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Abstract: Irreversible demagnetization of permanent magnets (PMs) in PM synchronous motors
(PMSMs) degrades the performance and efficiency of a machine and its drive system. There are
numerous fault diagnosis methods for detecting demagnetization under steady-state conditions.
However, only a few works could be found on fault diagnosis under dynamic conditions, whereas
the dynamic operation of a motor is a very common scenario, e.g., electric vehicles. The voltage and
current signal-based traditional fault detection method is not only affected by the structure of the
motor, but it also becomes complicated to extract signals involving fault characteristics. Hence, this
paper proposes a search coil-based online method for detecting demagnetization faults in PMSMs
under dynamic conditions, which are not affected by the motor structure. To gather the flux of the
stator tooth, flexible Printed circuit board (FPCB) search coils are positioned at the stator slot. The
search coil is made up of two branches that are one pole apart and arranged in reverse sequence. In
this installation option, the output signal in the fault state cannot be eliminated, and the output signal
in the health state is zero. This paper defines only that characteristic value related to the position
angle of the rotor. Further, the aim was to simultaneously eliminate the influence of elements like the
search coil installation error and the inherent dispersion of the permanent magnet on the detection
results. To characterize the fault degree, the measurement differential between the health state and
the fault state is further integrated according to a predetermined angle range. Last but not least,
speed-independent detection of individual permanent magnet demagnetization faults is possible
using rotor position and stator tooth flux. A six-phase PMSM was used in experiments to show the
efficiency of the suggested approach. The findings of the experiment demonstrate that the suggested
strategy may precisely ascertain when a defect will occur.

Keywords: demagnetization; permanent magnet synchronous motor; dynamic conditions; search coils

1. Introduction

Permanent magnet synchronous motors (PMSMs) have found widespread use in
industrial production, electric vehicles, aerospace, and other industries thanks to the
development of high-quality rare-earth permanent magnetic materials [1,2] and power
electronics technology [3,4]. Generally, the use of PMs in electrical machines has some
advantages, such as fewer losses, more torque (power) per volume, better dynamic per-
formance, simple structure, and simple maintenance [5]. These advantages are reinforced
by the continuous development of materials technology [6–9]. In order to maintain such
advantages in different applications, the operating condition of PMSMs must be monitored.
Early and correct diagnosis of faults helps in improving the reliability and safety of a
system. Due to this, numerous studies have been conducted to address problems, including
demagnetization, electrically short/open circuits, static/dynamic eccentricity, and bearing
faults [10,11]. Demagnetization is classified into two groups: reversible demagnetization
and irreversible demagnetization. Reversible demagnetization is induced by a control
that weakens the field, while irreversible demagnetization means permanently weakened
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magnets. PMs may also get demagnetized as a result of mechanical, thermal, and aging
processes while operating at a high temperature, which is the most frequent reason for PM
failures [12]. Demagnetization significantly degrades the characteristics and efficiency of
the motor as a result of the machine’s decreased output torque. Demagnetized PMSMs re-
quire a larger current than a typical machine to maintain the same torque, but the increased
current also raises the machine’s temperature and copper losses. It is well known that a
high temperature may produce very severe irreversible demagnetization [13,14]; there-
fore, it is crucial to research PMSM demagnetization defect diagnostics. Both steady-state
and dynamic-state studies on demagnetization flaws in permanent magnets are currently
conducted [5].

Flux analysis is the most direct method for detecting demagnetization faults of PMs,
where partial and uniform demagnetization can be easily detected by directly measuring
the magnetic flux with a Gaussian meter [15] or hall sensor [16]. However, this method
requires disassembling the motor, so it is not a suitable method for online detection of de-
magnetization faults. Wiehan [17], Subhadeep [18], Satish [19], and Amir [20] employed the
machine model to indirectly acquire flux information via a parameter estimate approach to
tackle this problem. However, because of this method’s high reliance on motor parameters,
changing the motor parameters under various operating circumstances may significantly
alter the results of the observations.

