera imaging plane, then the image point on
the other camera plane must exist on the intersection line ERXR with the plane CLCRX.
as follows:

xT
2 Fx1 = 0 (1)

F = K−T
2 t̂RK−1

1 (2)

The variables x1 and x2 represent the matching point positions between two consecu-
tive frames of images, F is the fundamental matrix, K1 and K2 are the internal parameter
matrices of camera 1 and camera 2, and R and t are the external parameters of coordinate
systems 1 and 2. In Figure 1b, the point X is dynamic, and the target moves from X to
Xdyna. At this point, the epipolar plane becomes XwrongCLCdyna, and the backprojection
rays connecting the camera center and projection points cannot intersect at a single point.
The presence of dynamic features can lead to erroneous estimation of the fundamental
matrix, resulting in incorrect camera pose calculation results.



Electronics 2023, 12, 3538 3 of 13Electronics 2023, 12, x FOR PEER REVIEW 3 of 13 
 

 
(a) (b) 

Figure 1. The influence of dynamic target on epipolar constraint relationship. (a) Shows the correct 
geometric constraint relationship, and (b) shows that dynamic features do not meet multi-view 
geometric constraints based on static features. 

The variables x1 and x2 represent the matching point positions between two 
consecutive frames of images, F is the fundamental matrix, K1 and K2 are the internal 
parameter matrices of camera 1 and camera 2, and R and t are the external parameters of 
coordinate systems 1 and 2. In Figure 1b, the point X is dynamic, and the target moves 
from X to Xdyna. At this point, the epipolar plane becomes XwrongCLCdyna, and the 
backprojection rays connecting the camera center and projection points cannot intersect 
at a single point. The presence of dynamic features can lead to erroneous estimation of the 
fundamental matrix, resulting in incorrect camera pose calculation results. 

In typical VSLAM schemes, the RANSAC (random sample consensus) [6] algorithm 
can only cope with some scenarios where the proportion of dynamic features is relatively 
low. However, these methods may fail when there are too many dynamic objects 
occupying a significant portion of the image. At present, there are roughly three categories 
of approaches to accurately detecting and removing dynamic features: geometric 
methods, deep learning methods, and the method of combining deep learning with 
geometry. 

2.1. Methods of Geometrical 
Relying on geometric constraint technology to handle dynamic SLAM problems 

utilizes polar geometric features to segment static and dynamic features. Kundu et al. [7] 
set upper and lower boundaries for the displacement of feature points, and the feature 
points located outside the boundary in the detection results are likely to be dynamic 
features. Tan [8] projects the features between two frames and measures the distance 
between the current frame and the previous frame, while those with a larger reprojection 
distance are dynamic features. By removing abnormal features, the camera pose can be 
accurately estimated. 

There are also some methods to distinguish dynamic points by processing feature 
points or map points. Kit [9] trained the classifier in advance and classified the feature 
points in the known environment to distinguish between static and dynamic feature 
points. The scheme based on geometry has good real-time performance. However, the 
geometric method only distinguishes based on the high geometric motion error of feature 
points, so it cannot handle situations where moving objects temporarily stop. 

2.2. Methods of Deep Learning 
In recent years, with the development of deep learning, the accuracy of object 

detection methods has significantly improved. This advancement has provided new 
possibilities for addressing the challenges of dynamic SLAM. One approach involves 
utilizing semantic segmentation to remove potential dynamic feature points.  

Yu et al. [10] of Tsinghua University proposed the DS-SLAM system based on RGB-
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Figure 1. The influence of dynamic target on epipolar constraint relationship. (a) Shows the correct
geometric constraint relationship, and (b) shows that dynamic features do not meet multi-view
geometric constraints based on static features.

In typical VSLAM schemes, the RANSAC (random sample consensus) [6] algorithm
can only cope with some scenarios where the proportion of dynamic features is relatively
low. However, these methods may fail when there are too many dynamic objects occu-
pying a significant portion of the image. At present, there are roughly three categories of
approaches to accurately detecting and removing dynamic features: geometric methods,
deep learning methods, and the method of combining deep learning with geometry.

2.1. Methods of Geometrical

Relying on geometric constraint technology to handle dynamic SLAM problems
utilizes polar geometric features to segment static and dynamic features. Kundu et al. [7]
set upper and lower boundaries for the displacement of feature points, and the feature
points located outside the boundary in the detection results are likely to be dynamic
features. Tan [8] projects the features between two frames and measures the distance
between the current frame and the previous frame, while those with a larger reprojection
distance are dynamic features. By removing abnormal features, the camera pose can be
accurately estimated.

