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Abstract: Zero-shot semantic segmentation (ZS3), the process of classifying unseen classes without
explicit training samples, poses a significant challenge. Despite notable progress made by pre-trained
vision-language models, they have a problem of “supervision leakage” in the unseen classes due to
their large-scale pre-trained data. For example, CLIP is trained on 400M image–text pairs that contain
large label space categories. So, it is not convincing for real “zero-shot” learning in machine learning.
This paper introduces SwinZS3, an innovative framework that explores the “no-supervision-leakage”
zero-shot semantic segmentation with an image encoder that is not pre-trained on the seen classes.
SwinZS3 integrates the strengths of both visual and semantic embeddings within a unified joint
embedding space. This approach unifies a transformer-based image encoder with a language encoder.
A distinguishing feature of SwinZS3 is the implementation of four specialized loss functions in the
training progress: cross-entropy loss, semantic-consistency loss, regression loss, and pixel-text score
loss. These functions guide the optimization process based on dense semantic prototypes derived
from the language encoder, making the encoder adept at recognizing unseen classes during inference
without retraining. We evaluated SwinZS3 with standard ZS3 benchmarks, including PASCAL VOC
and PASCAL Context. The outcomes affirm the effectiveness of our method, marking a new milestone
in “no-supervison-leakage” ZS3 task performance.

Keywords: zero-shot learning; semantic segmentation; transformer; supervision leakage

1. Introduction

Semantic segmentation is at the foundation of several high-level computer vision
applications such as autonomous driving, medical imaging, and other areas involving
identification and classification of objects within an image. Deep supervised learning has
been instrumental in driving advancements in semantic segmentation [1–4]. However,
fully supervised methods often require extensive labeled image databases with pixel-level
annotations. They are typically designed to handle a pre-defined set of classes, restricting
their application in diverse, real-world scenarios.

Some weakly supervised semantic segmentation (WSSS) approaches have been pro-
posed for the above situation. These methods capitalize on easily accessible annotations
like scribbles [5], bounding boxes [6], and image-level labels [7] and generate pseudo-
ground-truths through visualization techniques [8,9]. However, this approach still relies
on a certain degree of labeled data and needs to retrain the entire model if there are some
new classes.
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Humans possess an intuitive ability to recognize and classify new classes based solely
on descriptive details, a powerful skill that current machine learning systems have yet
to emulate fully. This observation has catalyzed the exploration of zero-shot semantic
segmentation (ZS3) [10–13].

ZS3 aims to exploit the semantic relationships between image pixels and their corre-
sponding text descriptions, predicting unseen classes through language-guided semantic
information of the respective classes rather than the dense annotations. ZS3 techniques
are broadly divided into generative and discriminative methods [14]. Generative ZS3
methods [15,16] usually train a semantic generator network which maps unseen class lan-
guage embeddings into the visual feature space and fine-tunes the pre-trained classifier on
these generated features. While these generative methods have demonstrated impressive
performance, their effectiveness could be improved by a multi-stage training strategy. Dis-
criminative methods directly learn the join embedding spaces for visual and language, like
SPNet [17] and map the visual feature to the fixed semantic representations, bridging the
gap between visual information and its corresponding semantic understanding. Similarly,
JoEm [14] was proposed to optimize both the visual and semantic features within a joint
embedding space.

However, both techniques employ local convolutional neural network (CNN) meth-
ods, which somewhat limit the global visual information utilized. They also implement an
inconsistency loss for visual-language regression loss, as well as the cross-entropy segmen-
tation ground-truth loss. These factors can potentially reduce the robustness of the models.
To address this limitation, we propose an innovative strategy for ZS3. This approach elimi-
nates the need for multi-stage training, thus directly tackling the inconsistency loss problem.
We achieve this by minimizing Euclidean distances and implementing pixel-text score maps
between the semantic prototypes generated by the language encoder and the visual features
of the corresponding classes. This strategy obviates retraining during testing, enhancing
the model’s overall efficiency and flexibility. The network backbone of zero-shot networks
offers another fruitful area of exploration for mitigating the bias problem. Traditional ZS3
models, as depicted in Figure 1, often suffer from a limited receptive field of CNNs and a
lack of comprehensive attention mechanisms to extract global relations of visual features
conditioned with language semantic information. So, we used the Swin Transformer [18]
to extract the visual features on joint embedding which could offer a promising solution
due to their ability to capture global feature relations and semantic information in visual
features via the Multi-Head Self-Attention (MHSA) mechanism.

