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Abstract: The statistical pyramid dense time-delay neural network (SPD-TDNN) model makes
it difficult to deal with the imbalance of training data, poses a high risk of overfitting, and has
weak generalization ability. To solve these problems, we propose a method based on the joint loss
function and improved statistical pyramid dense time-delay neural network (JLF-ISPD-TDNN), which
improves on the SPD-TDNN model and uses the joint loss function method to combine the advantages
of the cross-entropy loss function and the comparative learning of the loss function. By minimizing the
distance between speech embeddings from the same speaker and maximizing the distance between
speech embeddings from different speakers, the model could achieve enhanced generalization
performance and more robust speaker feature representation. We evaluated the proposed method’s
performance using the evaluation indexes of the equal error rate (EER) and minimum cost function
(minDCF). The experimental results show that the EEE and minDCF on the Aishell-1 dataset reached
1.02% and 0.1221%, respectively. Therefore, using the joint loss function in the improved SPD-TDNN
model can significantly enhance the model’s speaker recognition performance.

Keywords: SPD-TDNN; joint loss function; cross-entropy loss function; comparative learning;
robustness

1. Introduction

Speaker recognition is a process of identifying speakers from their voices. This is an
important research direction in speech signal processing and artificial intelligence.

Before the rise of deep learning, the Gaussian mixture model–universal background
model (GMM–UBM) [1] and i-vector [2] systems were popular among traditional speaker
recognition methods. They model the speech signal, then extract the speaker’s feature
vectors, and finally classify feature vectors or match them to a specific speaker. As research
on deep learning algorithms has deepened, deep neural network models have shown
superior performance in speaker recognition. For example, in 2014, Lei et al. [3] proposed
the DNN/i-vector speaker recognition model, which combines the deep neural network
(DNN) model with the i-vector model. The basic idea is to use the supervised training
DNN instead of the traditional universal background model (UBM) to calculate the frame-
level posterior probability, and each output node of the DNN is used as a speaker. The
DNN/i-vector method offers improved handling of large amounts of data and complex
speaker variations compared with the traditional i-vector method. It also uses a DNN to
automatically extract speech features, thereby enhancing robustness and generalization
capabilities. However, the DNN/i-vector method requires a large amount of training data
and computing resources and has certain limitations when dealing with short speech.

To avoid the limitations and complexity of the i-vector process, Google proposed
a d-vector [4] method using a DNN to extract features. The d-vector method directly
uses a DNN to map the speech signal to a vector representation of a fixed dimension,
eliminating the extraction process of i-vector, and having better speaker adaptability and
generalization ability.
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In recent years, researchers [5] have woven context information into models based
on the time-delay neural network (TDNN) to further improve the d-vector method. For
example, x-vector [6] introduces a statistical pooling layer, instead of the average pooling
layer, in the TDNN structure, enabling the model to transform frame-level features into
segment-level features. However, the x-vector system cannot utilize a wider range of tempo-
ral contexts. To solve this problem, researchers introduced a channel attention mechanism,
information transmission, and an aggregation mechanism based on the x-vector model
into the ECAPA-TDNN [7]. Using squeeze and excitation [8], the method adaptively learns
the importance of each channel, enhances the model’s attention to important channels,
and weakens its attention to unimportant channels. The residual connection Res2Net [9]
and information transmission mechanism [10,11] are used to learn and integrate the fea-
tures of different time steps across channels so that the model can better deal with long
sequences and improve the model’s performance. At the same time, the ECAPA-TDNN
model also adopts a deeper neural network structure and optimizes it to further improve
the model’s performance.

However, the ECAPA-TDNN model still has some defects. For example, the number
of channels in the channel attention mechanism needs to be determined in advance, but it
is difficult to determine a number suitable for all scenarios. In addition, the information
transmission mechanism adopts a residual connection, which may lead to gradient disap-
pearance or gradient explosion, thus limiting the model’s depth and performance. To solve
these problems, researchers proposed the D-TDNN [12] model, which introduces a dense
connection mechanism to connect the features between different layers, which avoids the
problem of gradient disappearance and gradient explosion and enables feature modeling at
a deeper level. It can better handle the information interaction between long sequences and
different channels, and it has better performance and generalization ability. In addition,
the D-TDNN model uses segmented convolution to adaptively learn the weight of each
convolution kernel, further improving the model’s performance.