There are also some methods to distinguish dynamic points by processing feature
points or map points. Kit [9] trained the classifier in advance and classified the feature
points in the known environment to distinguish between static and dynamic feature points.
The scheme based on geometry has good real-time performance. However, the geometric
method only distinguishes based on the high geometric motion error of feature points, so it
cannot handle situations where moving objects temporarily stop.

2.2. Methods of Deep Learning

In recent years, with the development of deep learning, the accuracy of object detection
methods has significantly improved. This advancement has provided new possibilities for
addressing the challenges of dynamic SLAM. One approach involves utilizing semantic
segmentation to remove potential dynamic feature points.

Yu et al. [10] of Tsinghua University proposed the DS-SLAM system based on RGB-D
in 2018 and added semantic segmentation and dense semantic octree [11] map construction
threads on the basis of the ORB-SLAM2 system to combine the semantic segmentation
network SegNet [12] and mobile consistency detection methods to filter the dynamic part of
the scene. Specifically, the process begins by extracting ORB feature points and categorizing
them as potential dynamic points. These points are then subjected to motion consistency
checks to ensure their classification as actual dynamic feature points. Furthermore, a
parallel semantic segmentation thread is introduced, where the segmentation results are
combined with the ORB feature points from the tracking thread. To enhance stability,
a dense 3D semantic octree map is employed. The map filters out unstable factors via
probabilistic logarithmic filtering, resulting in the robot obtaining more accurate and
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consistent perceptual information for executing the SLAM task. This approach effectively
improves the performance of Visual SLAM systems in dynamic environments.

2.3. The Method of Combining Deep Learning with Geometric

In the combination of deep learning and geometry methods, complementary advan-
tages of the two methods. This combined method first provides semantic segmentation
information for dynamic targets and then uses geometric constraints to filter dynamic
feature points while retaining static feature points.

The DYNA-SLAM [13] system is also improved over the ORB-SLAM2 system. When
using monocular or binocular cameras, only prior dynamic objects in the frame are seg-
mented pixel by pixel using the instance segmentation network Mask R-CNN [14], directly
not extracting feature points from this region. When using an RGB-D camera, the multi-
view geometry method [15] is used to detect potentially moving objects, such as chairs that
have been moved by humans, and adds a background restoration function. This raises the
accuracy and positioning accuracy for detecting moving objects, but it is time consuming
and has poor real-time performance.

In order to address this challenge, YF-SLAM adopts a lightweight single-order net-
work, YOLO-Fastest, and a tightly coupled geometric constraint method to reduce the time
consumption and make the system faster and more stable.

3. Dynamic Target Point Elimination
3.1. Framework of YF-SLAM

The YF-SLAM dynamic target point elimination framework is an improvement on
the traditional ORB-SLAM2 system. ORB-SLAM2 is known as one of the best SLAM
systems based on feature extraction methods, including tracking, mapping, and loop
closure detection, and it performs exceptionally well under static environmental conditions.
The YF-SLAM system adds object detection and geometric depth filtering threads to the
ORB-SLAM2 system, where the object detection thread uses the YOLO-Fastest network
and adds bounding box markers to the detected dynamic targets to locate the position of
dynamic feature points in each frame. The feature point screening thread utilizes geometric
constraint methods to eliminate potential dynamic feature points within the bounding box,
while preserving pure static feature points. In Figure 2, the system flowchart of YF-SLAM is
shown. The original RGB image is first processed for target detection and feature extraction,
followed by the application of geometric constraint methods to recognize and filter out
dynamic features marked in red, finally preserving static feature points for pose estimation.
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Figure 2. The optimization framework for dynamic target feature points in the YF-SLAM system.
First, it extracts ORB features from the original camera and detects predefined dynamic targets. Then,
geometric depth constraints are applied to separate these dynamic features marked in red. Finally,
only static feature points are used for attitude estimation.



Electronics 2023, 12, 3538 5 of 13

3.2. YOLO Fastest for Dynamic Target Recognition

Target detection models can automatically locate and identify various objects in an
image. Currently, single- and two-stage networks are the most mainstream detection
models. Faster-RCNN [16] and Mask R-CNN belong to the two-stage network, where
target localization is prioritized in the first step by extracting RoI (Region of Interest) from
the input image, followed by feature extraction by the network, and identification of the
category of each RoI with a multi-class SVM. YOLO and SSD [17] belong to the single-
stage network, where both target localization and classification are carried out by the RPN
alone. Compared to the two-stage networks, single-stage networks have faster training and
recognition speeds. YOLO-Fastest focuses on real-time inferencing performance on a single
core, achieving low CPU usage while meeting real-time requirements. The YOLO-Fastest
model structure shown in Figure 3. It decouples the regression, background classification,
and detection category classification of the detection box into three different feature maps,
where the background classification and detection category classification are shared using
the same network branch parameters.
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Figure 3. A neural model of a convolutional network from YOLO-Fastest. The backbone of the net-
work is ShuffleNetV2, with four stages as the backbone. The head consists of three parts: classification,
regression, and detection. The neck part is a lightweight FPNet network.