Stator current analysis is currently the most popular non-invasive method for detecting
demagnetization faults of PMs because it is inescapably necessary to collect the stator cur-
rent during the motor control process, which means that no additional sensors are required
to obtain the signal to be analyzed [21–24]. The harmonic components in Equation (1) will
manifest in the current spectrum when the demagnetization failure in the permanent mag-
net occurs. For non-stationary operating situations, several complicated time–frequency
analysis techniques are suggested, including the short-time Fourier transform (STFT) [25],
wavelet transform (WT) [26,27], and Hilbert–Huang transform (HHT) [14,28]. It is im-
portant to note that each series coil in a PMSM with symmetrical concentrated windings
exhibits harmonic induced voltage components, but these harmonics cancel out throughout
the entire winding [29].

fdemag = fe

(
1± k

p

)
(1)

Information such as torque and vibration can also be used to check whether there is
any demagnetization fault [30–33]. Although such methods can generally give accurate
results, they often require expensive and complex sensors to support them.

The signal injection-based parameter estimation method can avoid the influence
of motor parameters on the observation results. It can also consider non-ideal factors,
such as saturation. Hong [34] injected current into the D-axis to detect the change in its
inductance under saturation, where the demagnetization fault of the PM was detected
and distinguished from the eccentric fault. This method can achieve significant advan-
tages if the operating point of the motor comes at the knee point of the demagnetization
curve of the PM; otherwise, a large current is required to saturate the core, which limits
the application scenarios of this approach. With the further improvement in computing
power, many intelligent algorithm-based methods have been proposed for detecting de-
magnetization faults [3,12,35]. Although the detection accuracies of these methods are
increasing, a large amount of data accumulation and calculation are necessary prerequisites
for accurate detection.

The approach, developed on the basis of search coils (SCs) for directly observing the
change in the magnetic field of the motor, has received the attention of many scholars in
spite of being an invasive detection method [36,37]. Da [37] used low-frequency compo-
nents of the voltage signal of an SC so that its feature was not obvious, and the operating
condition of the motor could influence the diagnosis.

On the basis of the above, an SC-based novel method for diagnosing demagnetization
faults of PMSMs is proposed in this article. Search coils are made of flexible PCB in a way
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enabling an increase in the number of turns if the full rate of the slot is certain, where
increased turns makes it easier to detect fault signals. Similar to the conventional method,
flux information in the search coil is used to diagnose the demagnetization fault. In this
paper, it is innovatively proposed to transform the time domain information obtained by the
search coil into the angle domain information for further analysis. Through the conversion
strategy mentioned above, the proposed method is not only suitable for the steady state
operation of the motor but also can achieve a good fault detection effect in the dynamic
operation of the motor. Further, in order to describe the fault degree more intuitively,
the paper defines “periodic energy”, which is directly proportional to the fault degree
from both theoretical analysis and experimental verification. In addition, compared with
Fourier decomposition and other spectral analysis methods commonly used in traditional
fault detection methods, the proposed method only needs to perform a simple summation
calculation of the measured signal, and the minimal calculation amount makes it easier to
integrate the method into the motor system.

The rest of this article is organized as follows: The proposed method is in-depth and
theoretically explored in Section 2; the proposed fault detection approach is validated
through simulation and experiments in Section 3; Section 4 discusses the existing research
methods and the proposed schemes; and Section 5 concludes this article.

2. Materials and Methods

In this paper, the stator of the motor is considered to be in a healthy state. So, only the
effect of the rotor part on the search coil is taken into account. The information about a fault
is obtained by detecting the response of the voltage induced in the coil. So, the accurate
calculation of the air-gap magnetic field is an important step in the theoretical analysis. In
this section, the proposed method is theoretically analyzed in detail. In order to calculate
the air-gap magnetic field, first of all, the permanent magnet is made equivalent to a series
of symmetric current-carrying coils by means of surface current equivalence. Then, it is
transformed into a conventional current-carrying coil calculation model by correcting the
Carter coefficient. Finally, in order to consider the influence of the actual motor fluting effect,
the specific permeability function is calculated by modifying the ideal air-gap magnetic
field by using conformal transformation. The calculation process of theoretical analysis is
shown in Figure 1.
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Figure 1. Calculation flow of stator tooth flux considering slot effect. Figure 1. Calculation flow of stator tooth flux considering slot effect.