The D-TDNN model has strong feature extraction ability but weak modeling ability
when a difference arises between different speech signals of the same speaker, and it
is easily disturbed by environmental changes and other factors. To further solve this
problem, researchers proposed the statistical pyramid dense time-delay neural network
(SPD-TDNN) [13] model at the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) in 2022, which can effectively improve the D-TDNN’s modeling
ability and robustness. The core idea of the SPD-TDNN model is to introduce a statistical
pyramid pooling layer (SPP) [14] and dense connection mechanism to better deal with long
sequences and feature information between different layers. Among them, SPP adopts
a multi-scale pyramid pooling layer to fuse features of different scales to improve the
model’s modeling ability for different time scales. The dense connection mechanism can
effectively avoid the problem of gradient disappearance and gradient explosion so that
the model can model features at a deeper level. Although SPD-TDNN performs well in
speaker recognition tasks, it still has some shortcomings, such as difficulty in adapting
to large-scale data, difficulty in dealing with imbalances in training data, a high risk of
overfitting training data, and insufficient generalization ability.

The purpose of speaker recognition is to distinguish different speakers through speech
signals, which is a typical classification problem. Common classification models usually
use the cross-entropy loss function for training, but in the speaker recognition task it
is necessary to pay attention to both the differences between different speakers and the
similarities between the same speakers. Therefore, the use of cross-entropy loss function
alone may not achieve this goal. This paper applies the joint loss function to the speaker
recognition task. The main work and contributions of this paper can be summarized
as follows.

• We propose a speaker recognition model based on joint loss function training. Dur-
ing the model training process, both cross-entropy loss and contrastive learning loss
work together, considering the differences between different speakers and the similari-
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ties between the same speakers. This allows the model to better learn speaker-specific
feature information.

• To better leverage contrastive learning, we improved the SPD-TDNN module, ad-
justing the position of the BN layer such that the output of the activation function is
normalized through the BN layer to better preserve the input’s dynamic range, thereby
enhancing the model’s nonlinear expression capability and generalization ability.

2. Related Works
2.1. Speaker Recognition System Framework

The speaker recognition system mainly includes two stages: training and recognition.
The basic framework is shown in Figure 1. In the speaker recognition system, the speech
data are preprocessed first, including data augmentation, pre-emphasis, framing, and win-
dowing. For feature extraction, the most commonly used feature extraction methods are
the mel-frequency cepstral coefficient (MFCC) [15] and the filter bank (FBank) feature
method [16]. In the training stage, the model is trained as a closed-set speaker recognition
model with a classification head. The dimension of the classification head is equal to the
number of speakers in the training dataset. The cross-entropy loss function is employed,
where the loss is computed by applying softmax nonlinearity to the classification head
outputs and comparing them with one-hot encoded labels. Once the training has com-
pleted, the classification head is removed, and the model is used as a speaker embedding
extractor. In the recognition stage, the test speech feature parameters are input into the
established model for matching calculation, and the similarity score is obtained. According
to the similarity score, the recognition result is obtained.

Voice 

Data
Preprocess

Feature 

Extraction

inference

Speaker 

ModelsTrain

Recognition

decision-making

Recognition 

Result

Figure 1. Frame diagram of the speaker recognition system.

2.2. Baseline Network Model

The baseline model used in this paper is SPD-TDNN, and the overall framework is
shown in Figure 2. In the multilayer SPD-TDNN module, the output of each layer of the
SPD-TDNN module is connected to the subsequent SPD-TDNN layer by using the dense
connection mechanism, which realizes information exchange and sharing between layers.
At the same time, multiple SPD-TDNN layers are followed by a C-B-R module with a
kernel size of 1 to form a SPD-TDNN block. The C-B-R module can be used to aggregate
multilayer features from different layers.
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Figure 2. SPD-TDNN overall framework diagram.

2.2.1. SPD-TDNN Layer

The SPD-TDNN layer is the basic unit of the SPD-TDNN model. Each SPD-TDNN
layer is composed of the bottleneck layer of the feedforward neural network (FNN) and
the SPP. Finally, the input of the SPD-TDNN layer and the output of the SPP layer are
connected in series. The SPD-TDNN layer structure is shown in Figure 3, where the dotted
box is the SPP layer.