Ground Truth Deeplabv3+ SwinZS3 SwinZS3+aux

Figure 1. The impact of a transformer’s global reasoning capability and the score map’s decision
boundary in the context of zero-shot semantic segmentation. We consider “motorbike” (represented
in blue) as the unseen class. Existing solutions, such as Deeplabv3+, often produce imprecise
segmentation results due to a limited receptive field and insufficient attention capabilities, resulting
in a loss of fine-grained details. Implementing a transformer extractor considerably enhances the
prediction accuracy of unseen classes. However, the bias towards seen classes remains, where unseen
class pixels are misclassified as seen classes. To address this, our proposed SwinZS3 introduces a
language-guided score map to mitigate such biases.
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In this research, we combine convolutional layers with transformer blocks, enabling
effective modeling of global information guided by pixel-text distances and score maps.
We further refine the decision boundary by adapting the nearest neighbor (NN) classifier
and introducing a score map-based weighted Euclidean distance to augment the precision
of our model. Our method is validated using standard benchmarks for zero-shot semantic
segmentation and shows remarkable success, surpassing the state-of-the-art performance
on both PASCAL-VOC [19] and PASCAL-Context [20]. For avoiding the supervision
leakage problem, we deleted all the corresponding unseen classes from PASCAL-Context
and PASCAL-VOC on the pre-trained dataset ImageNet.

2. Related Work

Semantic Segmentation: Semantic segmentation has made significant progress with the
advent of deep learning technologies. Chen et al. [1], Long et al. [2], Ronneberger et al. [3], and
Zhao et al. [4] have leveraged deep learning architectures to enhance the performance of
semantic segmentation, making it more accurate and efficient. and fully supervised se-
mantic segmentation, operate under the assumption of pixel-level annotations throughout
all training data. The DeepLab model has notably augmented segmentation performance
on renowned datasets like PASCAL VOC2012 [19] and MS-COCO [21], employing sophis-
ticated techniques such as multiple scales [13,22] and dilated convolution [23,24]. Other
algorithms, such as UNet [3] and SegNet [25], have also demonstrated commendable
performance using a diverse set of strategies.

Furthermore, the transformative potential of the vision transformer (ViT) [26], as the
pioneer in deploying transformer architecture for recognition tasks, cannot be overstated.
Concurrently, the Swin Transformer took a leap forward, extrapolating the transformer’s
capabilities for dense prediction tasks and achieving top-tier performance in the process.
However, it must be acknowledged that these cutting-edge methods are heavily reliant on
costly pixel-level segmentation labels and presuppose the presence of training data for all
categories beforehand.

In the quest to circumvent these obstacles, weakly supervised semantic segmentation
(WSSS) methods have emerged, leveraging more readily accessible annotations such as
bounding boxes [6], scribbles [5], and image-level labels [7]. A cornerstone in prevailing
WSSS pipelines is the generation of pseudo-labels, chiefly facilitated by network visual-
ization techniques such as class activation maps (CAMs). Some works employ expanding
strategies to stretch the CAM ground-truth regions to encapsulate entire objects. Still,
obtaining pseudo-labels that accurately delineate entire object regions with fine-grained
boundaries continues to pose a significant challenge [27,28].

Zero-shot semantic segmentation: Zero-shot semantic segmentation (ZS3) models
are primarily categorized into two main types: discriminative and generative. Discerning
the nuances within these two categories provides a comprehensive understanding of the
current strategies utilized in the field.

Discriminative methods encompass several noteworthy studies. For instance,
Zhao et al. [10] pioneered a groundbreaking study that proposed a novel strategy for
predicting unseen classes using a hierarchical approach. This strategy represents an effort
to build upon the data’s inherent structure, using hierarchies to draw insights into unseen
classes. Another study, SPNet [17], adopted a different approach by leveraging a semantic
embedding space. Here, visual features are mapped onto fixed semantic representations,
bridging the gap between visual information and its corresponding semantic understand-
ing. Similarly, JoEm [14] was proposed as a method that aligns visual and semantic features
within a shared embedding space, thereby fostering a direct correlation between these
two aspects.

On the other hand, some studies explore the generative landscape of ZS3. ZS3Net [11],
for example, employed a Generative Moment Matching Network (GMMN) to synthesize
visual features. However, this model’s intricate three-stage training pipeline can potentially
introduce bias into the system. To mitigate this issue, CSRL [13] employed a unique strategy
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that leverages relations of both seen and unseen classes to preserve these features during
synthesis. Likewise, CaGNet [12] introduced a channel-wise attention mechanism in dilated
convolutional layers, facilitating the extraction of visual features.