2.1. Magnetic Pole Surface Current Equivalence

A surface-mounted permanent magnet synchronous motor with sinusoidal pole clip-
ping serves as the paper’s prototype. The shape of the permanent magnet is shown in
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Figure 2 represented by red line. It can be made equivalent to the surface current depicted
in Figure 2 for a permanent magnet that is parallel magnetized.
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Figure 2. Equivalent surface current.

The density of each surface current can be expressed as:
J1 = Hc cos θ1
J2 = Hc sin θ′

J3 = Hc sin θ
(2)

where J1, J2, and J3 represent the surface current density of AB-CD, BC, and AD, respectively;
more details of the formula are presented in Appendix C.

J1 = Hc cos θ1 (3)

2.2. Calculation of Air-Gap Magnetic Field of a Current-Carrying Coil

The air-gap length is modified by the Carter coefficient, which can be written as
Equation (4), without taking into account the cogging effect:

cs =
wss + wst

wst +
4g
π ln

(
1 + πwss

4g

) (4)

The length of the equivalent air gap of the structure shown in Figure 3 is:

g′ = gcs (5)
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The magnetic field produced by a pair of current-carrying coil elements at any point
in the air gap is equivalent to two planes with smooth surfaces after the Carter coefficient
has been corrected, ignoring the eddy current, hysteresis effects, the saturation effect of the
magnetic circuit, and other effects.

The vector magnetic potential generated by a single-turn current-carrying coil at any
point P in the air gap shown as Figure 4 can be expressed as:

Az =


µ0i
π

∞
∑

m=1

Rm
s

mbm

(
R2m

r +b2m

R2m
s −R2m

r

)(
rm

Rm
s
+ Rm

s
rm

)
Kpm sin(mθ) r ≥ b

µ0i
π

∞
∑

m=1

Rm
s

mbm

(
R2m

s +b2m

R2m
s −R2m

r

)(
rm

Rm
r
+ Rm

r
rm

)
Kpm sin(mθ) r < b

(6)
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The SCs are arranged at the slot of the stator, so the magnetic induction intensity can
be expressed as: {

Bθ = − ∂Az
∂r

Br =
1
r

∂Az
∂θ

(7)

Finally, under the combined action of the three surface currents, the magnetic induction
intensity at point P is shown in Equation (8), and the detailed expressions are in Appendix C:{

Br = Br1 + Br2 + Br3
Bt = Bt1 + Bt2 + Bt3

(8)

2.3. Calculation of Complex Relative Permeance of Air Gap

The rotor was considered to be equivalent to a smooth surface plane in the previous
section’s computation of the air-gap magnetic field. The complex relative permeance is
calculated using the complex variable variation method to take into account the stator tooth
and slot effect. Since the permanent magnet synchronous motor prototype in this study has
a cylindrical rotor core, just the slotting impact of the motor stator needs to be taken into
account. The smooth rotor core’s surface is used as a mirror in the mirror method to create
the source image and mirror image of each slot in the motor stator, as shown in Figure 5.
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Figure 5. The source image and the mirror image of the stator slot.

Since each slot has the same relative permeance, the relative permeance distribution of
the whole motor can be obtained by taking one slot as the calculation unit and repeating it.
Since the magnetic field line parallels both the slot center line (Z1Z6) and the tooth center
line (Z2Z8), both of which are magnetic field symmetric lines, the calculation unit for the
lowest air gap permeance can be chosen as Z1Z2Z3Z4Z5Z6. We assume that the magnetic
potential of the mirror surface Z1Z2Z3 is −Ω0 since the scalar magnetic potential of Z4Z5Z6
on the stator surface is +Ω0.

