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Abstract: Ellipse detection has a very wide range of applications in the field of industrial production,
especially in the geometric detection of metallurgical hinge pins. However, the factors in industrial
images, such as small object size and incomplete ellipse in the image boundary, bring challenges
to ellipse detection, which cannot be solved by existing methods. This paper proposes a method
for ellipse detection in industrial images, which utilizes the extended proposal operation to prevent
the loss of ellipse rotation angle features during ellipse regression. Moreover, the Gaussian angle
distance conforming to the ellipse axioms is adopted and combined with smooth L1 loss as the
ellipse regression loss function to enhance the prediction accuracy of the ellipse rotation angle. The
effectiveness of the proposed method is demonstrated on the hinge pins dataset, with experiment
results showing an AP∗ of 80.93% and indicating superior detection performance compared to other
methods. It is thus suitable for engineering applications and can provide visual guidance for the
precise measurement of ellipse-like mechanical parts.

Keywords: ellipse detection; convolutional neural network; hinge pins; proposal extension; Gaussian
angle distance

1. Introduction

In the metallurgical industry, heavy-duty conveyors are used, and the core component
of these conveyors is the chain, which is made up of several hinge pins connected with
multiple link plates, as shown in Figure 1. During long-term material transportation,
the connections between the hinge pins and link plates are subject to severe wear and corro-
sion due to factors such as friction and humidity. Over time, adjacent hinge pins gradually
deviate from their initial positions. When the deviation reaches the twisting limit of the
hinge pins, the entire chain breaks at that point, thus affecting production [1]. Therefore, it
is necessary to adopt an automated visual inspection method for the measurement of the
spacing between adjacent hinge pins in the chain.

Given that the hinge pins are projected as elliptical shapes in the image, we need to
perform ellipse object detection on the hinge pins. Ellipse detection methods can be broadly
categorized into traditional methods and deep-learning-based methods. Traditional ellipse
detection methods, such as Hough-transform-based methods, have high computational
costs and are very time-consuming [2]. The least-squares-based methods [3] extract ellipses
by fitting edge pixels to a general conic. However, this approach cannot disregard potential
outliers within a set of edge pixels, making it susceptible to noise. Utilizing the connectivity
between edge pixels, the edge-following methods detect ellipses [4], but their operation at
the arc level leads to relatively lower reliability in detecting incomplete ellipses. Therefore,
these methods are not suitable for ellipse detection in industrial images.
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Figure 1. The chain is composed of hinge pins and link plates in the metallurgical sites.

With the rapid development of deep learning, the application of object detection
models based on convolutional neural networks (CNNs) in ellipse detection has become a
popular research direction [5–7]. Compared to traditional methods, these methods have the
advantages of higher accuracy and greater robustness to environmental noise. Therefore,
CNN-based methods can be employed for ellipse detection in industrial images. Consider-
ing the requirements for detection accuracy and stability in industrial environments, we
use the two-stage classic object detection model Mask R-CNN as the baseline model for the
proposed network.

In this paper, we present a robust and simplified ellipse regression model that is
capable of detecting and parameterizing individual ellipse objects. We discard the mask
prediction branch of the Mask R-CNN model and replace bounding box regression with
ellipse parameter regression. During regression, considering the efficiency of the detection
model, we only employ an extension proposal operation from Ellipse R-CNN to prevent
the loss of angle information. In contrast, in selecting a suitable loss function for our
ellipse regression model, we opt for the Gaussian angle distance, which adheres closely to
the metric axioms of the ellipse. However, depending exclusively on the Gaussian angle
distance as the loss function may lead to inaccurate estimations of local parameters, such
as the ellipse rotation angle in certain situations. To address this issue, we combine the
smooth L1 loss function to further reduce the error in the regression of the ellipse angle.
The contributions of this paper are summarized as follows:

• We propose a CNN-based method for ellipse object detection and apply it specifically
to the detection of special component objects, such as the hinge pins in the metallurgi-
cal industry. By utilizing the proposed models, we can accurately detect the elliptical
shape of the hinge pins in the images.

• We employ the extended proposal operation to address the issue of losing the rotation
angle direction of the ellipse. Additionally, the Gaussian angle distance function and
smooth L1 loss function are combined as the loss function for the ellipse parameter
regression task.