Recently, some works have explored the large-scale pre-trained model in zero-shot
semantic segmentation [29–31]. Furthermore, the pre-trained data usually contain both seen
and unseen labels (e.g., CLIP, WebImageText 400M) and have a supervision leakage problem.
Supervision leakage is a crucial concern in machine learning, referring to the unintended
incorporation of information about unseen classes during the training phase. Given that
CLIP models are trained on a massive scale of approximately 400 million image–text pairs,
it is conceivable that the text labels could encapsulate a diverse range of seen and unseen
classes. Consequently, these models might unintentionally learn unseen classes during
training, thus creating a form of supervision leakage. This situation could compromise
the integrity of the zero-shot learning task, as the models are no longer genuinely learning
from a “zero-shot” perspective.

In response to this significant challenge, our research introduces a distinct solution
that effectively navigates the complexities of zero-shot learning while eliminating the risk
of supervision leakage. By doing so, we enhance semantic segmentation models’ reliability
and adaptability. Our approach offers a robust framework to accurately process and
categorize visual data in a genuinely zero-shot learning context. We envisage this method,
free of supervision leakage, becoming a cornerstone for future research and advancements
in semantic segmentation. Our work paves the way for more authentic and reliable
zero-shot learning models, fostering a more resilient future for semantic segmentation in
computer vision.

Visual-language learning: The domain of image–language pair learning has undergone
a significant transformation marked by exponential growth. Several contributions have
shaped the field, such as CLIP [32] and ALIGN [33]. Both models, pre-trained on hundreds
of millions of image–language pairs, have marked substantial advancements in the field,
pushing the boundaries of what is possible in image–language learning. Considering this,
Yang et al. [34] put forth a unified contrastive learning method, successfully integrating both
image–language techniques and image-label data. This method stands as an emblem of how
these techniques can be effectively harnessed to push the frontier of the field further. Within
the scope of ZS3, our study aims to build upon this method, adopting its fundamental
principles and incorporating them at the pixel-level, ensuring enhanced segmentation and
improved generalization capabilities. In the ever-evolving domain of zero-shot learning,
CLIP-based methods [29,32,35–37] have been recognized for their substantial contributions
and potential to provide effective solutions. These models capitalize on the strength of
large-scale image–text pair datasets to deliver remarkable performance. However, a critical
challenge that potentially undermines the legitimacy of their zero-shot learning capabilities
is the risk of supervision leakage.

3. Method
3.1. Motivations

In the pursuit of improved semantic segmentation, this study seeks to enhance the
performance of discriminative zero-shot semantic segmentation (ZS3) models, which fun-
damentally depend on the combined optimization of visual and language encoders to
generate prototypes for unseen classes. This necessitates the network having a compre-
hensive understanding of the language context’s structure. Existing networks such as
JoEm [14] employ traditional convolutional layers to extract language information. How-
ever, these layers often fall short due to convolution operations’ inherent locality and weak
attention capabilities, failing to model the long-range and precise visual-language joint
features effectively.

In response to this limitation, our study proposes using transformer-based blocks for
better feature extraction. Furthermore, the study addresses another prevalent issue in ZS3:
the seen bias problem. The visual encoder needs labeled data for unseen classes to extract
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distinguishable features. Modulating the decision boundary could help alleviate this bias.
traditional nearest neighbor (NN) classifiers’ shortcomings are examined in this work,
leading to the introduction of a novel decision boundary to enhance performance. With
these motivations in mind, we designed our SwinZS3 framework, detailed in Figure 2.

Language 
Encoder

Visual 
Extractor

Visual Feature Embeddings
…

Semantic Prototypes

classifier

…

Pixel-text Score Maps 

Regression Loss

CE Loss

CE Loss

SC Loss

cat, dog, pig, 
fish, car…

word2vec

Image

Figure 2. The overall framework of our approach SwinZS3. SSwinZS3 operates through a multi-stage
process. Initially, it utilizes a transformer-based feature extractor to derive image visual embeddings
and a language encoder to generate K-class semantic prototypes. These prototypes then undergo a
regression loss with the visual features, and their inter-relationships are transferred from the language
embeddings (word2vec) via semantic-consistency loss. Subsequently, SwinZS3 computes pixel-text
score maps in a hyper-sphere space for the projected visual features and semantic prototypes. These
score maps are then supervised by ground-truth labels. Simultaneously, the visual features are input
into a classifier that is supervised by ground-truth labels, thereby introducing a cross-entropy loss.