The z-plane is transformed into the upper half-plane of the w-plane and then the
t-plane by applying Schwarz–Christoffel (S-C) mapping [38], as shown in Figure 6:
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The corresponding mathematical relation in Figure 6 is:

dz
dw = S1

(
w + 1
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)−1(
w + 1

k

) 1
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1
2 (w− 1)−

1
2
(

w− 1
k

) 1
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(
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(9)
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= S2

(
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1
k1

)− 1
2
(w + 1)−

1
2 (w− 1)−

1
2

(
w− 1

k1

)− 1
2

(10)

After two conformal transformations, the magnetic field distribution in the z plane
can be obtained by taking the gradient of the magnetic potential in the t plane:

Bslot= µ0
dt
dz

= µ0
dt
dw
· dw

dz

= µ0
Ω0

K(k1)
· 1
√

1− w2
√

1− k2
1w2
·

(
1− k2

1w2)√1− w2

b0
π

sn(α,k)·dn(α,k)
cn(α,k)

√
1− k2w2

= µ0
π

b0
· Ω0

K(k1)
· cn(α, k)

sn(α, k) · dn(α, k)
·

√
1− k2

1w2

√
1− k2w2

(11)
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When there is no slot, the magnetic density of any point in the z-plane is:

Bslotless = µ0
Ω0

δ
(12)

According to Equations (11) and (12), the relative permeance can be calculated:

λs=
Bslot

Bslotless

= µ0
π

b0
· Ω0

K(k1)
· cn(α, k)

sn(α, k) · dn(α, k)
·

√
1− k2

1w2

√
1− k2w2

· 1

µ0
Ω0
δ

= π
δ

b0
· 1

K(k1)
· cn(α, k)

sn(α, k) · dn(α, k)
·

√
1− k2

1w2

√
1− k2w2

= λa + jλb

(13)

w satisfies the following equation:{
b0
π

[
u sn(α,k)·dn(α,k)

cn(α,k) −ΠJ(u, α)
]
− z = 0

w = sn(u, k)
(14)

where z = x + jy stands for any point in the z plane, and λs is a complex number where
the real part λa and the imaginary part λb are the radial and tangential components of the
relative permeance, respectively. The induced voltage of the detector coil is:

u =
d
dt

ψ = NS

m
∑

i=1
Bt2

i −
m
∑

i=1
Bt1

i

t2 − t1
(15)

where N is the number of turns of the search coil, and S is the area corresponding to the
search coil. The magnetic induction intensity of m points is calculated in the space region
of each search coil, and Bi

t is the value of magnetic induction at time t at position i in space.

2.4. Search Coil Arrangement Scheme

The search coils sense the information about the magnetic field in the air gap and
reflect the motor condition. In order to prevent the search coils from any damage during
the wiring process of the motor winding, they are usually arranged at the slot after it is
wired down. In order to make the magnetic fields compensate for each other in a healthy
state, two detection coils are arranged one pole apart and reversed in series, as shown in
Figures 7 and 8.
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3. Results

The proposed fault detection method is first validated by simulation. The main
parameters of the studied PMSM are listed in Table 1.

Table 1. Main Parameters of PMSM.

Parameter Value Parameter Value

Rated Power (kW) 0.94 Rated Speed (r/min) 300
Rated Torque (Nm) 30 Stator Resistance (Ω) 4.3

Number of Pole Pairs 6 PM Flux
Linkage (wb) 0.98

The induced voltage signal obtained from the search coil needs to be further processed
to achieve the fault detection strategy proposed in this paper. The specific process is shown
in Figure 9. Velocity normalization and angle domain transformation are the core of this
paper. On the one hand, this can ensure the applicability of the detection scheme under
dynamic operation, and on the other hand, this also lays a foundation for the quantitative
description of subsequent fault degree. It can be seen that the data processing flow of EMF
is similar to the experiment; the difference is that the problem of interference by non-ideal
factors in the experimental process needs additional processing.
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3.1. Simulation Results

Firstly, it is established that theoretical calculations and simulation calculations are
consistent; the results are shown in Figure 10. Indicating the correctness of the theoretical
calculation, the calculated value of magnetic induction intensity and the induced voltage in
the search coil are in close agreement.
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There are two types of simulation content. The first, which corresponds to the theoreti-
cal analysis above, simulates demagnetization failure by altering the permanent magnet’s
remanence, which is the same as the demagnetization itself. In this article, a new modeling
scheme was implemented to simulate the demagnetization fault more simply. A concentric
coil with specific numbers of turns was wound on the surface of the permanent magnet,
and the current was then injected into the coil. The permanent magnet’s magnetic field was
counteracted by the injected current in the opposite direction, and the demagnetization
defect was mimicked.