Figure 3. SPD -TDNN layer structure.

The SPP obtains the global and subregional context information from the speech
features to capture a more comprehensive feature representation, which helps distinguish
the categories of different speakers. First, the input speech features are sent to multiple
parallel branches, and the global and subregional context information is collected by
establishing the relationship between frames. Then, the outputs of parallel branches are
spliced together as fine-grained features of speech. Then, this feature is input into the
convolutional neural network (CNN) layer, with the kernel size set to 3, to extract key
features. Finally, we combine the obtained key features with the original features to obtain
the final features for speaker recognition.

Specifically, the parallel branch includes a global regional branch and multiple subre-
gional branches. The average pooling layer of the global regional branch is a feature that
compresses the speech feature into a fixed length in the time domain. To supplement more
global context information, we incorporate standard deviation into the global regional
branch as a measure of statistical dispersion to reflect the degree of dispersion between
individuals in the feature. Finally, the pooled features and the standard deviation are
stitched together to form a global feature. The pooling layer of the subregional branch
divides the feature map into different regions and forms pooling representations at different
locations. To maintain the weight of global features, we add the FNN layer after the pooling
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layer, and the dimension represented by the context is changed from N branches to one
original dimension.

Finally, the low-dimensional features are up-sampled to the same frame length as the
original features by bilinear interpolation and used as the output of parallel branches.

It can be seen from Figure 3 that the number of parallel branches in the SPP layer
can be modified. The structure abstracts different subregions by using different sizes of
pooling kernels in a few steps. Therefore, the kernel size gap should be maintained to
ensure the diversity and complementarity of features. In this paper, the SPP layer contains
four parallel branches. Except for the global regional branch, the average pooling layer
kernel size used in the subregional branch is set to 1, 16, and 32.

2.2.2. SPD-TDNN Model

The complete network structure of the SPD-TDNN model is shown in Table 1 and
consists of four main components.

Table 1. The structure of the baseline network model SPD-TDNN.

Layer Structure Output

1 Conv1D + BN + ReLU k = 5, p = 2 128

2

SPD-TDNN (128, 64, 1) 192
SPD-TDNN (192, 64, 2) 256
SPD-TDNN (256, 64, 3) 320
SPD-TDNN (320, 64, 1) 394
SPD-TDNN (394, 64, 2) 448
SPD-TDNN (448, 64, 3) 512

Conv1D + BN + ReLU k = 1, p = 0 256
SPD-TDNN (256, 64, 1) 320
SPD-TDNN (320, 64, 2) 394
SPD-TDNN (394, 64, 3) 448
SPD-TDNN (448, 64, 1) 512
SPD-TDNN (512, 64, 2) 576
SPD-TDNN (576, 64, 3) 640
SPD-TDNN (640, 64, 1) 704
SPD-TDNN (704, 64, 2) 768
SPD-TDNN (768, 64, 3) 832
SPD-TDNN (832, 64, 1) 896
SPD-TDNN (896, 64, 2) 960
SPD-TDNN (960, 64, 3) 1024

Conv1D + BN + ReLU k = 1, p = 0 512

3 Statistic Poolong + BN 1024

4 FC + BN 192

(1) In the first component, the CNN layer is used to initialize the number of channels
to a fixed size dimension. The convolution kernel size, stride, padding, and dilation are set
to 5, 1, 2, and 1, respectively.

(2) In the second component, every three SPD-TDNN layers form a group, and the
size of the dilation is set to 1, 2, and 3. The different sizes of expansion and computational
efficiency of the parameters are retained so that the model has different receptive fields.
These SPD-TDNN groups are combined with the CNN layer to form a total of two SPD-
TDNN blocks. The first SPD-TDNN block consists of two SPD-TDNN groups and one CNN
layer. The second SPD-TDNN block contains four SPD-TDNN groups and a CNN layer.

(3) The third component is the SPP layer, which aggregates frame-level features and
outputs discourse-level features.

(4) The last layer is the fully connected (FC) layer, which is used to output fixed-length
speaker embedding vectors.
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2.2.3. Other Models

In addition to SPD-TDNN, we also selected D-TDNN, MFA-Conformer, and SE-ResNet
as baselines for our comparative experiments.

