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Abstract: In software development, early defect detection using static analysis can be performed
without executing the source code. However, defects are detected on a non-execution basis, thus
resulting in a higher ratio of false positives. Recently, studies have been conducted to effectively
perform static analyses using machine learning (ML) and deep learning (DL) technologies. This study
examines the techniques for detecting runtime errors used in existing static analysis tools and the
causes and rates of false positives. It analyzes the latest static analysis technologies that apply machine
learning/deep learning to decrease false positives and compares them with existing technologies in
terms of effectiveness and performance. In addition, machine-learning/deep-learning-based defect
detection techniques were implemented in experimental environments and real-world software to
determine their effectiveness in real-world software.
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1. Introduction

Testing is a critical activity for assuring software quality and can cost greater than 50%
of the total cost of a software development project [1]. Among software testing methods,
static analysis is a technique of examining coding rules, code complexities, runtime errors,
or security vulnerabilities by analyzing the source code without executing software. Various
automated tools such as Coverity, CodeSonar, Infer, and Splint have been used for static
analyses [2–5]. Runtime error analysis utilizing static analysis tools examine errors in
syntax, type (variable or function argument), unused code, memory, synchronization, and
security vulnerabilities. Thus, developers can detect and fix defects in the early stages.
However, static analysis tools are underutilized in practice [6–8].

The high rate of false positives when using these tools is among the primary factors
for this underutilization [8,9]. Considering the static analysis of runtime errors, errors are
primarily detected based on rules and not executed results. Because errors are detected
based on source code patterns and coding rules, false positives, in which the tool reports
errors when none exist, occur often [8,9]. Accordingly, developers or testers must review
the static analysis results and determine whether they are false positives; this requires
considerable investment in time and effort.

Various studies have been conducted over the past 20 years to reduce false positives.
Researchers have introduced new rules to diversify the types of detectable errors. Addition-
ally, advancements have been made in improving accuracy through semantic analysis of
source code rather than just pattern matching. In particular, recent studies have applied ma-
chine learning and deep learning techniques to conduct effective static analysis. By training
on existing error types and extracting features from target source code, these approaches
enhance accuracy. They also leverage machine learning/deep learning to eliminate false
positives in error types identified by static analysis tools.
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This study analyzes the latest static analysis techniques that apply ML/DL to decrease
false positives. In particular, it examines the techniques for detecting runtime errors used in
existing static analysis tools and the causes and rates of false positives. This study compares
advanced static analysis techniques that apply ML/DL to decrease false positives with
existing techniques in terms of effectiveness regarding false positive rate and performance
and analyzes whether the ML/DL applied method is effective in the actual software
execution environment.

Various static analysis tools are available for open-source or commercial use; however,
this study was performed with the most extensively used open-source static analysis
tool based on C/C++. Furthermore, the top five most frequently occurring defect types
were detected based on Common Weakness Enumeration (CWE), a software vulnerability
classification system for runtime error types employed in research to examine the effects
of static analysis tools. CWE defects encompass flaws, vulnerabilities, bugs, faults, and
other errors in software implementation, code, design, and architecture [10]. According to
CWE’s examination of C/C++-based software defect types as of 2022, the top five defects
include memory buffer errors, out-of-bound read/write, use-after-free, and improper
synchronization. This study applies static analysis tools to these five types of defects and
compares their defect detection effectiveness.

The following are the primary contributions of this study.

(1) It demonstrates the detection of runtime errors in static analysis, focusing on certain
defects. It analyzes the types of defects detected in runtime over the last 20 years as
indicated by published studies. The findings reveal that most reported static analyses
focused on defects such as memory buffer errors and incorrect memory release.

(2) It analyzes the latest static analysis techniques to decrease false positives by categoriz-
ing them into those that apply ML/DL and those that do not. A comparative analysis
of the defect detection effects of each technique shows that the application of ML/DL
affects the reduction in false positives in static analysis.