(a) Changing the remanence of the permanent magnet

The demagnetization process of the permanent magnet is shown in Figure 11. Irre-
versible demagnetization occurs when the working point crosses the knee point K and
reaches the point Q, and then returns along the route indicated by the red dotted line.
Compared with the healthy state, the remanence value after demagnetization will be signif-
icantly reduced. As a result, by altering the remanence of the permanent magnet material
in the finite element model, the demagnetization fault can be recreated.

The remanence value of the faulty permanent magnet is set to 0.9 times, 0.8 times,
and 0.7 times the normal state to simulate 10%, 20%, and 30% demagnetization failures,
respectively. The magnetic field determined by theoretical calculation and simulation is
shown in Figure 12a; the red curve represents the space air gap magnetic field in a healthy
state, while the blue curve represents the fault state. The space magnetic field intensity
corresponding to the faulty magnet decreases significantly. Figure 12b shows how the
induced voltage in the two detection coils changes with the position of the rotor. Since the
detection coil is fixed on the stator teeth, when the faulty permanent magnet rotates through
the detection coil, the amplitude of the induced voltage in the detection coil decreases
significantly, as shown in Figure 12c for local amplification.
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Figure 11. The demagnetization curve of permanent magnetic material.
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Figure 12. Simulation results of demagnetization failure. (a) Results for the air-gap magnetic field
during 30% demagnetization. (b) Output voltage of two search coils under healthy condition and
30% demagnetization. (c) Local magnification of induced voltage of search coil. (d) The output of the
search coil in series under healthy condition and 30% demagnetization.
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Accordingly, regardless of the fault or health status, the shape of the output voltage
waveform of the two detection coils is the same, but there is a fixed phase difference, as
illustrated in Figure 12b,c. As can be seen, the two search coils are positioned 30 degrees
apart in space. Due to the existence of this phase difference, the output voltage of the two
search coils cannot be eliminated in the faulty state depicted in Figure 12d, making the
demagnetization fault detectable.

The output of two search coils connected in series under various degrees of demag-
netization failure is displayed in Figure 13a. Suppose the flux linkage in Equation (15) is
expressed as follows:

ψ = ϕ cos(ωt) (16)

where ϕ is the flux amplitude. From Equations (15) and (16):

u=
d
dt
[ϕ cos(ωt)] = −ωϕ sin(ωt)

= −ωϕ sin(θ)
(17)
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Figure 13. Simulation results of demagnetization failure. (a) The output result of the search coil in
series under different degrees of demagnetization failure. (b) Fd value under different fault degrees.

It follows that the output voltage and speed are inversely proportional. The permanent
magnet motor’s rotor position may be easily collected from the system because it is a crucial
parameter in the control process. Fault-related parameters regarding rotor position angle
are defined as follows:

Fd =
u
ω

= −ϕ sin(θ) (18)

The output voltage difference and Fd value under different fault degrees are shown in
Figure 13.

Figure 13 shows that when a single permanent magnet is demagnetized, the spatial
magnetic field is primarily distorted near the magnet. This allows the entire circle to be
divided into set angles, with each piece representing a pole. The area between each piece
and the x-axis is then determined, and this area is referred to as the periodic energy value
in this context. Figure 14 depicts the simulation result at a 10% degree of demagnetization.
The output signal is not zero, and the matching periodic energy value is not zero when the
fault magnet is rotated close to the search coil.