3.2. Overview

In the SwinZS3 framework, we classify the dataset into seen classes (S) and unseen
classes (U). During the training phase, our model, consisting of a visual feature extractor
and a semantic prototype encoder, is exclusively trained on the set of seen classes (S).
The primary objective of zero-shot semantic segmentation is to empower the model to
identify both seen and unseen classes during testing.

Our strategy employs a visual extractor to derive visual features and a language
encoder to obtain corresponding class semantic prototypes using language embeddings
(specifically, word2vec). The visual features are input into a classifier then supervised
by the ground-truth labels. The semantic prototypes undergo a regression loss with the
visual features, and their interrelationships, established from language embeddings such
as word2vec, are adjusted via semantic-consistency loss.

Following this, SwinZS3 calculates pixel-text score maps in a hyper-sphere space
for the projected visual features and semantic prototypes. The ground-truth labels then
supervise these score maps. Finally, the visual features are input into a classifier and
supervised by ground-truth labels. The specifics of our framework are discussed in the
subsequent sections.

3.3. Transformer Backbone

At the core of the SwinZS3 framework, we incorporate a transformer architecture [18],
serving as a robust backbone for our model. As an initial step, the transformer takes an
input image and partitions it into non-overlapping patches, each having dimensions h× w.
These individual patches are converted into tokens of equivalent dimensions, creating a
grid-like representation of the original image.

This process is followed by introducing the Multi-Head Self-Attention (MHSA) layer into
the transformer block. The MHSA layer captures global feature information from the trans-
formed image tokens. The patch tokens are then projected into the query space Q ∈ Rhw×dk ,
the critical space K ∈ Rhw×dk , and the value space V ∈ Rhw×dv , where h and w symbolize the
dimensions of the feature map, and dk and dv represent the feature dimensionality.
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The MHSA layer then calculates the outputs, X, according to the following equation:

X = so f tmax(
QKT
√

d
)V (1)

Being the core operation of the transformer block, the MHSA layer fundamentally
shapes the final output. Multiple such transformer blocks are stacked to generate the
ultimate output of the transformer backbone.

3.4. Network Training

The SwinZS3 framework integrates four loss terms in its training process: cross-
entropy loss Lce [38], pixel-wise regression loss Lr, pixel-text score map loss Laux, and
semantic-consistency loss Lsc. The aggregate loss is formulated as follows:

L = Lce + Lr + λ1Lsc + λ2Laux (2)

Here, λ1 and λ2 are employed to balance the contributions of the other losses.
Cross-entropy loss: Given the final output of feature maps υ ∈ Rh×w×c, where h, w,

and c denote the height, width, and the number of channels, respectively, υ is input into a
classifier head fc. In zero-shot settings, the classifier can learn seen classes. As such, we
used cross-entropy loss [39], a popular choice in supervised semantic segmentation, on the
seen classes set S as follows:

Lce = −
1

∑c∈S | Nc | ∑
c∈S

∑
p∈Nc

log(
ewcυ(p)

∑j∈S ewj(υ(p))
) (3)

where Nc denotes the label as class c in the ground truth.
Regression loss: While lce can guide the model to generate a discriminative embedding

space for seen classes S, it is not adaptable for classifying unseen classes U since the
classifier head needs to learn the prototypes of unseen classes. During inference, we intend
to utilize the language prototypes of both seen and unseen classes as classifiers to identify
the dense visual features extracted by the transformer backbone. This requires minimizing
the distances between visual features and semantic prototypes. To this end, we introduced
a regression loss, lr.

Firstly, we obtain the final output visual feature maps υ ∈ Rh×w×c. Next, we derive
the semantic feature maps s ∈ Rh×w×d, where each pixel sc of s corresponds to a language
or word embedding of the same class as the corresponding visual feature pixel. Given these
language embedding maps, we input them into a semantic encoder fs as follows:

µ = fs(s) (4)

Here, µ ∈ Rh×w×c, each pixel µc represents a semantic prototype for class c. The re-
gression loss is then:

Lr =
1

∑c∈S | Rc | ∑
c∈S

∑
s∈Rc

d(υ(s), µ(s)) (5)

d() is the Euclidean distance metric, and Rc denotes the regions labeled with the same
class in the ground truth. The lr ensures that

The dense visual features and semantic prototypes are projected into a joint embedding
space, where pixels of corresponding classes are closely aligned. However, like lce, lr has a
similar limitation in ZS3: it deals with pixel-wise visual features and semantic prototypes
independently but does not explicitly consider other pixels’ relationships. To address this
issue, we propose using a contrastive loss.