(3) It measures the time taken to apply the latest static analysis techniques to the test data,
identifying whether ML/DL can be applied to actually defect detection.

(4) It demonstrates that measures to reduce false positives in static analysis focus on lim-
ited types of vulnerabilities/defects; it thus emphasizes the necessity for approaches
in static analysis that accurately detect a wide range of vulnerabilities/defects.

The remainder of this study is organized as follows: Section 2 addresses the techniques
for analyzing runtime errors and the causes of false positives in a static analysis. In Section 3,
static analysis tools are used for performing assessments of a variety of runtime errors.
Section 4 analyzes the effects of the techniques on reduction in false positives in static
analysis. Section 5 provides the conclusions and describes future research directions.

2. Related Studies

In general, an automated static analysis tool (AST) is used for static analysis. These
ASTs detect runtime errors or vulnerabilities through pattern-based, dataflow-based,
annotation-based, and constraint-based approaches [11].

Pattern-based ASTs, such as Flawfinder [10] and cppcheck [12], analyze source code
based on pre-determined classification rules, that is, code patterns, and report mismatched
patterns as defects. Hence, conventional codes implemented with a non-predetermined pat-
tern are reported as defects, resulting in a high false positive rate; these ASTs as such cannot
detect new types of defects that are not in a pre-determined pattern. Furthermore, they
cannot identify semantic errors (e.g., data-type mismatches) as defects. These limitations
led Frama-C [13] to add rules for new defect types. Therefore, new security vulnerability
patterns can be detected; however, the false positive rate is still high.

A Clang static analyzer [14] detects defects through semantic analysis. Because defects
are detected based on the data flow, the defect detection rate is higher than existing pattern-
based ASTs. However, the false positive rate is also high because the data flow cannot be
analyzed based on actual execution.
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Rahimi and Zargham [15] proposed a technique for extracting code metrics, such
as code complexity and compliance with security coding rules, from source code using
compiler-based static analysis to predict vulnerabilities using these code metrics.

However, as in all the aforementioned studies, as the analysis is not based on actual
execution, the false positive rate is high. Because the actual execution result is unknown,
it is necessary to presume that the software is operating or utilizing an approximation.
Therefore, things may be reported as a defect, although it is not. Such a high false-positive
rate makes using AST for developing programs challenging. To identify actual defects,
developers must review all reports on defects as many may contain cases that are not
defects; this is time-consuming.

Artificial intelligence technology has recently garnered prominence, and research on
static analysis techniques employing ML or DL to decrease false positives or remove defects
from the static analysis has been performed. As a result of our analysis of papers published
in conferences or journals for 10 years from 2012 through IEEExplore, we discoverd that
2130 papers focused on predicting or detecting defects and vulnerabilities using static
analysis with a related restoration theme. Particularly, 24 of the 38 relevant papers published
in the preceding year examined techniques for analyzing vulnerabilities using ML or DL,
demonstrating a wide range of applications.

There are various techniques and approaches to detecting defects using ML/DL-based
static analysis. Generally, these approaches involve the following steps: data collection,
feature engineering, data preprocessing, model training, and vulnerability detection using
the trained model. Data for both defective and normal code is collected, and features are
extracted from the collected code. These features quantify code structures, variable usages,
function call relationships, and program control flow. The data were preprocessed to make
it suitable for application to the models of ML/DL. Various ML/DL models are trained on
this preprocessed data to predict vulnerabilities. Models such as Support Vector Machines
(SVMs), Random Forests, Gradient Boosting, and Neural Networks are commonly used.

Refs. [16,17] used a support vector machine (SVM) to detect vulnerabilities. This model
predicts vulnerabilities or components with vulnerabilities by extracting code features and
statistically analyzing them.