YOLO-FastestV2 [18] is the fastest and lightest version of the improved YOLO uni-
versal target detection algorithm known to be open source. Table 1 shows the benchmark
and evaluation indicators under the framework of the Kirin 990 CPU platform ncnn. In
practical applications, considering the power consumption and system resource occupa-
tion, it is generally not possible to use multiple cores to infer the model, so a single-core
experiment is conducted. Not only does the reasoning of the model take less time, but
the system resources consumed by model reasoning are also very low. Different object
detection frameworks can affect the processing time of a single-frame image in the tracking
thread of the VSLAM system. Compared to YOLOV4-Tiny, YOLO-FastestV2 consumes
only one-tenth of the time in single-frame processing. Compared with YOLO-FastestV1.1,
YOLO-FastestV2 uses 0.3% accuracy loss in exchange for a 30% improvement in reasoning
speed and a 25% reduction in parameters. The mobile end can reach up to 300 FPS, with a
parameter count of only 250 k. YOLO-FastestV2 is used to optimize the SLAM algorithm,
paying more attention to the cost performance and inference efficiency of the algorithm.
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Table 1. YOLO-Fastest evaluating indicator.

Network COCO
Map (0.5) % Resolution Run Time

(1 × Core) (ms)
FLOPs

(G)
Params

(M)

YOLO-FastestV2 24.10 352 × 352 5.37 0.212 0.25 M
YOLO-FastestV1.1 24.40 320 × 320 7.54 0.252 0.35 M

YOLOv4-Tiny 40.20 416 × 416 55.44 6.900 5.77 M

3.3. Dynamic Feature Point Removal for YF-SLAM

Feature points are the key to the VSLAM system. High-quality feature points can
improve system performance. YF-SLAM strictly screens feature points by means of se-
mantic priors and tight coupling of geometric depth information. The training weight
and label files are developed via YOLO-Fastest to identify dynamic targets, such as robots
and personnel, and generate a bounding box, which can locate the most likely position of
dynamic feature points in the image and return to a rectangle composed of four coordinates.
The extracted feature points are mixed into dynamic and static feature points. At this time,
the bounding box includes potential dynamic feature points such as chairs and rescue
supplies that are easy to move by search and rescue personnel, as well as static feature
points in the background. In some papers, for example, DMS-SLAM [19] will directly
remove all feature points in the rectangle, thus deleting many static points still in the
rectangle, especially when the proportion of dynamic objects is large. This will weaken the
constraint of feature matching.

The depth difference of the inherent feature points of dynamic objects tends to be
similar, which can be effectively resolved via RGB-D cameras. Firstly, all feature points in
the regions of interest for dynamic objects are collected as a set. The variance of depth values
is calculated for any two randomly selected feature points within the set. Subsequently,
a model is generated by iterating over the set of variances of all feature points, wherein
feature points with similar depth values are grouped together. The group with the largest
number of feature points is identified as the dynamic feature points, and this method is
referred to as the Geometric Depth RANSAC (Random Sample Consensus) approach. The
process for filtering static feature points is illustrated in Figure 4. YF-SLAM optimizes the
camera’s pose and the position of 3D points by adding point clouds and obtaining global
point clouds by minimizing reprojection errors.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 13 
 

RGB-D Image 
YOLO-Fastest

Geometric RANSAC

Bounding Region

Dynamic Feature

Background Region

Static Feature

Local Mapping
 

Figure 4. Dynamic feature point logic judgment diagram. In this process, the RGB-D image 
information is initially processed using the YOLO-Fastest network to generate dynamic regions. 
Subsequently, the RANSAC algorithm is employed to filter out feature points from the dynamic 
regions, resulting in the generation of pure static feature points. These pure static feature points, 
along with background feature points, are utilized to construct loop closure detection, thereby 
achieving more accurate camera poses and motion trajectory estimation. 