Pixel-text score map: An integral component of our framework is the use of a pixel-text
score map. This innovative inclusion helps alleviate the “seen bias” problem, a significant
issue in ZS3, and reduce the discrepancy between the regression loss from semantic proto-
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types and the cross-entropy loss from the ground truth. As depicted in Figure 1, the score
map loss significantly enhances the smoothness of the results while concurrently reducing
the noise in the semantic map. The score map functions to foster a more discriminative
joint embedding space. Precisely, it is calculated using the language prototypes, denoted
as µc ∈ Rk×c, and the final output of the feature maps, represented as υ ∈ Rh×w×c. This
calculation can be represented as follows:

s = υ̂µ̂T
c , s ∈ Rh×w×k (6)

In this formulation, µ̂c and υ̂ represent the l2 normalized versions of υ and µc, respec-
tively, performed along the channel dimension. Notably, the computation of the score map
must strictly involve the seen class prototypes for µc. This restriction is essential to avoid
exacerbating the unseen bias problem.

The generated score maps depict the alignment or matching outcomes between each
visual feature pixel and its corresponding language-guided semantic prototype. They serve
as a critical piece of the puzzle in our SwinZS3 framework. By leveraging the score maps,
we calculate an auxiliary segmentation loss:

laux = CrossEntropy(So f tmax(s/τ), y) (7)

In this equation, τ denotes a temperature coefficient, which we preset to 0.07, and y
signifies the ground-truth label. The computation of this auxiliary segmentation loss serves
a crucial purpose. It works to enhance the discriminative capacity of the joint embedding
space, a characteristic that is fundamentally beneficial for zero-shot semantic segmentation.
By introducing the auxiliary loss, we guide the embedding space to become more adept
at differentiating between different classes. This enhancement makes the model better
equipped to deal with both seen and unseen classes, thus enabling more effective and
efficient semantic segmentation.

Semantic-consistency loss: In our model, we introduce the semantic-consistency loss
(lsc), designed to bridge the gap between the word2vec space and the embedding space
of the semantic prototypes. This mechanism is essential as it capitalizes on the power of
pre-trained word-embedding features, preserving vital class-contextual information within
the system. Such information becomes crucial when attempting to maintain the relational
significance of class prototypes.

The mathematical expression that defines the relationship between the prototypes is
expressed as follows:

rµij =
e−τµd(µi ,µj)

∑j∈S e−τµd(µi ,µj)
(8)

Here, the function d() represents the metric for the distance between two prototypes,
and τµ acts as a temperature parameter. Similarly, we define the relationship within the
word-embedding space as:

rij =
e−τsd(si ,sj)

∑j∈S e−τsd(si ,sj)
(9)

The following equation then calculates the semantic-consistency loss:

Lsc = −∑
i∈S

∑
j∈S

rijlog
rµij
rij

(10)

By integrating lsc, we distill contextual information from the word-embedding space
and infuse it into the prototypes. This process makes them more representative, insightful,
and attuned to the nuanced relationships inherent in the original data. In turn, this fosters
improved segmentation performance when dealing with unseen classes.
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3.5. Network Inference

In the network inference stage, we utilize semantic prototypes derived from the
semantic encoder as a nearest neighbor (NN) classifier drawing from the research by [40].
We calculate the Euclidean distances and score maps between individual visual features
and the language prototypes. Each visual feature is then classified according to the nearest
language prototype as follows:

ŷ(p) = argmin
c∈S∪U

d(υ(p), µc)(1− so f tmax(s)) (11)

Here, d denotes the Euclidean distance metric, and s represents the score map. To
reduce the inherent bias toward seen classes (S) in the context of unseen classes (U), we
employ the strategy presented by [14] that proposed the use of the Apollonius circle.
The top2 nearest language prototypes are defined as d1 and d2 for individual visual features.
Here, d1 represents the combined Euclidean and score distance to the language prototype
µ1, while d2 stands for the distance to the language prototype µ2. The classes of µ1 and µ2
are denoted by c1 and c2, respectively.