Various techniques can be used to predict vulnerabilities using deep learning. Tree-
based convolution neural network (TBCNN) [18] is a technique to extract features from
the source code as a tree structure and predict vulnerabilities using a convolution neural
network (CNN). Using recurrent neural network (RNN), VulDeePecker [19] made source
code “code gadget” divided source code semantically to detect vulnerabilities through
learning. VulDeePecker has been extended to µVulDeePecker [20] and SySeVR [21]. There
is also a technique for detecting vulnerabilities using an ensemble of CNN and RNN
rather than using them alone. To detect vulnerabilities, [22] extracted features from lexically
analyzed function source code and proposed a random forest technique that uses a classifier
with an ensemble of CNN and RNN.

Studies have been conducted to reduce the false-positive rate when predicting vul-
nerabilities with deep learning. VulDeeLocator [23] attempts to increase the accuracy of
vulnerability analysis by eliminating false alarms using deep learning based on source
code analysis. VulDeBERT [24] applied the BERT model to vulnerability logs collected
from the static analysis tools to eliminate false positives and enhance the accuracy of
vulnerability analysis.

This study compares these analytical tools regarding the vulnerabilities they target
and identifies their effects by learning the same dataset and applying it to the test set.

3. Runtime Error Types and Dataset

Table 1 lists the results of the statistical analyses. Most commercial tools can detect
almost all the vulnerabilities defined by the CWE standard. However, open-source-based
static analysis tools are limited to particular vulnerabilities, such as memory corruption
and null pointer reference.
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Table 1. Types of defects detectable by static analysis tools.

Defect

Static Analysis Tools

Flawfinder Cppcheck RATS Infer Frama-C Coverity
(Commercial)

Dead pointers O O

Division by zero O O O

Integer overflows O O O O

Invalid bit shift operands O O

Invalid conversions O O

Invalid usage of STL O O

Memory management O O O

Null pointer dereferences O O O

Out of bounds checking O O O

Uninitialized variables O O

Writing const data O O

Coding conventions O O

Unavailable API’s O O

Memory out-of-bound read/write O O O O O

Race Condition within a Thread O O

Memory leakage O O O

Use of Potentially Dangerous Function O O

Most defects detectable by the tools occur frequently in the software. According to
a CWE standard-based analysis of the most frequently occurring defect types in C/C++-
based software as of 2022, the top five were memory buffer error, out-of-bound read/write,
use-after-free, and improper synchronization defects. The CWE-ID related to these type is
shown in Table 2, and the detectable defects by AST are shown in Table 3.

Table 2. Most frequently occurring defect types.

CWE-ID CWE Title Defect Type

404 Improper resource shutdown or release Improper synchronization

476 NULL pointer dereference use after free

119 Improper restriction of operations within the
bounds of memory

Memory buffer error
Out-of-bound read
Out-of-bound write

This study used two datasets to conduct a comparative analysis of the ASTs. One
was acquired from the National Institute of Standards and Technology (NIST) Software
Assurance Reference Data Set (SARD), which includes the source code of various vulnera-
bilities based on the CWE. The second database was obtained from National Vulnerability
Database (NVD). The NVD contains information such as program, time, vulnerability
description, CWE ID, hyperlinks to patches for the security-related vulnerability list, CVE,
and a subset of the CWE.

As shown in Tables 4 and 5, the datasets consisted of a training set for learning
vulnerability detection tools using ML/DL and a test set for measuring vulnerability
detection performance. The source code is sliced to learn the ML/DL-applied tools in the
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training dataset. Hence, it included 28,561 C/C++ code snippets for 6091 samples related
to the CWE defect type targeted in this study.

Table 3. Types of defects detectable by AST.

Tool
CWE ID

Remark
404 476 119

Without ML/DL

Flawfinder O O O

Cppcheck O O O

Frama-C O O O

Clang static analyzer O O O

Vulnerability detection using ML/DL

VulDeePecker X X O

µVulDeePecker X X O

SySeVR X X O

VUDDY O O O Network security

HyVulDect O O O Network security

False positive reduction using ML/DL
VulDeeLocator X X O

VulDeBERT X X O

Table 4. Dataset for training.