4. Experimental Results and Analysis 
To verify the effectiveness of this method, we conducted comparative experiments 

on YF-SLAM, ORB-SLAM2, DYNA-SLAM, and DS-SLAM algorithms in TUM datasets 
and simulated indoor disaster rescue environments. The evaluation metrics used to assess 
accuracy were the Absolute Trajectory Error (ATE) and the Relative Pose Error (RPE) [20]. 
ATE is the direct difference between the estimated pose and the actual pose, which can 
intuitively reflect the algorithm accuracy and global consistency of the trajectory. The RPE 
can be understood as a real-time comparison between the actual pose value and the 
estimated value, calculating the difference between the estimated value of the VSLAM 
system on two identical timestamps and the actual value of the camera pose at regular 
intervals. The robustness and stability of the system were represented by the Standard 
Deviation (S.D.) and the Root-Mean-Square-Error (RMSE) of both metrics. 

The TUM dataset [21] contains texture-rich office scenes. For example, the fr3/sitting 
sequence is moderately dynamic, with two people sitting at a table with subtle 
movements. The fr3/walking sequence is highly dynamic, with two people walking 
around the table. The walking sequences are the most challenging as dynamic objects 
occupy a significant portion of the camera’s field of view, and our comparative 
experiments primarily focused on these sequences. These walking sequences involve two 
people walking while the camera translates and rotates along the xyz axes, the camera 
moving on a half sphere with a 1 m diameter, and the camera being relatively stationary 
while the two people walk, aiming to evaluate the system’s robustness to fast-moving 
dynamic objects. 

In the simulated indoor experiments, we aimed to evaluate the system’s performance 
in disaster scenarios such as earthquakes and chemical leaks, where rescue robots utilize 
visual sensors to perceive the surrounding environment in real-time and perform 
localization and map construction for search and rescue operations. In scenarios involving 
human–robot collaboration and multi-robot coordination, the presence of other moving 
robots, rescue personnel, and unstable objects in the environment can degrade the 
accuracy and precision of localization and mapping. The YF-SLAM algorithm is 
particularly suitable for disaster scenarios with fewer types of dynamic factors and limited 
computational resources but high real-time requirements for rescue robots. The 
experiments and evaluations were conducted to demonstrate the effectiveness and 

Figure 4. Dynamic feature point logic judgment diagram. In this process, the RGB-D image informa-
tion is initially processed using the YOLO-Fastest network to generate dynamic regions. Subsequently,
the RANSAC algorithm is employed to filter out feature points from the dynamic regions, resulting in
the generation of pure static feature points. These pure static feature points, along with background
feature points, are utilized to construct loop closure detection, thereby achieving more accurate
camera poses and motion trajectory estimation.
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4. Experimental Results and Analysis

To verify the effectiveness of this method, we conducted comparative experiments
on YF-SLAM, ORB-SLAM2, DYNA-SLAM, and DS-SLAM algorithms in TUM datasets
and simulated indoor disaster rescue environments. The evaluation metrics used to assess
accuracy were the Absolute Trajectory Error (ATE) and the Relative Pose Error (RPE) [20].
ATE is the direct difference between the estimated pose and the actual pose, which can
intuitively reflect the algorithm accuracy and global consistency of the trajectory. The
RPE can be understood as a real-time comparison between the actual pose value and the
estimated value, calculating the difference between the estimated value of the VSLAM
system on two identical timestamps and the actual value of the camera pose at regular
intervals. The robustness and stability of the system were represented by the Standard
Deviation (S.D.) and the Root-Mean-Square-Error (RMSE) of both metrics.

The TUM dataset [21] contains texture-rich office scenes. For example, the fr3/sitting
sequence is moderately dynamic, with two people sitting at a table with subtle movements.
The fr3/walking sequence is highly dynamic, with two people walking around the table.
The walking sequences are the most challenging as dynamic objects occupy a significant
portion of the camera’s field of view, and our comparative experiments primarily focused
on these sequences. These walking sequences involve two people walking while the camera
translates and rotates along the xyz axes, the camera moving on a half sphere with a 1 m
diameter, and the camera being relatively stationary while the two people walk, aiming to
evaluate the system’s robustness to fast-moving dynamic objects.

In the simulated indoor experiments, we aimed to evaluate the system’s performance
in disaster scenarios such as earthquakes and chemical leaks, where rescue robots utilize vi-
sual sensors to perceive the surrounding environment in real-time and perform localization
and map construction for search and rescue operations. In scenarios involving human–
robot collaboration and multi-robot coordination, the presence of other moving robots,
rescue personnel, and unstable objects in the environment can degrade the accuracy and
precision of localization and mapping. The YF-SLAM algorithm is particularly suitable for
disaster scenarios with fewer types of dynamic factors and limited computational resources
but high real-time requirements for rescue robots. The experiments and evaluations were
conducted to demonstrate the effectiveness and applicability of the YF-SLAM algorithm in
both dynamic office environments (TUM dataset) and simulated indoor disaster scenarios.