D-TDNN [12] is a densely connected TDNN layer that effectively reduces the pa-
rameter count, enabling fast computation. It serves as a fundamental baseline. MFA-
Conformer [17] utilizes conformer blocks as its backbone, combining transformer and con-
volutional neural network (CNN) elements to capture global and local features efficiently.
It stands as a powerful baseline. SE-ResNet [8] focuses on channel relationships, employing
squeeze-and-excitation (SE) blocks to explicitly model interdependencies between channels.
This adaptive recalibration of channel feature responses showcased state-of-the-art results
at that time.

2.3. Data Augmentation

In speaker recognition tasks, data augmentation is usually used to increase the diver-
sity of training data to improve the model’s robustness and generalization ability.

2.3.1. Reverberation Enhancement

Reverberation enhancement refers to adding reverberation effects to speech signals
to simulate speech signals collected in different recording environments, improving the
model’s robustness and generalization ability.

In the speaker recognition task, commonly used reverberation enhancement methods use
the RIR dataset [18], public reverberation signal libraries (e.g., AURORA-2, AURORA-4 [19]),
and reverberation simulators.

2.3.2. Noise Enhancement

Noise enhancement is a common data augmentation method that aims to make the
model more robust and able to identify speakers in noisy environments. In speaker
recognition, noise datasets are usually used. For example, the MUSAN dataset [20] contains
various types of noise signals, which can be added to the original speech signal to increase
the noise level and complexity.

2.3.3. SpecAugment

The SpecAugment [21] algorithm is a commonly used spectrum enhancement technol-
ogy that is primarily used in speech recognition and speech processing tasks, with the basic
principle of applying occlusion and distortion transformation on the mel spectrum to gen-
erate new training data and thereby improving the model’s robustness and generalization
ability. Specifically, the SpecAugment algorithm includes three steps.

• Time masking: Randomly select a continuous interval on the timeline and set it to 0,
which is equivalent to blocking all the sound signals in the interval. This operation
can simulate the interruptions and missing information in the speech signal.

• Frequency masking: Randomly select a continuous interval on the frequency axis and
set it to 0, which is equivalent to masking the frequency information of the interval.
This operation can simulate noise and distortion in the speech signal.

• Frequency warping: The spectrogram is distorted on the frequency axis to stretch or
compress some frequency intervals. This operation can simulate intonation changes
and accent differences in speech signals.

During the training process, some SpecAugment operations are randomly applied
to generate new training data for each batch. Specifically, each input speech signal is
first converted into a mel spectrogram, and then some time masking, frequency masking,
and frequency warping operations are randomly applied to generate a new mel spectro-
gram. Finally, the newly generated mel spectrogram is used as the model input to train
the model.
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Through these random occlusion and transformation operations, SpecAugment can
generate a large amount of diverse training data, which help improve the model’s robust-
ness and generalization ability. At the same time, SpecAugment has a low computational
cost and does not significantly increase training time and resource consumption.

3. JLF-ISPD-TDNN Model

The framework of the joint loss function and improved statistical pyramid dense
time-delay neural network (JLF-ISPD-TDNN) is shown in Figure 4. First, the original
audio is preprocessed, including pre-emphasis, extraction of mel features, and the data
augmentation methods introduced in Section 2.3 to obtain two sets of enhanced speaker em-
beddings. Then, the voiceprint features after data preprocessing are input to the improved
statistical pyramid dense time-delay neural network (ISPD-TDNN), and effective feature
representations are learned through training to obtain Embedding1 and Embedding2. Fi-
nally, by using the contrast learning method to maximize the same speaker embedding
and minimize the mutual information between different speaker embeddings, we can
train a model with better feature representation ability. The C-R-B module in Figure 4 is
obtained by placing the BN layer of the C-B-R module in Figure 2 after the convolution
layer and the activation function. Among them, ISPD-TDNN is obtained by adjusting the
BN layer position of the C-B-R module in the SPD-TDNN model and placing the BN layer
after the convolution layer and the activation function. This helps the model better learn
useful information in the data, enhance its nonlinear ability, and improve its stability and
generalization ability.
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Figure 4. JLF-ISPD-TDNN overall framework diagram.