The decision rule is formalized with the use of the Apollonius circle as follows:

ŷ(p) =

{
c(p) c1 ∈ S and c2 ∈ U

c1 otherwise
(12)

The classification is expressed as:

c(p) = c1Π[
d1

d2
≤ γ] + c2Π[

d1

d2
> γ] (13)

The symbol Π represents a function that outputs a value of 1 if the argument is true
and 0 otherwise. The variable γ is an adjustable parameter that can be modulated to reshape
the decision boundary. This adaptability mitigates the classification bias, enhancing the
semantic segmentation process’s overall efficiency and precision.

4. Experiments
4.1. Implementation Details

Training: As our base model, we employ the Swin Transformer (specifically the swin-
tiny variant) introduced by [27] as a proven foundation for transformer-based zero-shot
semantic segmentation (ZS3) tasks. To effectively avert supervision leakage from unseen
classes, an issue highlighted in the work of [41], we initialize the backbone parameters using
the self-supervised model MoBY [42], which was pre-trained on the ImageNet dataset.

The optimization process is managed through an AdamW optimizer, which trains our
SwinZS3 model. The initial learning rate for the backbone is set to 1× 10−4, with a polyno-
mial scheduler being utilized to decay the rate at each iteration incrementally. We set the
learning rate for the remaining parameters to be ten times that of the backbone parameters,
thus ensuring a balance between learning efficiency and model stability. The weight decay
factor is set to 0.01.

Data augmentation is a critical step in our training process; we adhere to the setting
outlined in Baek et al. (2021) [14]. As for other key parameters, specifically (λ, γ), we set
λ1, λ2 at 0.1 and γ at 0.6.

Dataset split: The experimentation was carried out on PASCAL VOC and PASCAL
Context. The PASCAL-VOC2012 dataset comprises 1464 training images and 1449 valida-
tion images, spanning 21 categories (20 object categories plus one background). Conversely,
the PASCAL Context dataset incorporates 4998 training and 5105 validation samples across
60 classes, including 59 distinct categories and a single background class.

In alignment with established practices, we adopted the expanded training set (10,582 sam-
ples) for PASCAL VOC. We split the Pascal-VOC2012 training samples into N-seen and
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20-N unseen classes for the zero-shot semantic segmentation network. To illustrate, if we
took “cow” and “motorbike” as unseen categories, removed any samples with these labels,
and trained the segmentation network using the remaining samples.

During training, the segmentation model should ideally maintain a mean intersection
over union (mIOU) of zero for unseen classes. This experimental design follows the parame-
ters provided by ZS3Net, dividing the Pascal-VOC 2012 training samples into four different
splits with an increasing number of unseen classes in each: 18-2, 16-4, 14-6, and 12-8 classes,
respectively. The model is then evaluated on the full set of 1449 validation images.

The supervision leakage’s methods, like Zegformer [29], zsseg [30], and ZegCLIP [31],
are all based on the CLIP model, which is trained on WebImageText 400M. WebImageText
400M is collected from the website and contains a large-scale label space. Our method was
pre-trained on the ImageNet datasets [43], from which we deleted all the PASCAL context
and VOC consenting datasets.

Evaluation metrics: Our evaluation employs the mean intersection over union (mIoU)
metric, in line with the methodology outlined by [2]. In particular, we computed the metrics
separately for seen and unseen classes, represented as mIoUs and mIoUu. Recognizing that
the arithmetic mean can be heavily skewed by mIoUs, we also calculated the harmonic
mean (hIoU) of mIoUs and mIoUu to give a more balanced evaluation of the model’s
performance.

4.2. Ablation Study and Results

Ablation study: We aim to assess the impacts and effectiveness of our methodology
through an ablation study, focusing on two particular aspects. These aspects include: (a) a
comparison of convolutional neural networks (CNNs) and transformers, analyzing their
relative impact on the task at hand and (b) the efficacy of utilizing the score map (laux) as a
tool to adjust the decision boundary. We understand and acknowledge the critical role of
cross-entropy loss and regression loss in recognizing unseen classes. Thus, we establish a
baseline with Deeplabv3+, combined with lce, lr, and lsc.

In the first row of Table 1, we present the base intersection over union (IoU) scores
achieved when the score map laux is not incorporated into the methodology. Following this,
we compare the performance of the Swin Transformer (specifically the Swin-tiny variant)
and the established Deeplabv3+ baseline. Our findings show that the transformer backbone
provides a harmonic mean intersection over union (hIoU) gain of 1.0 when contrasted with
the baseline.