4.1. Modular Evaluation

The YF-SLAM system is a combined framework consisting of a semantic module
and a geometric module, each playing a different role in achieving accurate localization.
Figure 5 illustrates a comparison between the YF-SLAM system and ORB-SLAM2, DS-
SLAM, and DYNA-SLAM in terms of trajectory estimation and the deviation between
estimated and ground truth roll, pitch, and yaw values in a dynamic scene. The red
line represents the ground truth trajectory, while the blue line represents the estimated
trajectory. From the first row, it is evident that ORB-SLAM2 fails to effectively handle
dynamic environments. In scenes with a high proportion of dynamic features, the semantic
module ensures real-time performance by removing more dynamic feature points, thereby
improving trajectory accuracy. On the other hand, the geometric module retains valid
static feature points to maintain system stability. In most cases, ORB-SLAM2 struggles to
achieve reliable tracking due to the presence of dynamic objects. In scenes with a lower
proportion of dynamic features, the results of YF-SLAM are similar to those of ORB-SLAM2,
as the semantic module removes fewer dynamic feature points. The experimental results
demonstrate that YF-SLAM exhibits reduced trajectory drift and outstanding performance
in handling dynamic scenes. YF-SLAM and DYNA-SLAM both exhibit significant errors at
the beginning of roll and pitch trajectory tracking, as object detection and feature filtering
threads require several frames to initialize and converge to dynamic elements in the scene.
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Figure 5. (a–c) shows the comparison of ORB-SLAM2, DYNA-SLAM, and YF-SLAM systems with
the positioning trajectory and the real camera movement trajectory in the dynamic scene. (d–f) shows
the deviation between the estimated values and the real values of roll, pitch, and yaw in the three-
dimensional Cartesian coordinate system. The red line represents the ground truth, and the blue line
represents the estimated trajectory.

4.2. Evaluation of Camera Localization

The accuracy of camera pose positioning is a key indicator for SLAM applications in
positioning. In the experiments of each sequence, the estimated trajectories of different
systems are compared with the ground truth values. ATE and RPE are often used as error
metrics. The improvement effect of pose accuracy is illustrated by comparing the standard
deviation data and root-mean-square deviation data of the system. The performance
improvement effect is calculated according to (3):

Improve =
(

1 − Eour

Eori

)
× 100% (3)

where Eori is the trajectory error of ORB-SLAM2, Eour is the trajectory error of YF-SLAM,
and Improve is the optimization effect.

Table 2 shows that RANSAC, the method used by ORB-SLAM2, is effective in re-
moving outliers in low-dynamic and static environments. In dynamic scenes, the ATE of
YF-SLAM is much smaller than that of ORB-SLAM2, and the trajectory error of YF-SLAM
is significantly reduced compared to ORB-SLAM2, with RMSE and SD improvement rates
of up to 97.93% and 97.71%, respectively. Compared with DYNA-SLAM, YF-SLAM has
an advantage in accuracy in high-dynamic sequence environments. We visually present
the results of ATE’s RMSE and SD indices for DS-SLAM, DYNA-SLAM, and YF-SLAM in
Figure 6 using bar charts, demonstrating the Absolute Trajectory Error reaching millimeter-
or centimeter-level accuracy in the sequences. Based on the RPE results in Tables 3 and 4, it



Electronics 2023, 12, 3538 9 of 13

can be observed that the trend of error reduction is similar to ATE, performing exceptionally
well in high-dynamic scenes with only slight limitations in low-dynamic scenes.

Table 2. Absolute Trajectory Error result table (ATE).

Sequence
ORB-SLAM2 DS-SLAM DYNA-SLAM YF-SLAM Improve

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE
(%)

S.D.
(%)

fr3_walking_xyz 0.7214 0.2560 0.0247 0.0161 0.0164 0.0086 0.0156 0.0086 97.93 97.71
fr3_walking_half 0.4667 0.2601 0.0303 0.0159 0.0296 0.0157 0.0301 0.0157 93.55 93.96

fr3_walking_static 0.3872 0.1636 0.0081 0.0036 0.0068 0.0032 0.0067 0.0030 98.27 98.17
fr3_sitting_xyz 0.0092 0.0047 / / 0.0127 0.0060 0.091 0.0049 / /
fr3_sitting_half 0.0192 0.0110 / / 0.0186 0.0086 0.0179 0.0075 6.77 31.82

fr3_sitting_static 0.0087 0.0042 0.0065 0.0033 / / 0.0063 0.0032 27.59 21.43
Indoor scene 0.2618 0.1372 0.0117 0.0092 0.0165 0.0115 0.0096 0.0083 96.33 93.95
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Figure 6. The index of Absolute Trajectory Error (ATE).