3.1. AAM-Softmax

The angular additive margin softmax (AAM-softmax) [22] objective function, also
known as ArcFace, is a classification loss function based on the angular cosine distance. It
is often used in tasks such as face recognition and speaker recognition. Compared with
the traditional softmax classifier [23], AAM-softmax enhances the discrimination between
samples while ensuring the classification accuracy, which can better solve the problems of
unbalanced training data and overlapping between classes.

The core idea of AAM-softmax is to introduce an angle cosine term into the traditional
softmax loss function and then use the transformation function of the angle cosine value to
adjust the classifier output. This angle cosine term can be regarded as a “margin”, which
increases the separation of samples in the feature space and increases the distance between
different types of samples.

The loss function of AAM-softmax can be expressed as:

LAAM = − 1
N

N

∑
i=1

log
eS(cos θyi+m)

es(cos θyi+m) + ∑C
j=1,j 6=yi

es cos θj
(1)
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Among them, N represents the number of samples in the training set, C represents the
number of categories, yi represents the category to which sample i belongs, θj represents
the angle between the center vector of sample i and category j, s represents the scaling
parameter, and m represents the marginal parameter. In each training iteration, the loss
function averages the loss of all samples and updates the network parameters by back-
propagation.

In general, AAM-softmax optimizes the traditional softmax loss function by increasing
the constraint of angular cosine distance, forcing the model to pay more attention to the
relative position relationship between samples and improving the classification robustness
and accuracy.

3.2. InfoNCE

InfoNCE [24], an algorithm for comparative learning that was originally proposed by
Oord et al. [25], is primarily used for feature learning and representation learning in the
audio and image fields. Unlike the traditional comparative learning method, the InfoNCE
algorithm combines the mutual information in information theory with the neural network,
so it can perform effective comparative learning without additional negative samples.

The basic principle of the InfoNCE algorithm is to train a neural network by maximiz-
ing mutual information [26] to learn a good feature representation. Mutual information is
a measure of the interdependence between two random variables. The larger the value,
the stronger the dependence between two random variables. Contrastive learning aims to
make the speech signal representations of the same speaker as close as possible and the
speech signal representation of different speakers as far away as possible. Therefore, the mu-
tual information between two speech signals can be used as the goal of model training.

Specifically, for a given speech signal, the speech signal is preprocessed and then input
to the neural network. The neural network represents the input speech signal as another
vector and then determines whether they are from the same speaker by calculating the
similarity between the two vectors. The InfoNCE algorithm uses a binary classification
problem to train the neural network, where positive samples are speech signals from the
same speaker, and negative samples are speech signals from different speakers. The training
goal of the model is to maximize the mutual information of positive samples and minimize
the mutual information of negative samples [26].

Generally, a batch of speaker embedding pairs
{
(zi, z

′
i)
}

is given, where (zi, z
′
i) denotes

two enhanced speaker embeddings from the same speaker and the batch size is N, which
are then fed into the contrast loss function. For positive sample pairs, their similarity is
calculated by dot product and softmax normalization, which is expressed as zT

i · z
′
i; for

negative sample pairs, their similarity is also calculated as zi · z
′
j, where i represents the

index of positive samples, and j represents the index of negative samples. InfoNCE-based
comparative learning loss can be defined as follows:

Lcl = −
N

∑
i=1

log
exp

(
z>i z′i

τ

)
∑K

j=0 exp
(

zi · z′j
)

/τ
(2)

where τ is the temperature hyper-parameter controlling the product sensitivity, and K is
the number of negative samples. By minimizing the loss function, we can ensure that the
neural network can learn better speech representation, thereby improving the performance
of speaker recognition.

3.3. Joint Loss Function

The proposed joint loss function is based on the traditional cross-entropy loss function
and incorporates the idea of contrastive learning loss. It considers both the similarity and
distinguishability among speech samples to improve the separability and discriminability of
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speaker embeddings during training. This way, the model can better differentiate between
speech features of different speakers and better distinguish between speech samples of the
same speaker.