• We create a labeled small-scale dataset of hinge pins and conduct experiments related
to this research by using the dataset. We validated its accuracy and robustness by
comparing our method with traditional methods and other CNN-based approaches.

The remainder of this paper is organized as follows. Section 2 reviews the state-of-
the-art methods in related work. Our method is described in detail in Section 3. Section 4
provides experimental validation of the superiority of our method from various perspec-
tives. Section 5 concludes the paper.
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2. Review of Related Work

In this section, we review some existing CNN-based object detection methods. In
addition, we also review some metric methods that conform to the ellipse axioms for use as
loss functions.

2.1. CNN-Based Object Detection Methods

Object detection has been a challenging task in the field of computer vision for a long
time, aiming to automatically locate and recognize objects in the image. In recent years,
using CNN-based methods for object detection has gradually become mainstream. These
methods are mainly divided into one-stage detection and two-stage detection. One-stage
detection methods are represented by networks such as RetinaNet [8], SSD series [9,10],
and YOLO series [11,12]. Different from such methods, the two-stage methods require an
additional step to generate proposals.

Many researchers have proposed various detection models for the two-stage methods,
such as the Faster R-CNN [13]. The Faster R-CNN introduces the region proposal network
(RPN) module, which learns to propose object regions. However, it encounters some
difficulties in detecting small objects and highly occluded objects. Building upon the
improvement of Faster R-CNN, He et al. [14] propose Mask R-CNN, which integrates
a branch for object mask prediction. The region of interest (RoI) Pooling layer in Faster
R-CNN is also replaced with RoIAlign, which leads to an even greater improvement in
detection accuracy. Based on Mask R-CNN, Cheng et al. [15] propose BMask R-CNN,
which introduces a boundary preservation mechanism, achieving more accurate capturing
of object instance boundary information. However, the addition of the binary mask branch
increases the computational cost of the network. In addition, Dai et al. [16] introduce the
R-FCN network. It transforms the object detection problem into a pixel-level classification
task. R-FCN utilizes the fully convolutional network (FCN) to densely perform pixel-level
classification, enabling it to better leverage spatial information and enhance the accuracy of
object localization.

For specific objects, such as ellipses, there are also researchers conducting relevant
studies. Dong et al. [17] introduce an improved Ellipse R-CNN network based on Mask R-
CNN. This method uses a novel proposal extension method that can better address the issue
of uncertainty in ellipse rotation. However, its accuracy may be affected by the variation
in the shape and pose of the ellipse. Loncomilla et al. [18] propose Rocky-CenterNet
for rock detection, using the ellipse to enclose the boundary of rocks to better describe
their shapes. This approach demonstrates higher adaptability and precision in handling
irregularly shaped objects compared to traditional bounding boxes. However, as this
method employs the ellipse as the bounding box for objects, it may result in the loss of
boundary information. Oh et al. [19] employ a CNN to detect elliptical LED markers. They
utilize the predicted ellipse rotation angle as a measure of uncertainty in CNN predictions,
achieving robust detection of LED markers without the need for adjusting feature extraction
parameters. However, the detection and recognition accuracy of these markers can be
affected when they are obstructed. Dong et al. [20] propose an ellipse detection network
based on domain randomization techniques. They build a detector with rotation filters
and a rotation region proposal network to accurately detect ellipses. However, since the
training data is generated through a virtual environment, its generalization performance in
real-world scenarios requires further validation.

2.2. Loss Functions

In the task of bounding box regression, there are many metrics such as the loss
functions for measuring the distance between the ground-truth bounding box and the
proposal. In R-CNN [21] and SPPNet [22], the smooth L2 loss is used as the loss function
for bounding box regression. In Fast R-CNN [23], the smooth L1 loss is adopted as it is
less sensitive to outliers. For the ellipse regression task, relying solely on smooth L1 or L2



Electronics 2023, 12, 3431 4 of 15

loss is insufficient to effectively complete the regression of ellipse parameters. Thus, it is
necessary to explore other distance metric methods.