Table 3. Results of Metric Translation Drift (RPE).

Sequence
ORB-SLAM2 DS-SLAM DYNA-SLAM YF-SLAM Improve

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE
(%)

S.D.
(%)

fr3_walking_xyz 0.3944 0.2964 0.0333 0.0229 0.0217 0.0119 0.0213 0.0109 94.60 96.32
fr3_walking_half 0.3480 0.2859 0.0297 0.0152 0.0284 0.0149 0.0277 0.0134 92.04 95.31

fr3_walking_static 0.2349 0.2151 0.0102 0.0048 0.0089 0.0044 0.0089 0.0064 96.21 97.02
fr3_sitting_xyz 0.0117 0.0060 / / 0.0142 0.0073 0.0114 0.0055 2.56 8.33
fr3_sitting_half 0.0231 0.0163 / / 0.0239 0.0120 0.0228 0.0160 1.30 95.92

fr3_sitting_static 0.0090 0.0043 0.0078 0.0038 / / 0.0072 0.0035 20.00 18.60
Indoor scene 0.2961 0.1456 0.0201 0.0115 0.0172 0.0130 0.0121 0.0095 96.33 93.95
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Table 4. Results of Metric Rotational Drift (RPE).

Sequence
ORB-SLAM2 DS-SLAM DYNA-SLAM YF-SLAM Improve

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE
(%)

S.D.
(%)

fr3_walking_xyz 7.7846 5.8335 0.8266 0.5826 0.6284 0.3848 0.5997 0.3642 92.30 93.76
fr3_walking_half 7.2138 5.8299 0.8142 0.4101 0.7842 0.4012 0.7521 0.3576 89.57 93.87

fr3_walking_static 4.1856 3.8077 0.2690 0.1182 0.2612 0.1259 0.2610 0.1198 93.76 96.85
fr3_sitting_xyz 0.4890 0.2713 / / 0.5042 0.2651 0.4844 0.2689 9.41 5.60
fr3_sitting_half 0.6015 0.2924 / / 0.7045 0.3488 0.5971 0.2877 7.32 1.61

fr3_sitting_static 0.2850 0.1241 0.2735 0.1215 / / 0.2725 0.1213 4.39 2.26
Indoor scene 4.7663 3.1141 0.3152 0.2089 0.3511 0.2787 0.2376 0.1208 95.02 96.12

4.3. Runtime Analysis

YF-SLAM’s biggest advantage is its real-time performance, which has low CPU usage
under real-time conditions. It is not only capable of achieving real-time performance on
mobile devices with the Kirin 990 CPU tested, but it can also satisfy real-time requirements
on low-cost, low-power devices such as the RK3399, Raspberry Pie, and various Cortex-A53
devices. This experiment ran YF-SLAM on a rescue robot equipped with a Jetson Nano.
YOLO-FastestV2 can reach 38.4 FPS and an mAP of 24.1 on the Jetson Nano platform with
objects of 80.

In order to evaluate the efficiency of the YF-SLAM system, we measured the average
computation time for segmenting and tracking each frame and compared it with the state-
of-the-art object detection-based DYNA-SLAM, DS-SLAM systems, and the benchmark
ORB-SLAM2 system. DS-SLAM and DYNA-SLAM are also built on top of ORB-SLAM2.
Table 5 shows that the improved YF-SLAM system only requires 10.12 ms for segment-
ing and tracking each frame, which is a significant improvement compared to DYNA-
SLAM. DS-SLAM takes longer processing time when multiple dynamic points are present.
The YF-SLAM system has strong robustness compared to other systems while ensuring
fast performance.

Table 5. Time comparison table for each frame segmentation and tracking between YF-SLAM and
similar systems on the Jetson Nano platform.