Table 1. Ablation study on the unseen 6 split of PASCAL Context by comparing mIoU scores using
different loss terms. lce: cross-entropy loss; lr: regression loss; lsc: semantic-consistency loss; laux:
pixel-text score map loss. Best numbers among the restricted sota are in bold.

Method lce lr lsc laux mIoUs mIoUu hIoU

Deeplabv3+ X X X 33.4 8.4 13.4
Deeplabv3+ X X X 36.2 23.2 28.3
Deeplabv3+ X X X X 37.7 25.0 30.2

SwinZS3 X X X 25.8 12.0 16.4
SwinZS3 X X X 37.1 24.3 29.3
SwinZS3 X X X X 39.3 26.2 31.4

The benefit of introducing laux into the equation is displayed in the second and third
rows of the table, as we report notable mIoUu gains of 3.0 and 3.1, respectively, over the
baseline. Compared to the SwinZS3 baseline, these figures represent gains of 1.9 and 2.1,
respectively. These observations underscore the significant improvements that can be
realized in the zero-shot semantic segmentation (ZS3) domain, showcasing the effectiveness
of our adopted methodologies.

When the transformer approach is combined with score maps, we observe the best
mIoU scores, solidifying the impact of this combination in performance enhancement.
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The quantitative results of our research, as illustrated in Table 2, provide compelling
evidence of the superior performance of our method compared to other leading approaches.
These results were obtained through rigorous evaluation of well-established datasets such
as PASCAL VOC and PASCAL Context. The highest performing scores across diverse
split settings were reported for consistency, while the remainder of the mIoU figures were
referenced from [14].

Table 2. Quantitative results on the PASCAL VOC sets. The numbers in bold are the best performance.
Datasets: the pre-training data for backbone; K: number of unseen classes. We highlight the improved
mIoU compared to sota methods using the color green.

VOC
Datasets K Method

mIoUs mIoUu hIoU

Supervision leakage

WebImageText 400M 5

Zegformer 86.4 63.6 73.3
zsseg 83.5 72.5 77.5

ZegCLIP 91.9 77.8 84.3

No supervision leakage

ImageNet wo VOC 2

DeViSE 68.1 3.2 6.1
SPNet 71.8 34.7 46.8

ZS3Net 72.0 35.4 47.5
CSRL 73.4 45.7 56.3
JoEm 68.9 43.2 53.1
Ours 69.2 45.8 (+2.6) 55.3

ImageNet wo VOC 4

DeViSE 64.3 2.9 5.5
SPNet 67.3 21.8 32.9

ZS3Net 66.4 23.2 34.4
CSRL 69.8 31.7 43.6
JoEm 67.0 33.4 44.6
Ours 68.9 34.4 (+1.0) 45.7 (+1.1)

ImageNet wo VOC 6

DeViSE 39.8 2.7 5.1
SPNet 64.5 20.1 30.6

ZS3Net 47.3 24.2 32.0
CSRL 66.2 29.4 40.7
JoEm 63.2 30.5 41.1
Ours 62.6 31.6 (+1.1) 42.0 (+0.9)

ImageNet wo VOC 8

DeViSE 35.7 2.0 3.8 2
SPNet 61.2 19.9 30.0

ZS3Net 29.2 22.9 25.7
CSRL 62.4 26.9 37.6
JoEm 58.5 29.0 38.8
Ours 60.2 29.6 (+0.6) 39.9 (+1.1)

When evaluated on the PASCAL Context dataset, as shown in the Table 3, our approach
demonstrates a clear competitive edge, outstripping the second-best method, JoEm. An
example is the 6 split setting, where our approach delivers a significant mIoUu improvement
of 3.0 and a hIoU enhancement of 3.1. This exceptional performance not only underscores
the compelling capability of our method but also signals a considerable leap forward in the
field of zero-shot semantic segmentation (ZS3).

The merits of our approach become even more pronounced when compared with the
best generative ZS3 method, GSRL [13]. In this context, our discriminative method out-
shines GSRL by margins of 4.4 and 4.2 in mIoUu and hIoU, respectively. This comparative
superiority underscores our method’s efficacy, highlighting the inherent convenience of a
discriminative approach. Moreover, our methodology provides a key advantage over ap-
proaches like CSRL, necessitating retraining whenever new unseen classes are introduced.
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Contrarily, our framework offers a one-stage training strategy, improving computational
efficiency and practical usability.