The joint loss function of the JLF-ISPD-TDNN model consists of two parts: one is
the AAM-Softmax function, which is used to classify each sample of the input model;
the second is the InfoNCE function, which makes the speaker embedding generated by
the model data augmentation more accurate. The joint loss function of model training is
as follows:

Loss = (1− λ) ∗ LAAM + λ ∗ Lcl (3)

where λ is a hyper-parameter used to balance the weights between the AAM-Softmax loss
and the contrastive learning loss.

The goal of the joint loss function proposed in this paper is to minimize the intra-class
variance and maximize the interclass variance to improve the separability and discrimina-
tion of speaker feature representation. In the model, the model parameters are adjusted by
optimizing the joint loss function to obtain a better speaker feature representation.

4. Experiment
4.1. Experimental Setup

The dataset used in the experiment is Aishell-1 [27]. The training set includes
120,421 voices of 340 speakers, and the test set includes 7176 voices of 20 speakers.
The Aishell-1 dataset comprises recordings captured in various environments, includ-
ing both indoor and outdoor settings, along with different background noise conditions.
Speech files in this dataset are segmented into short speech segments. Consequently,
during training, each sample consists of speech segments from a single speaker, while
during testing, each sample contains speech segments from either the same or different
speakers for evaluation. In deep learning, data augmentation is beneficial to the training of
neural networks because it can increase the diversity of data, enable the model to better
adapt to changes in the real world, and improve the model’s robustness. Before feature
extraction, noise enhancement and reverberation enhancement were performed on each
speech. The data augmentation here followed Kaldi’s configuration [28] and combined the
publicly available MUSAN dataset (music, speech, noise) and RIR dataset (reverberation).
Specifically, five enhancement strategies were used: adding reverberation, adding speech,
adding music, adding noise, and adding the mixture of speech and music. Each strategy
had an equal application probability (0.2) and was randomly selected and applied during
the training phase. For the addition of reverberation, we employed the method of discrete
linear convolution to evenly mix it into the speech segments of the speaker. This approach
ensures that the entire segment incorporates the reverberation effect. Unlike other data aug-
mentation methods, adding reverberation can alter only the “background noise” without
changing the “speech content” of the speaker. As for the other data augmentation strategies,
we enhanced the original data by adding noise through summation. The proportion of
noise was determined using a random function to generate a variety of training data.

The characteristic parameter was an 80-dimensional mel frequency cepstrum coeffi-
cient with a frame length of 25 ms and a frame shift of 10 ms, and the feature vector was
randomly normalized twice by the cepstrum mean subtraction. After feature extraction,
the SpecAugment algorithm was applied to the log mel spectrum as the last enhancement
strategy, and the random mask was applied to the time domain and frequency domain of
the log mel spectrum. Specifically, we randomly selected a certain moment in the audio,
we set the moment and the M frame after the moment to zero, and the frequency domain
was the same. By randomly performing mask operations in the time domain and frequency
domain, we noted that some speech features were blurred or obscured, resulting in missing
local information that would increase the diversity and generalization ability of the data
without increasing the data size.

In order to conduct a fair experiment, we used the pytorch framework to implement
the proposed ISPD-TDNN and JLF-ISPD-TDNN models. The Adam method was used
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to optimize the model, the momentum was set to 0.95, and the weight attenuation was
set to 5 × 10−4. The small batch was set to 128, and the learning rate was initialized
to 0.01. For ISPD-TDNN, we use the AAM-Softmax loss functions to classify speakers.
For JLF-ISPD-TDNN, we use the AAM-Softmax and InfoNCE loss functions to classify
speakers. For AAM-Softmax loss, the margin and scaling parameters were set to 0.2 and 30.
For InfoNCE-based comparative learning loss, τ was set to 0.1.

For MFA-Conformer, the optimizer settings are the same as those we proposed.
The learning rate is initialized to 0.001. For the multi-head self-attention module, we
set the encoder dimension to 256 and the number of attention heads to 4. For the convolu-
tional module, we set the kernel size to 15. For the feed-forward module, we set the number
of linear hidden units to 2048. We employed 6 conformer blocks with varying downsam-
pling rates. For SE-ResNet, we also employed Adam as the optimizer with a learning
rate initialized to 0.001. We set the base number of channels for SE-ResNet to 32 and the
downsampling rate to 1/2. For D-TSDNN, we utilized stochastic gradient descent (SGD)
as the optimizer with a momentum of 0.95 and weight decay of 5 × 10−4. The mini-batch
size was set to 128, and the initial learning rate was set to 0.01. For the aforementioned
three models, we employed AAM-Softmax loss functions for loss computation.