Zhou et al. [24] propose a method for representing the ellipse parameters of objects in
arbitrary orientations. It employs a two-dimensional Gaussian distribution label assign-
ment for coarse sample selection, followed by the use of Kullback–Leibler divergence (KLD)
loss to refine the coarse samples. However, it should be noted that KLD is asymmetrical,
meaning that the distance between two ellipse Gaussian distributions cannot be computed
interchangeably. Li et al. [25] propose a shape-biased ellipse detection network with an
auxiliary task. In terms of the loss function, the introduction of the Wasserstein distance
further enhances the precision of ellipse detection. However, the Wasserstein distance has
a high computational complexity, limiting the efficiency of the network in practical appli-
cations. Llerena et al. [26] propose modeling object bounding boxes as two-dimensional
Gaussian distributions and introduce the Hellinger distance for similarity measurement of
ellipse representations, which improves the accuracy of object detection. However, due to
the influence of the Hellinger distance, the model is sensitive to noise in regions where the
distribution has small values.

In lunar crater identification [27], Christian et al. present a novel distance metric
method referred to as the Gaussian angle distance. This distance metric is built upon an
ellipse matrix, which is interpreted as a binary Gaussian function. It satisfies ellipse axioms
such as symmetry and can be directly analyzed and calculated by utilizing the respective
parameters of the two ellipses being compared. However, the Gaussian angle distance only
considers the angle relationship between two distributions and does not take into account
the magnitude, which will limit its applicability in certain tasks.

3. Proposed Method
3.1. Ellipse Regression

The conventional procedure of object detection methods utilizing Mask R-CNN en-
compasses several sequential steps. Initially, the backbone, exemplified by the ResNet-50
network, extracts image features. Subsequently, the proposals generated by the RPN are
partitioned into distinct scales, which are then passed to the feature pyramid network
(FPN) [28] to generate feature maps at varying scales. These feature maps are uniformly
cropped using the RoIAlign layer, resulting in feature maps of equal dimensions for tasks
such as classification, box regression, and object mask prediction.

In our ellipse detection task, we only focus on ellipse parameter regression and
classification, so the mask prediction branch can be discarded. The overall framework of
our network is shown in Figure 2. From Figure 2, the traditional bounding box regression
is replaced with ellipse parameter regression. The results of box regression are the center
coordinates, width, and height of the bounding box. In contrast, ellipse regression requires
the regression of five parameters: the center coordinates (x0, y0), the semi-major and
semi-minor axes a, b(a ≥ b), and the rotation angle θ (measured from the positive x-axis
to the semi-major axis of the ellipse). These five parameters uniquely define an ellipse.
The equation of a general ellipse can be expressed using these parameters as follows:

(x′cos θ + y′sin θ)2

a2 +
(−x′sin θ + y′cos θ)2

b2 = 1, x′ = x− x0, y′ = y− y0, (1)

where the ellipse orientation is θ ∈ (−π
2 , π

2 ]. In the ellipse regression, there are the ground-
truth of the ellipse parameters E = (Ex, Ey, Ea, Eb, Eθ), which separately denote the center
coordinates, semi-major axis, semi-minor axis and rotation angle of the ellipse ground-truth.
The ellipse proposal is P = (Px, Py, Pw, Ph), where the first two parameters represent the
ellipse center coordinates and the last two parameters denote the width and height of the
ellipse proposal.
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Figure 2. The overall framework of our network.

Compared to bounding box regression, ellipse regression differs not only in the
number of regression parameters but also in that its directional information is more prone
to loss during the regression process of the incomplete ellipse at the image boundary,
as illustrated in Figure 3. Once the RPN generates proposals of different sizes, they are
sent to the RoIAlign layer and adjusted to a fixed size, causing the feature map to become
distorted and rendering the prediction of the original ellipse’s orientation information
unstable. From Ellipse R-CNN [17], we can learn that when performing ellipse parameter
regression, the ellipse proposal P can be extended into a square area Q. The extension area
is Q = (Qx, Qy, Ql), where (Qx, Qy) = (Px, Py) is the center coordinates of the extended

proposal, and Ql =
√

P2
w + P2

h is the square length of the extended proposal.

RoIAlign Regressor

1)Unprocessed ellipse 2)Align ellipse feature and 

proposal

3)Regressed ellipse with lost 

direction

Figure 3. The proposals generated by RPN will be adjusted to a fixed-size square after passing through
the RoIAlign layer, and then ellipse parameter regression is performed with the arbitrary ellipse
rotation angle feature. It will result in an unstable prediction of the orientation of the regressed ellipse.