Figure 15 displays the simulation results for various fault degrees. The link between
the two is roughly linear, and as the fault degree grows, so does the related energy value.
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(b) Appling demagnetizing excitation

The traditional method for simulating demagnetization fault removes a part of the
permanent magnet, even if it is closer to the actual fault. This method has some other
drawbacks, such as difficulty in disassembling and the inability to set different fault degrees.
Therefore, a concentric coil is wound on the surface of the permanent magnet, and then a
magnetic field opposite to the direction of the permanent magnet is generated by passing a
current into the coil, as shown in Figure 16.
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Figure 16. Working principle of demagnetizing coil.

In order to avoid any excessive demagnetization current leading to irreversible de-
magnetization of the permanent magnet and considering the maximum carrying capacity
of the current source, 5 A, 10 A, and 15 A currents are passed into the demagnetization coil
in three scenarios.

The difference in periodic energy values between Figures 15 and 17 is roughly an
order of magnitude. It is assumed that the degree of demagnetization simulated by the
injection demagnetization current is very small. To further demonstrate this hypothesis,
the amplitude variation of the fundamental frequency component of the induced voltage
in the search coil is utilized as the reference for the simulation analysis to match the
injection current in the demagnetization coil to the degree of demagnetization of the
permanent magnet.
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3.2. Experimental Platform 

Figure 17. Simulation results under different injecting currents. (a) Periodic energy value under
different fault degrees. (b) Relationship between maximum energy value and injecting current.

The simulation results are shown in Figure 18. The first intersection point in the upper
left corner is taken as an example. When the amplitude of the induced voltage of the probe
coil is 11.568 V, it is found that the corresponding injection current of the demagnetization
coil is 15 A, and the demagnetization ratio of the permanent magnet is 3.35157%. The
primary cause is that the injected current value is not large enough, and the number of
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turns of the demagnetization coil is also relatively small due to the limited spatial position.
So, the degree of the simulated fault is relatively small. However, the two curves have the
same trend, which depicts the reliability of the simulation.
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Figure 18. Relationship between injection current and demagnetization ratio.

3.2. Experimental Platform

A laboratory-based experimental platform was constructed, as depicted in Figure 19,
to confirm the efficacy of the suggested strategy. A PMSM, a DC power supply used to
inject current into the demagnetizing coil (DM coil), an induction motor serving as the
load, and a six-phase inverter with a 2 kHz switching frequency make up the experimental
platform. The experimental data were collected using a recorder at a 500 kHz sampling rate.
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Figure 19. Experimental platform.

High-strength fibers are wound to secure the demagnetization coil, which is wound
on the permanent magnet’s surface. The carbon brush slip ring structure connects the
demagnetization coil, which is situated at the rotor, to the external power source.

3.3. Experimental Results

Induced voltage is the initial signal collected from the search coil; the time-domain
waveform and local amplification are displayed in Figure 20.
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The time-domain waveform of the induced voltage is highly complicated due to the
abundant magnetic field information because the search coil is positioned in the air gap of
the motor, and the fault information brought by demagnetization is then buried. On the
other hand, because of the presence of non-ideal elements, such as the search coil’s incorrect
placement and the permanent magnet’s innate dispersion, the signal in the search coil
cannot be eliminated, even when the motor is in good health. As a result, this study opts to
directly subtract the health status data from the fault data, and the resulting difference will
include the fault information. The motor operation process, however, cannot be operated
directly in the time domain because it is an unstable process; as a result, the signals must
undergo the following processing:

Following Equation (18), the original signal is divided by the angular velocity to
produce the characteristic quantity Fd that is speed independent. It is important to note
that the rotor position angle is a crucial component of the permanent magnet synchronous
motor’s operation control, so the speed normalization operation, in this case, can acquire
the speed information directly from the control system without the need for extra devices.