The evaluation indexes of the experiment were the equal error rate (EER) [29] and
minimum detection cost function (minDCF) [28].

4.2. Experimental Results and Discussion
4.2.1. The Impact of λ on Model Performance

Figure 5 shows the impact of the parameter λ on the model’s performance as defined
in Equation (3). When λ was large, the contribution of InfoNCE became more important,
and the model focused more on clustering samples of the same category, which may have
led to overfitting. When λ was small, the contribution of the AAM-Softmax classification
loss became more important, and the model focused more on the classification ability of
different samples of different categories, which may have resulted in the model’s inadequate
learning of differences between samples of the same category. Therefore, selecting an
appropriate value for λ is crucial for the model’s performance. The results in Figure 5
show that the InfoNCE loss starts to gradually take effect when λ = 0.2. When λ = 0.4,
the model performs optimally, achieving an equal error rate (EER) of 1.02%. However, as λ
surpasses 0.5, the model’s performance diminishes due to the decreased contribution of the
AAM-Softmax loss. In the following experiments, we selected λ = 0.4.
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Figure 5. The impact of λ on model performance.
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4.2.2. Results and Analysis

On the Aishell-1 dataset, the experimental results of baseline and the ISPD-TDNN and
JLF-ISPD-TDNN models proposed in this paper are shown in Table 2. The experimental
results show that the JLF-ISPD-TDNN model and ISPD-TDNN had a better performance
improvement in EER and minDCF without changing the parameters.

Table 2. Results on the Aishell-1 test set. The winner is in bold.

Model Parameter (M) EER (%) minDCF

D-TDNN 2.82 2.45 0.2617
MFA-Conformer 20.8 1.70 0.2033

SE-ResNet 23.6 1.51 0.1308
SPD-TDNN 3.11 1.23 0.1432

ISPD-TDNN 3.11 1.19 0.1272
JLF-ISPD-TDNN 3.11 1.02 0.1221

Specifically, compared with the baseline SPD-TDNN model, the ISPD-TDNN model
did not increase the number of parameters. Its EER was improved by 3.36%, and its minDCF
was improved by 12.6%. The result indicates that when we adjust the position of the BN
layer, the model can better learn the feature representation of data, enhance its nonlinear
ability, and improve its stability and generalization ability. Compared to the baseline
SPD-TDNN model, the JLF-ISPD-TDNN model achieved a relative improvement of 20.6%
in EER and 17.3% in minDCF. Compared with ISPD-TDNN, JLF-ISPD-TDNN had a relative
increase of 16.7% in EER and a relative increase of 4.2% in minDCF, which indicates that the
joint loss function can make the neural network learn better speech representation, thereby
improving the performance of speaker recognition. Compared to the baseline paper’s
D-TDNN model, our proposed model only has a slight parameter increase of 0.29, yet it
achieves an inference accuracy of more than double. This achievement is attributed to both
the exceptional context information extraction capability of the foundational SPD-TDNN
model and the benefits brought by the joint loss function.

Compared to MFA-Conformer and SE-ResNet, JLF-ISPD-TDNN exhibits a significant
improvement in performance. This is due to the fact that the variants of the transformer
(conformer) used in MFA-Conformer struggle to effectively capture global contextual infor-
mation. On the other hand, SE-ResNet’s limited receptive field hinders it from adequately
capturing local information. These shortcomings in both models result in embeddings
lacking the necessary features, rendering them incapable of robust speaker identification.

5. Conclusions

To further improve the performance of speaker recognition algorithms, we proposed a
novel model called JLF-ISPD-TDNN. By adjusting the BN position, the ISPD-TDNN model
reduces the influence of the BN layer on the model gradient and enhanced the model’s
generalization ability. In addition, the joint loss function can use the contrast learning
strategy to make the model learn more robust speaker feature representation. The proposed
JLF-ISPD-TDNN model not only fully utilizes the ability of SPD-TDNN to better learn
global contextual information, but also enables the network to better learn the similarities
and differences between speakers. Therefore, this framework can be used to obtain more
accurate speaker embedding representation.
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