As shown in Figure 4, when the detected ellipse is located at the image boundary,
it is possible to occur an incomplete ellipse on the image. During the ellipse parameter
regression process, if only the five parameters of the ellipse are regressed, the shape of the
ellipse may not be accurately regressed due to the influence of the incomplete proposals
generated by the RPN module. To prevent this situation from occurring, an additional
visibility parameter s = Ql

El
needs to be regressed to indicate the visibility ratio of the

incomplete ellipse on the image, where s ∈ (0, 1], and El = 2
√

E2
a + E2

b is the square length
of enclosing the ellipse E. The higher value of s indicates the closer match between the
extended proposal Q and the ground truth E, as well as a higher visibility ratio of the
detected ellipse. When the value of s is 1, it indicates that the detected ellipse appears
completely in the image. Based on the value of parameter s, this regression process can
adapt to the detection of all ellipses.
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Proposal Ground truth Predicted ellipse

Figure 4. The process of ellipse parameters regression.

We can associate the other five predicted offset parameters of the ellipse with this
scaling factor. Therefore, we can regress six relative offset parameters δx, δy, δa, δb, δθ , δs,
and the specific expression is as follows:

δx = s′(E′x −Qx)/Ql ,
δy = s′(E′y −Qy)/Ql ,
δa = log(2s′E′a/Ql),
δb = log(2s′E′b/Ql),
δθ = E′θ/π,
δs = log((s′ + 1)/2),

(2)



δ∗x = s(Ex −Qx)/Ql ,
δ∗y = s(Ey −Qy)/Ql ,
δ∗a = log(2sEa/Ql),
δ∗b = log(2sEb/Ql),
δ∗θ = Eθ/π,
δ∗s = log((s + 1)/2),

(3)

where δ∗ is the ellipse regression relative offset parameters ground truth, E′ is the predicted
ellipse parameters, and s′ is the predicted visibility ratio.

After obtaining the relative offset parameters, the ellipse parameters can be predicted,
as shown below:

E′x =
Ql
s′

δx + Qx, E′y =
Ql
s′

δy + Qy, s′ = 2exp(δs)− 1,

E′a =
Ql
2s′

exp(δa), E′b =
Ql
2s′

exp(δb), θ′ = πδθ ,

E′θ =

{
atan2(sin θ′, cos θ′), i f cos θ′ ≥ 0
atan2(−sin θ′,−cos θ′), i f cos θ′ < 0,

(4)

where the rotation angle E′θ ∈ (−π
2 , π

2 ].

3.2. Improved Loss Function

In Faster R-CNN, the smooth L1 loss function is used to predict the parameters offsets
between the bounding box and the ground-truth. However, in the task of ellipse detection,
encompassing six parameters, these loss functions are no longer appropriate for detection.
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We can represent an ellipse as a matrix, denoted as Ai. Suppose there are two ellipses
in an image, Ai and Aj. When the two ellipses are not identical, there will be a relative
distance between them. Due to the uniqueness of ellipses as geometric shapes, specific
axioms are required to describe their relative distance relationships [27,29], as follows:

1. Minimality: d(Ai, Aj) = 0 when Ai = Aj. Indicates that the distance between two
ellipses is zero.

2. Symmetry: d(Ai, Aj) = d(Aj, Ai). When Ai and Aj are swapped with each other,
the distance between them does not change.

3. Triangle Inequality: d(Ai, Aj) ≤ d(Ai, Ak) + d(Ak, Aj). When there is a third ellipse
Ak, the distances between them satisfy the triangle inequality.

4. Similarity Invariance: d(Ai, Aj) = d(S[Ai], S[Aj]), where S[·] is a similarity transfor-
mation. This indicates that the two ellipses undergo the same similarity transforma-
tion such as rotation, translation, and scaling in the image, and their distance should
remain the same.

The ellipse matrix can be interpreted as a binary Gaussian probability distribution.
Hence, various distance metrics can be used between two probability distributions, such
as the KLD, the Wasserstein distance, and the Gaussian angle distance. However, not all
methods satisfy the above axioms. For instance, the KLD does not satisfy the triangle
inequality and is also highly unstable when the distance between two distributions is small
or large [30], making it unsuitable for ellipse parameter regression. Furthermore, while
the Wasserstein distance satisfies the first three required axioms, it does not satisfy the
Similarity Invariance axiom.