As can be observed from Equation (18), the value of Fd only has a relationship with the
flux amplitude and angle sine function; hence, for the same angle, the value will accurately
reflect the motor’s state of health. The relationship between the output value of the search
coil and the electrical angle under the healthy and fault states is derived by processing
the aforementioned two processes, as shown in Figure 21a. The blue curve represents
the fault characteristic value under the condition of health, which is always zero under
ideal circumstances—but it is not zero due to the existence of non-ideal factors such as the
installation error of the search coil—while the red curve represents the characteristic value
under the fault state. Compared with the blue curve, when the fault permanent magnet
rotates through the search coil, the characteristic value changes significantly. The difference
between the health and failure states is shown in Figure 21b. It goes without saying that
when a single permanent magnet fails and rotates close to the search coil, the characteristic
parameter Fd obviously increases.

The same processing approach as in Figure 14 is used here. The characteristic param-
eter Fd is integrated according to a predetermined electrical angle to yield the findings
displayed in Figure 22 that quantitatively reflect the fault degree.

According to the simulation results, the energy value at this location changes noticeably
as the fault magnet passes through the search coil, whereas the energy value at other
locations is very close to zero.

(a) Changing the demagnetizing current

As depicted in Figure 19, a DC power source is used to inject currents into the demag-
netizing coil that are varied in value while maintaining the speed and load, and the test
results are displayed in Figure 23.
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waveform where the red line is the faulty magnet rotating through the search coil.
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Consistent with the simulation results, the periodic energy value of the location of
the fault increases with the increase in the injected demagnetization current. A difference
can be seen even with the injection of 5 A demagnetization current, equivalent to a 1.1%
demagnetization ratio.

(b) Change in load

The aforementioned theoretical study is predicated on the stator’s total symmetry;
thus, there won’t be any impact on the detection of demagnetization faults because there
won’t be any different signals in the detection coil under various loads. Test verification
was carried out, and the results are shown in Figure 24:
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Figure 24. Test results under different loads when the rotating speed is 300 rpm, and the injection
demagnetization current is 15 A.

These findings demonstrate that the detection outcomes are essentially consistent
under various loads, demonstrating the proposed scheme’s load immunity.

(c) Change in speed

Figure 25 displays the test results at various running speeds with the same load and a
similar-sized demagnetizing current.
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The detection results under various speeds can be found to be essentially consistent,
demonstrating the robustness of the detection technique to the speed.

Experimental results under variable speed operation are shown in Figure 26.
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It can be seen from Figure 26a that torque changes are also included in the process of
the motor running from one steady-state speed to another. The experimental results for
dynamic operation are consistent with those for steady-state operation from Figure 26b,
showing that the method proposed in this paper is not affected by the operating condition
of the motor and still has a good detection effect under dynamic operation.

4. Discussion

Table 2 summarizes the main properties of existing techniques for the particular
case of PM demagnetization detection. Motor current signature analysis (MCSA) relies
on observing specific harmonics in the stator current spectrum for fault detection. It
should be noted that the rotor dynamic eccentricity will also produce the same frequency
component. Although the method of high-frequency signal injection (HFI) can distinguish
between demagnetization and eccentricity, the detection effect is highly dependent on the
motor parameters. Hall-effect sensors are typically used to measure leakage flux, but a
suitable installation location needs to be reserved for the design of the motor before it is
manufactured. SC-based methods overcome most of these limitations. It is important to
note that none of the existing studies on demagnetization fault diagnosis using SCs can be
applied to dynamic operation, which is the value of this paper.

Table 2. Comparative analysis of fault detection techniques.

MCSA
[12,14,24]

Hall-Effect
[39–41] HFI [15,34] SCs

[4,36,42,43]
Proposed
Method

Low cost X X X X X

Non-invasive X x X x x

Dynamic property X X x x X

Independent of
parameters X X x X X

Low
computational

burden
x X x X X
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Compared with MCSA and HFI, the invasiveness of the proposed method is its
inherent defect. However, once it is installed in the motor, additional maintenance does not
need to be carried out, and only two search coils are required to achieve demagnetization
fault detection, which is great progress compared to the existing search coil scheme. It is
important that the proposed scheme solves the problem of demagnetization fault detection
under the dynamic operation of the motor without a complicated calculation method,
which greatly improves the rapid response ability of demagnetization fault detection. On
the other hand, the experimental results verify that the proposed scheme can achieve 1.1%
demagnetization fault detection, which represents a very high detection sensitivity.