Dataset Source No. of Samples

SARD 4927
NVD 1164
Total 6091

Table 5. Dataset for testing.

Dataset Source No. of Samples

FFMpeg 637
GNU Grep 380

Total 1017

4. Comparison of Techniques for Reducing False Positives in Static Analysis Tools
4.1. Experimental Environment

We developed the following research questions and conducted experiments to ad-
dress them.

RQ1. Is applying ML/DL to detect vulnerabilities using static analysis practical?
We classified static analysis techniques for detecting vulnerabilities into existing static

analysis techniques and those applying ML/DL to conduct a comparative analysis of
vulnerability detection performance. Metrics for measuring the vulnerability analysis
performance were defined, and each tool was applied to the test set for the analysis. By
comparing the effects of existing techniques and ML/DL-applied techniques, we analyzed
the effectiveness of ML/DL for the detection of vulnerabilities.

RQ2. Can vulnerability detection techniques using ML/DL be applied to detect actual
software vulnerabilities?

Previous studies demonstrated that vulnerability detection techniques that apply
ML/DL have higher levels of accuracy. However, whether these techniques are effective
when applied to real-world software rather than a dataset for experiments is unknown. This
study compared the results of vulnerability detection when adjusting the size of the training
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dataset and analyzed the software requirements for training or vulnerability detection to
identify whether vulnerabilities can be detected effectively in real-world software.

(1) Experimental Environment

The environment for the experiments consisted of a 64-bit Ubuntu 20.04.3, Intel(R)
Core (TM) i5-6200U CPU, 2.4 GHz, NVIDIA Geforce 940MX, and 2 GB RAM. The training
data for vulnerability detection techniques based on ML/DL was preprocessed using
low-level virtual machine (LLVM), Clang, and Python 3.7 environments.

(2) Techniques for Comparison

The vulnerability-detection techniques are described in Section 2. In the experiments,
open-source software techniques were compared for the C/C++ language, as shown in
Table 6. µVulDeePecker, extended from VulDeePecker, was excluded from the experiments
because of the existing latest SySeVR technique. VUDDY and HyVulDect were excluded
from the experiment because they are tools for detecting vulnerabilities related to network
security rather than software defects.

Table 6. Dataset for testing.

Name Target Language Open Source Selection for
Comparison

Flawfinder C/C++ O O

Cppcheck C/C++ O O

Frama-C C O X

Clang static analyzer C/C++/Objective C O X

VulDeePecker C/C++ O O

µVulDeePecker C/C++ O X

SySeVR C/C++ O O

VUDDY C/C++ O X

HyVulDect C/C++ O X

VulDeeLocator C/C++ O O

VulDeBERT C/C++ O O

Flawfinder [10] and cppcheck [12], when given a program, analyze the abstract syntax
tree of the input program to verify if it adheres to predefined syntactic rules set by the tools.
If the program violates the defined syntactic rules, it is reported as a flaw.

In the process of vulnerability detection, VulDeePecker [19] extracts library/API func-
tion calls and their arguments from the program to create semantic units called ‘code
gadgets’. Each code gadget is labeled for vulnerability and then vectorized. These vec-
torized code gadgets are trained using a BLSTM model, an extension of the LSTM model,
which falls under the category of RNN. When detecting vulnerabilities, code gadgets are
created and vectorized similarly from the target program, and the trained BLSTM model is
used to determine if a vulnerability exists.

SySeVR [21] extracts Syntax-based Vulnerability Candidates(SyVC) from program
syntax and converts them to Semantics-based Vulnerability Candidates(SeVC). SeVC is
transformed into vectors for deep neural network training and vulnerability detection
using bidirectional RNN, specifically BGRU (Bidirectional Gated Recurrent Unit).