Therefore, we can choose the Gaussian angle distance as the loss function, which can
satisfy the above four axioms. The Gaussian angle distance between a ground-truth ellipse
matrix AE and a predicted ellipse matrix AE′ is given by [27]:

dGA(AE, AE′) = arccos
{

4
√
|YE ||YE′ |
|YE+YE′ |

exp[− 1
2 (yE − yE′)

TYE(YE + YE′)
−1YE′(yE − yE′)]

}
, (5)

where 2 × 2 submatrix YE is as follows:

YE =

[
cosEθ −sinEθ

sinEθ cosEθ

][
1/E2

a 0
0 1/E2

b

][
cosEθ sinEθ

−sinEθ cosEθ

]
, (6)

and yT
E =

[
Ex Ey 1

]
is the center homogeneous coordinate of the ellipse. It is the same

as the expression of YE′ and yT
E′ . It can be seen from the above formula that the method can

be analyzed and calculated according to the parameters of the two ellipses AE and AE′ in
the image.

For typical ellipse regression tasks, the Gaussian angle distance can be an effective
choice as the loss function. However, its suitability might vary in specific scenarios.
As shown in Figure 5, when the major and minor axes of the ellipse are close, it means that
the ellipse can be approximated as a standard circle. In such cases, employing the Gaussian
angle distance as the distance metric for ellipse regression can yield similar distance values
for distinct orientations of predicted ellipses and the ground-truth ellipse. This behavior
is attributed to the property of the Similarity Invariance exhibited by the Gaussian angle
distance. Irrespective of the ellipse’s orientation, their Gaussian angle distance tends to be
proximate if the cross-overlap area ratio remains alike. Although the overall performance
of the two predicted ellipses could exhibit similarity, subtle distinctions within the internal
ellipse parameters, notably the ellipse rotation angle, can pose challenges for accurate
orientation regression.
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Figure 5. When the ground-truth ellipse is approximated as a standard circle, the predicted ellipses
with different orientations can have similar Gaussian angle distance values.

In Faster R-CNN, Ren employs the smooth L1 loss function for object detection regres-
sion, predicting the four bounding box parameters. Similarly, we can utilize the smooth L1
loss function for ellipse prediction. However, as previously discussed, relying solely on
the smooth L1 loss function for ellipse regression yields suboptimal results. Hence, our
approach involves employing the Gaussian angle distance as the primary loss function for
comprehensive ellipse parameter regression. Furthermore, in light of the aforementioned
challenge regarding accurate rotation angle regression in specific scenarios, we introduce
the smooth L1 loss function as a supplementary element to enhance rotation angle pre-
diction. Based on the above theoretical description, we can design the following ellipse
regression loss function expression:

Le = dGA(AE, AE′) + αR(Eθ

π
−

E′θ
π
), (7)

where R is the smooth L1 loss function and weight factor α represents the ratio of the
smooth L1 loss between the ground-truth angle and the predicted angle in the loss function.
In the subsequent experimental process, we set α = 2.

4. Experimental Results

In Section 1, we briefly introduce the necessity of detecting hinge pins in metallurgical
sites. In this section, we conduct some experiments based on the ellipse hinge pins detec-
tion task using the network model we propose and verify its superiority compared with
other models.

4.1. Hinge Pins Dataset

Due to the limitations in the industrial environment, we use the hinge pins fixed to a
movable guide rail to simulate the chain-driven state in a real scene for image acquisition.
The scene is shown in Figure 6. For hardware selection in image acquisition, we use the
MER-502-79U3M model camera with dimensions of 2048 × 2048. The camera lens used is
the LM5JC10M lens with a focal length of 5 mm. A total of 1862 images of the hinge pins are
collected, taken from different angles and distances. Considering the requirement of our
network’s image input being 512 × 512, we divide the original images with dimensions of
2048 × 2048 into smaller patches by dividing them into equal quarters in width and height.
One original image can yield 16 smaller images with dimensions of 512× 512, among which
one to two images contain the hinge pins object we want to detect. After processing all
images, a dataset of hinge pins, containing 3317 new images, can be obtained.
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Figure 6. The hinge pins are fixed on the guide rail.