5. Conclusions

This paper focuses on the local demagnetization fault of PMSMs and presents a period
energy-based method for diagnosing demagnetization faults in permanent magnet motors
without taking into account the operating conditions of the motor by transforming the flux
information in the time domain into the angle domain and normalizing speed. At the same
time, to eliminate the influence of the installation error of the search coil and the dispersion
of the permanent magnet itself on the detection results, the paper takes a set of magnetic
flux data without demagnetization as the reference and subtracts the measured magnetic
flux data with the reference data mentioned above to obtain the characteristic data reflecting
the fault information. The experimental results show that the demagnetization ratio of 1.1%
can be achieved. For motor fault monitoring in unsteady state operations, such as electric
automobiles, this technique has significant ramifications. For the local demagnetization
fault, the signal distortion in the search coil will only be caused when the faulty permanent
magnet rotates near the search coil. Therefore, the whole circle is segmented according to
the angle corresponding to the permanent magnet sweeping through the search coil, and
the periodic energy value is defined as the fault indicator. When the motor is functioning
normally, this indicator value is close to zero; nevertheless, if a failure occurs, it will be
much more than zero. It is essential that this fault detection indication simply relates to
the severity of the defect and is unrelated to the motor’s running condition. However,
more research is required to fully understand the mapping between the degree of fault
and eigenvalues. Simultaneous demagnetization of multiple permanent magnets and
the demagnetization fault detection of the motor at a standstill are critical problems to
be overcome.
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Appendix A

The detailed dimensions and materials of the motor are shown in Table A1.
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Table A1. The main dimensions and materials of the six-phase surface PMSM.

Parameter Value Parameter Value

Length of the unilateral air gap 2 mm Slot width 4.2 mm

Stator outer diameter 290 mm Thickness of permanent magnet 9 mm

Inner diameter of the stator 180 mm Overlaying coefficient 0.97

Rotor outer diameter 176 mm Number of stator slots 72

Inside diameter of the rotor 80 mm Number of conductors per slot 72

Stator core length 88 mm Number of parallel branches 1

Yoke thickness 22 mm Pitch 6

Stator core material 50WW310 Winding coefficient 1

Rotor core material 16 Mn Permanent magnet material SmCo30

Appendix B

Based on a six-phase surface-mount permanent magnet synchronous motor system,
the demagnetization fault is studied in this paper. The inverter is shown in Figure A1. The
Insulated Gate Bipolar Transistor (IGBT) module is PM75RLA120 from Mitsubishi, the
field programmable gate array (FPGA) chip is XC4VLX25-11FFG668I from XILINX, the
digital signal processing (DSP) chip is TMS320F28335 from Texas Instruments, the current
sensor is 55-P/SP50 from LEM Company LA, and the decoding chip is ADS1203 from Texas
Instruments company.
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The equivalent surface current of the AD side is: 
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Figure A1. Six-phase H-bridge inverter.

Appendix C

The current micro-element along the AB and CD sides is:

di1 = Hc cos θ1dr (A1)

The infinitesimal equivalent surface current on the BC side is:

di2 = Hc sin θ′R2dθ′ (A2)

θ and θ′ are the central angles corresponding to any point on the inner and outer
surfaces of the permanent magnet, respectively. From the geometric relationship in Figure 2,
it can be deduced:

θ′ = arcsin
(

H
R2

sin θ

)
+ θ (A3)
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R(θ) =
R2

sin θ
sin θ′ (A4)

dθ′ =

1 +
H cos θ√

R2
2 − H2 sin2 θ

dθ (A5)

The equivalent surface current of the AD side is:

di3 = Hc sin θR1dθ (A6)
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The magnetic induction intensity generated by the AB-CD surface current at point P
is:
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Similarly, the magnetic induction intensity generated by the AD surface current at
point P is:

Br3 =
µ0HcR1Rm

s
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Only its differential expression is provided here because there is no explicit expression
for the magnetic induction strength generated by the BC planar current at point P:
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