Similarly, VulDeeLocator [23] performs syntactic analysis on the program to extract
SyVC, which is then transformed into SeVC. It introduces the concept of granularity
refinement during semantic information extraction and utilizes intermediate code-based
representation. SeVC is vectorized for deep neural network training and vulnerability
detection using bidirectional RNN, including BGRU.
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VulDeBERT [24] converts information related to variable and function calls from
a program’s source code into code gadgets. Ambiguous code gadgets that might be
misclassified as vulnerabilities are removed. The remaining code gadgets are encoded
with tokens indicating the start and end of input vectors. BERT model is employed for
training using these encoded tokens to detect vulnerabilities. By fine-tuning BERT model
with C/C++ source code transformed into code gadgets, VulDeBERT aims to enhance
vulnerability detection, leveraging the strong performance of BERT in natural language
processing tasks.

(3) Measurement Metrics

We measured the performance of each vulnerability detection technique using six
standard metrics. A false positive (FP) refers to the number of samples reported as defects,
even though they are not. False negatives (FN) refer to vulnerable samples that were
undetected as defects. The number of samples that were defects and were reported as
such by the tool are referred to as true positives (TP). True negative (TN) is the number of
samples that were not defects and were unreported as defects by the tool.

False Positive Rate (FPR) = FP/(FP + TN) (1)

False Negative Rate (FNR) = FN/(TP + FN) (2)

Accuracy (A) = TP + TN/(TP + FP + TN + FN) (3)

Precision (P) = TP/(TP + FP) (4)

Recall (R) = (TP)/(TP + FN) (5)

F1 Score = (2 × P × TP/(TP + TN))/(P + TP/(TP + TN)) (6)

(4) Experimental Methods

Experiments were conducted to measure the performance of vulnerability detection
techniques and identify their applications to real-world software.

First, experiments were conducted to determine how the performance of each vulner-
ability detection varied with the application of ML/DL. For the vulnerability detection
techniques that apply ML/DL, an additional experiment would be conducted to measure
its effects when applied to real-world software. Section 3 describes the datasets used in our
experiments. The performance of the existing technique without the application of ML/DL
was measured by static analysis of the training dataset. Considering the vulnerability
detection technique applying ML/DL, 80% of the training datasets were used as training
data and 20% as test data. The experiment was iterated five times and the average value of
the metrics measured in each experiment was used as the final performance.

The experiment used all training datasets to determine whether the vulnerability
detection technique using ML/DL is applicable to real-world software rather than the one
used in the experiment. Once the model training was completed, it was applied to the test
dataset, and the results were analyzed.

4.2. Experimental Results and Analyses

The study analyzes the experimental results of each tool by RQ.
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4.2.1. RQ1. Is It Effective to Apply Machine Learning/Deep Learning to Detect
Vulnerabilities with Static Analysis?

Table 7 presents the results of the vulnerability detection techniques used for the
training dataset.

Table 7. Results of vulnerability detection (unit: %).

Tools Precision Recall F1-Score Accuracy FPR FNR

flawfinder 47.39 32.83 37.99 55.49 26.64 70.95
cppcheck 58.05 57.07 57.56 46.06 41.95 57.07
VulDeePecker 81.17 62.14 67.54 69.9 14.77 33.13
SySeVR 79.05 78.38 78.63 82.45 14.15 22.1
VulDeeLocator 90.28 86.86 88.52 90.08 6.25 15.9
VulDeBERT 95.51 90.38 91.95 99.15 0.28 9.62

Existing static analysis tools, such as flawfinder and cppcheck, accurately analyzed
only 46–55% of the vulnerabilities. The remaining vulnerabilities were reported as defects,
although they were not properly detected. For example, in case 1 of Table 8, it is reported
that even though the defect was not present, there could be a buffer overflow due to the lack
of size checking on the destination (dst) when using the memcpy function. In case 2, it was
not reported as a defect when there was an out-of-bound access to the array of the variable
‘pattern’ at line 1301, but it is reported as a potential overflow when declaring the variable
‘pattern’ at line 1294, due to its size causing a possible overflow. This is because existing
static analysis tools only detect defects when predefined syntactic rules are violated, and
they do not validate the variables or indexes used in the source code.