Framework Network
Time (ms)

Segment Track Total

ORB-SLMAM2 / / 24.66 37.96
DYNA-SLAM Mask R-CNN 265 305 916.05

DS-SLAM SegNet 42.11 30.54 98.63
YF-SLAM YOLO-Fastest 10.12 26.05 57.11

4.4. Indoor Rescue Environment Assessment

The post-disaster environment dataset was captured using a calibrated Intel RealSense
D435i depth camera. It contained 1000 images of search and rescue personnel and robots.
The network training experiments were conducted on a desktop computer with an Intel
I5-13400F processor and a GeForce GTX 1660 TI graphics card. The YF-SLAM system was
deployed on a rescue robot platform powered by Jetson Nano. In the experiment, search
and rescue personnel and rescue robots performed different activities, such as human–
machine collaborative movement, moving static chairs, etc. The CPU running memory
of VSLAM runtime is mainly used to store the data structures, variables, and temporary
calculation results required for algorithm runtime. We use the Intel RealSense D435i depth
camera as input to achieve real-time indoor synchronous positioning and mapping on the
Jetson Nano rescue robot platform and complete rescue tasks.

Figure 7 shows the feature extraction results for the indoor dataset. The first row
displays the detection results for search and rescue personnel, rescue robots, and dragged
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chairs. The second row shows the feature points with dynamic individuals, robots, and
occluded chairs removed while preserving the feature points from the static background
within the rectangular bounding box. Under different indoor lighting conditions, search
and rescue personnel, rescue robots, and potential dynamic objects can be clearly distin-
guished, and static feature points within the rectangular bounding box are also preserved.
This further verifies the practicality of YF-SLAM in scenarios with known and unknown
moving objects.
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Figure 7. In the experiment on indoor datasets, the purple bounding box in (a–c) shows the position
of dynamic objects identified by YOLO-FasterV2, including people and robots, and (d–f) shows the
effect of YF-SLAM after removing dynamic feature points, including potential dynamic chairs in the
box. Green dots are feature points.

5. Conclusions

This paper proposes a semantic SLAM system, called YF-SLAM, that works in dynamic
environments. YF-SLAM is based on ORB-SLAM2 and primarily uses semantic information
to assist the SLAM system in removing interference caused by moving objects. For the
object detection thread, a lightweight version of YOLO-FastestV2 is proposed, which
provides necessary semantic information in dynamic environments, thereby improving
detection speed. Additionally, a deep feature point filtering method is proposed for the
dynamic feature filtering thread, which retains static feature points extracted within the
contours of dynamic objects. Based on the open TUM dataset and a self-made RGB-D
indoor dynamic dataset, the proposed YF-SLAM achieves ATE errors that are reduced by
over 90% compared to the original ORB-SLAM2 on most sequences. Compared with the
currently advanced DYNA-SLAM and DS-SLAM systems, our approach also maintains its
leading position in high dynamic sequences. On a rescue robot platform equipped with a
Jetson Nano, the YF-SLAM system efficiently removes dynamic feature points and exhibits
outstanding reliability in stability, accuracy, and speed under the walking sequence dataset
where dynamic objects occupy a large part of the camera view. YF-SLAM greatly improves
the operational capability of mobile robots in realistic dynamic environments.

There is still ongoing work in YF-SLAM. We will focus on improving its robustness
under extreme conditions. Based on Figure 5, both YF-SLAM and DYNA-SLAM exhibit
larger errors at the beginning of the trajectory tracking for roll and pitch. At the start,
the detection bounding boxes may be inaccurate, letting through more unstable features
and causing transient errors in pose estimation. As the system processes more frames,
the detection and filtering improve, leading to more accurate tracking. This reveals an
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intrinsic limitation of detection-based VSLAM methods, which require warm-up time for
the semantic processing to stabilize. We will aim to address this issue in future work, for
example, by propagating semantic predictions temporally to improve initialization.

Author Contributions: Software, M.F.; Validation, J.P.; Investigation, A.Z.; Writing—original draft,
Z.S.; Writing—review & editing, W.S. and H.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received funding from the Major Research Program of National Natural
Science Foundation of China (NSFC) under grant number 91948303, in part by the Hebei Science
and Technology Innovation Foundation of China on Precise Identification Technology and Industrial
Application of Small Targets in High-speed Movements. The article processing charges (APC) were
covered by the Hebei University of Technology.

Data Availability Statement: Data associated with this article can be found in the online version, at
https://blog.csdn.net/weixin_45947476.

Conflicts of Interest: All the authors do not have any possible conflict of interest.

References
1. Eason, G.; Noble, B.; Sneddon, I.N. On certain integrals of Lipschitz-Hankel type involving products of bessel functions. Philos.

Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 247, 529–551. [CrossRef]
2. Scona, R.; Nobili, S.; Petillot, Y.R.; Fallon, M. Direct visual SLAM fusing proprioception for a humanoid robot. In Proceedings of the

IEEE International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 1419–1426.
[CrossRef]

3. Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; Rendón-Mancha, J.M. Visual simultaneous localization and mapping: A survey. Artif.
Intell. Rev. 2015, 43, 55–81. [CrossRef]

4. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

5. Feng, X.-F.; Fang, B. Algorithm for epipolar geometry and correcting monocular stereo vision based on a plane mirror. Optik 2021,
226, 165890. [CrossRef]

6. Martínez-Otzeta, J.M.; Rodríguez-Moreno, I.; Mendialdua, I.; Sierra, B. RANSAC for Robotic Applications: A Survey. Sensors
2022, 23, 327. [CrossRef] [PubMed]

7. Kundu, A.; Krishna, K.M.; Sivaswamy, J. Moving object detection by multi-view geometric techniques from a single camera
mounted robot. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO,
USA, 10–15 October 2009; Volume 2009, pp. 4306–4312. [CrossRef]

8. Zou, D.; Tan, P. CoSLAM: Collaborative Visual SLAM in Dynamic Environments. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35,
354–366. [CrossRef] [PubMed]

9. Kitt, B.; Moosmann, F.; Stiller, C. Moving on to dynamic environments: Visual odometry using feature classification. In
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October
2010; pp. 5551–5556. [CrossRef]

10. Yu, C.; Liu, Z.; Liu, X.-J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1168–1174. [CrossRef]

11. Wang, X.; Oswald, M.R.; Cherabier, I.; Pollefeys, M. Learning 3D Semantic Reconstruction on Octrees. In Pattern Recognition;
Springer: Cham, Switzerland, 2019. [CrossRef]

12. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

13. Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–4083. [CrossRef]

14. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

15. Shi, J.; Zha, F.; Guo, W.; Wang, P.; Li, M. Dynamic Visual SLAM Based on Semantic Information and Multi-View Geometry. In
Proceedings of the 5th International Conference on Automation, Control and Robotics Engineering (CACRE 2020), Dalian, China,
19–20 September 2020; pp. 671–679. [CrossRef]

16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016.

https://blog.csdn.net/weixin_45947476
https://doi.org/10.1098/rsta.1955.0005
https://doi.org/10.1109/iros.2017.8205943
https://doi.org/10.1007/s10462-012-9365-8
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1016/j.ijleo.2020.165890
https://doi.org/10.3390/s23010327
https://www.ncbi.nlm.nih.gov/pubmed/36616922
https://doi.org/10.1109/iros.2009.5354227
https://doi.org/10.1109/TPAMI.2012.104
https://www.ncbi.nlm.nih.gov/pubmed/22547430
https://doi.org/10.1109/iros.2010.5650517
https://doi.org/10.1109/IROS.2018.8593691
https://doi.org/10.1007/978-3-030-33676-9_41
https://doi.org/10.1109/TPAMI.2016.2644615
https://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1109/cacre50138.2020.9230242
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650


Electronics 2023, 12, 3538 13 of 13

18. dog-qiuqiu/YOLO-FastestV2: Based on YOLO’s Low-Power, Ultra-Lightweight Universal Target Detection Algorithm, the
Parameter is only 250k, and the Speed of the Smart Phone Mobile Terminal Can Reach ~300fps+. 2022. Available online:
https://github.com/dog-qiuqiu/Yolo-FastestV2 (accessed on 14 July 2023).

19. Liu, G.; Zeng, W.; Feng, B.; Xu, F. DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors. Sensors
2019, 19, 3714. [CrossRef] [PubMed]

20. Ngo, E.; Ramirez, J.; Medina-Soto, M.; Dirksen, S.; Victoriano, E.D.; Bhandari, S. UAV Platforms for Autonomous Navigation
in GPS-Denied Environments for Search and Rescue Missions. In Proceedings of the International Conference on Unmanned
Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 1481–1488. [CrossRef]

21. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal,
7–12 October 2012; pp. 573–580. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/dog-qiuqiu/Yolo-FastestV2
https://doi.org/10.3390/s19173714
https://www.ncbi.nlm.nih.gov/pubmed/31461943
https://doi.org/10.1109/icuas54217.2022.9836181
https://doi.org/10.1109/IROS.2012.6385773

	Introduction 
	Related Work 
	Methods of Geometrical 
	Methods of Deep Learning 
	The Method of Combining Deep Learning with Geometric 

	Dynamic Target Point Elimination 
	Framework of YF-SLAM 
	YOLO Fastest for Dynamic Target Recognition 
	Dynamic Feature Point Removal for YF-SLAM 

	Experimental Results and Analysis 
	Modular Evaluation 
	Evaluation of Camera Localization 
	Runtime Analysis 
	Indoor Rescue Environment Assessment 

	Conclusions 
	References