Our method consistently displays state-of-the-art performance across nearly all zero-
shot settings, including unseen 2, 4, 6, and 8 splits. This consistency, notable for both
mIoUu and hIoU metrics, indicates our approach’s robust capacity to learn discriminative
representations, enhancing its generalization capability. Further validation of these results
can be observed from the experiments conducted on the PASCAL VOC dataset. Our method
demonstrates its competitive edge here, reinforcing our claim that this novel approach
constitutes significantly to the advancement of semantic segmentation in computer vision.

Table 3. Quantitative results on the PASCAL Context validation sets. The numbers in bold are the
best performance. Datasets: the pre-training data for backbone; K: number of unseen classes. We
highlight the improved mIoU compared to sota methods using the color green.

Context
Datasets K

Method mIoUs mIoUu hIoU

Supervision leakage

WebImageText 400M 5

Zegformer - - -
zsseg - - -

ZegCLIP 46.0 54.6 49.9

No supervision leakage

ImageNet context 2

DeViSE 35.8 2.7 5.0
SPNet 38.2 16.7 23.2

ZS3Net 41.6 21.6 28.4
CSRL 41.9 27.8 33.4
JoEm 38.2 32.9 35.3
Ours 39.8 33.5 (+0.6) 36.3 (+1.0)

ImageNet context 4

DeViSE 33.4 2.5 4.7
SPNet 36.3 18.1 24.2

ZS3Net 37.2 24.9 29.8
CSRL 39.8 23.9 29.9
JoEm 36.9 30.7 33.5
Ours 38.7 33.5 (+2.8) 35.1 (+1.6)

ImageNet context 6

DeViSE 31.9 2.1 3.9
SPNet 31.9 19.9 24.5

ZS3Net 32.1 20.7 25.2
CSRL 35.5 22.0 27.2
JoEm 36.2 23.2 28.3
Ours 39.3 (+3.1) 26.2 (+3.0) 31.4 (+3.1)

ImageNet context 8

DeViSE 22.0 1.7 3.2
SPNet 28.6 14.3 19.1

ZS3Net 20.9 16.0 18.1
CSRL 31.7 18.1 23.0
JoEm 32.4 20.2 24.9
Ours 35.0 (+2.6) 21.4 (+1.2) 26.6 (+1.7)

4.3. Qualitative Results

To further evaluate the efficacy of our proposed methodology, we present several
qualitative examples derived from the PASCAL VOC dataset, as shown in Figure 3. Here,
we highlight the comparative superiority of the SwinZS3 model in accurately modeling
unseen classes when juxtaposed with its competitor models. A key observation is that the
SwinZS3 model can significantly reduce the incidence of false positive predictions. This
demonstrates the model’s strength in minimizing errors while discerning and categorizing
unseen classes, enhancing its overall precision. By reducing false positives, the SwinZS3
model can optimize the segmentation output, leading to more accurate and reliable results.
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However, as demonstrated in Figures 1 and 2, this approach may inadvertently lead to
overly smoothed results at the edges. This is an area that could be further refined in
future research.

Image

Ground truth

JoEm

SwinZS3

Figure 3. Qualitative results on PASCAL VOC. The unseen classes are “cow”, “motorbike”, and “cat”.
We compare the results of the other state-of-art method and our SwinZS3.

5. Conclusions

In this study, we have proposed a transformer-based framework that synergistically
combines visual and language features within a unified embedding space to tackle the
challenging problem of zero-shot semantic segmentation. Our approach offers a novel
perspective on this task, deviating from conventional methods using a language-guided
score map. This strategy enables the model to learn a more discriminative space, effectively
differentiating between seen and unseen classes. Moreover, we innovatively altered the
decision boundary to mitigate the prevalent seen bias issue that often undermines the
performance of ZS3 models. To validate the effectiveness of our proposed methodology, we
conducted extensive experiments on standard ZS3 benchmarks, and our method surpassed
previous state-of-the-art performance levels. These experimental findings serve as robust
evidence for the efficacy of our proposed method and underscore its promising potential for
further development and application within the field of zero-shot semantic segmentation.
Future research could potentially explore adapting this approach to other related tasks, such
as object detection or image classification, thereby broadening its applicability and impact
in computer vision. Ultimately, our study contributes to the ongoing efforts to advance the
frontier of zero-shot learning, promising exciting new directions for future work.
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