Table 8. Example source code.

Case Source Code

1

static void copyset(const int src[((1 << 8) + 8 * sizeof(int) − 1)/(8 *
sizeof(int))],charclass dst)
{
memcpy(dst,src,sizeof(charclass));
}

2

else {
/* Defer to the system regex library about the meaning of range expressions. */
regex_t re;
char pattern[6] = {(‘[’), (0), (‘-’), (0), (‘]’), (0)};//line 1294
char subject[2] = {(0), (0)};
. . .
pattern[7] = c1; //line 1301
. . .
}

Vulnerability detection techniques applying ML, such as VulDeePecker, SySeVR,
VulDeeLocator, and VulDeVERT, showed an increased accuracy of the detected defects by
14.41–53.09% compared with existing static analysis tools. Particularly, VulDeBERT, which
removed false positives after static analysis, accurately reported over 99% of the defects
and had a relatively low false positive defect rate of 0.275%.

These findings demonstrate that techniques applying ML/DL, rather than existing
static analyses, reduce false positives and increase the reliability of results. Additionally,
these ML/DL techniques demonstrated a higher level of vulnerability detection accuracy
on average, proving that they are more effective for detecting vulnerabilities than existing
static analysis tools.
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4.2.2. RQ2. Can Vulnerability Detection Techniques Applying Machine Learning/Deep
Learning Be Applied to Vulnerability Detection of Real-World Software?

We deployed VulDeePecker, SySeVR, VulDeeLocator, and VulDeBERT to the real-
world software FFMpeg and GNU Grep to identify whether vulnerability detection tech-
niques that apply ML/DL are effective for detecting vulnerabilities in real-world software.
To detect vulnerabilities using these techniques, the training dataset must first be learned,
and the source code and training data for testing must be preprocessed. However, for
VulDeePecker, SySeVR, and VulDeeLocator, pre-processing of the source code cannot be
completed or used for analysis if it cannot be compiled. Figure 1 represents the data
preprocessing process in SySeVR. Other tools have similar data preprocessing processes
as well. When the size of the source code used for training is large, the time required for
preprocessing increases. In our experimental environment, preprocessing the SARD dataset
for training involved parsing the source code, extracting line numbers of vulnerable lines
from the test case information, and creating labels. These steps consumed more than 12 h,
and the entire data preprocessing process took around 3 days to complete.
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Table 9 shows the results of the vulnerability detection for FFMpeg and Grep. Com-
pared with the application to the training dataset at RQ1, the vulnerability detection
accuracy decreased, and the false positive rate increased. These results show that the
training dataset used in the lab may have insignificant effects on vulnerability detection
using real-world software.

Table 9. Results of vulnerability detection for FFMpeg, Grep (unit: %).

Tools Precision Recall F1-Score Accuracy FPR FNR

VulDeePecker 50.65 (6.54) 72.3 (11.3) 50.4 (3.57) 63.25 (10.16) 38.46 (11.81) 32.33 (8.25)
SySeVR 57.6 (11.21) 78.91 (8.07) 63.7 (9.55) 57.52 (12.17) 55.41 (25.86) 27.8 (3.91)
VulDeeLocator 78.41 (2.15) 80.37 (1.68) 79.26 (0.28) 76.68 (2.73) 36.98 (15.8) 19.63 (5.29)
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Figure 2 shows the Receiver Operating Characteristic (ROC) curves for vulnerability
detection results when tested in experimental and real environments after training on the
data set for RQ1. The ROC curve is a performance indicator for the model, and a curve
closer to the y-axis indicates better performance. The training dataset was divided, using
80% of it for training in the experimental environment, and the remaining 20% was used as
the test dataset in the same environment. The test dataset in the real-world environment was
the dataset from Table 5. The results show that the dataset in the experimental environment
had a curve closer to the y-axis, indicating better vulnerability detection performance.
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VulDeeLocator 78.41 (2.15) 80.37 (1.68) 79.26 (0.28) 76.68 (2.73) 36.98 (15.8) 19.63 (5.29) 

VulDeBERT 90.08 (3.28) 53.43 (23.67) 59.97 (20.9) 85.48 (8.66) 0.83 (0.34) 46.57 (23.67) 

Figure 2 shows the Receiver Operating Characteristic (ROC) curves for vulnerability 

detection results when tested in experimental and real environments after training on the 

data set for RQ1. The ROC curve is a performance indicator for the model, and a curve closer 

to the y-axis indicates better performance. The training dataset was divided, using 80% of it 

for training in the experimental environment, and the remaining 20% was used as the test 

dataset in the same environment. The test dataset in the real-world environment was the 

dataset from Table 5. The results show that the dataset in the experimental environment had 

a curve closer to the y-axis, indicating better vulnerability detection performance. 
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The existing static analysis techniques can be applied if the language is the same,
regardless of the target software used for vulnerability detection. However, depending
on the target software utilized for detection, vulnerability detection techniques based on
ML/DL may be inapplicable. Furthermore, data pre-processing is time-consuming, and the
false-positive rate may be similar to that of the existing static analysis method according
to the training dataset. Hence, more efficient vulnerability detection techniques require
application using ML/DL, not in research but in practice.

4.3. Discussion

In this paper, we compared the effectiveness of existing static analysis tools and
vulnerability detection approaches using ML/DL for limited vulnerability types, such
as memory buffer errors and out-of-bound read/write. The traditional static analysis
tools show a high rate of false positives as expected. However, when applying ML/DL
approaches, we observed a reduction in false positives and a more accurate detection
of vulnerabilities.

Based on accuracy as the evaluation metric, VulDeBERT shows the best performance.
Accuracy can be distorted depending on the dataset used in the experiments, so other
evaluation metrics should also be analyzed. In RQ1, VulDeBERT outperformed other tools
in terms of precision, recall, and F1 score, with the lowest false positive rate. However, in
RQ2, although VulDeBERT still exhibited high accuracy and precision, its recall was the
lowest. This indicates a higher proportion of undetected vulnerabilities, suggesting the
need for improving precision and recall through the application to various datasets.

We focused only on a small subset of all vulnerability types for vulnerability detection.
Existing static analysis tools like flawfinder and cppcheck exhibit high false positive rates
but can detect various vulnerability types. On the other hand, vulnerability detection
approaches using ML/DL like VulDeBERT are limited by the information obtained from
preprocessed data and do not currently support detection of various vulnerability types.
This means that while VulDeBERT accurately detected vulnerabilities, it does not guarantee
high performance for other vulnerability types.

5. Conclusions

This study examined runtime error detection techniques using existing static analysis
tools and identified the causes and rates of false positives. It also compared the existing
techniques with the latest static analysis techniques that apply ML/DL to reduce false
positives and investigated the effectiveness of such techniques regarding the false positive
rate and performance.

For open-source static analysis tools based on C/C++, the experiments conducted
were to detect memory buffer errors, out-of-bound read/write, and their use after free
and improper synchronization, which frequently occurs in CWE. Consequently, compared
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with existing static analysis techniques, those applying ML/DL exhibited a higher defect
detection accuracy of 14.41–53.09% with a lower false-positive rate of 0.28–24.53%. However,
static analysis techniques that employ ML/DL have varied effects depending on the dataset
learned. In addition, the time for analysis increased in proportion to the amount of data
available in the process of learning data, and the performance was lowered when detecting
vulnerabilities in real-world software. Therefore, studies have to be conducted on efficient
techniques that can be applied to real-world software rather than to training datasets. In
the future, we plan to investigate vulnerability detection techniques that can be applied to
real-world software using ML/DL.
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