Then, these images are subjected to manual annotation. The edges of the hinge pins
are annotated using the Labelme annotation tool, based on the theoretical foundation of
fitting ellipses to edge point sets. For each ellipse, five edge points are marked and the
ellipse parameters (Ex, Ey, Ea, Eb, Eθ) are obtained through ellipse fitting, where Ex and
Ey are the coordinates of the center of the ellipse, Ea and Eb are the semi-major axis and
semi-minor axis of the ellipse, and Eθ is the rotation angle of the ellipse. The obtained
ellipse parameters are stored in JSON annotation files, corresponding with the ground-truth
images. The dataset is divided into training and testing sets following a ratio of 0.9:0.1.
Some example images with the annotated ellipse are shown in Figure 7.

Figure 7. The examples of hinge pins with the annotated ellipse.

In the actual detection process, to accurately determine the specific position of the
hinge pins in the original image, the original images are divided into 16 equal patches,
and each patch is assigned a unique ID from 0 to 15 according to the partition sequence.
During training, patches without objects can be excluded from the training process. Each
image is also divided into 16 patches with corresponding IDs during inference. By predict-
ing confidence scores and setting a threshold, patches with scores above the threshold are
selected, and their IDs are used to map the predicted ellipse parameters back to the original
image at their fixed positions. This process allows us to obtain the actual ellipse parameters
in the original image.



Electronics 2023, 12, 3431 10 of 15

4.2. Experimental Setup

The experiments are executed on a server equipped with the Ubuntu 16.04 operating
system. The server has a Xeon Silver 4216 CPU, four GTX 2080Ti GPUs, and 256-GB memory.
We train 60 epochs on the training sets, and the model with the lowest verification loss is
saved for testing, with batch size 16, momentum 0.9, learning rate 0.005, and weight decay
0.0001. Based on the Mask R-CNN network structure, we use the resnet-50 pre-trained
model to extract ellipse features and employ PyTorch lightning to train our model. We
apply some evaluation metrics in our experiments to evaluate the detection performance
of our model versus other models, including mean intersection over union (MeanIOU),
average precision (AP over ellipse IOU threshold) [31], APθ (AP over angle error under
ellipse IOU threshold), and F-1 Score. The expression of the F-1 Score is as follows:

F− 1Score =
2× precision× recall

precision + recall
(8)

In addition, in industrial applications, apart from the aforementioned accuracy metrics,
we are also concerned with whether all the ellipses in the test images are correctly detected.
Therefore, we introduce the following metrics to further evaluate the performance of our
model [32]:

Reliability =

Total number of test images with ellipses
presented all been correctly detected

Total number of test images
(9)

During the dataset testing, we obtain the AP values of our model by varying the ellipse
IOU threshold from 70 to 90 with an interval of 5. We obtain a total of five AP values and
computed their average, denoted as AP∗. Similarly, our APθ from the angle error of 45◦ to
5◦, with an interval of 5◦, resulting in 9 APθ values. We take their average and denote it
as APθ

∗.

4.3. Performance
4.3.1. Module Validation and Comparative Experiments

In this section, we consider the adopted proposal extension operation and the im-
proved loss function as two fundamental modules for conducting ablation experiments.
These experiments aim to individually assess their impact on the detection accuracy of our
model. The results of specific ablation experiments can be seen in Table 1.

Table 1. The performance of ablation experiments on different modules is evaluated. E: Proposal
extension module. L: Improved loss function module. The default ellipse IOU for APθ , F-1 Score, and
Reliability is 0.90.

E L MeanIOU AP∗ AP80 AP90 APθ
∗ APθ

30 APθ
20 F-1 Reliability

- - 88.12 77.49 90.38 36.24 27.10 29.72 29.45 51.04 50.76
X - 88.71 80.28 90.18 49.25 33.19 39.33 36.21 60.24 60.12
- X 88.76 80.39 90.37 49.82 34.40 40.36 37.55 59.80 58.31
X X 89.54 80.93 90.51 51.76 36.79 46.45 37.19 64.59 64.05

From Table 1, it is evident that the joint utilization of both modules results in a
MeanIOU of 89.54% and an AP∗ of 80.93%. This showcases a 1% improvement in MeanIOU
and a notable 3% enhancement in AP∗, compared to the scenario where neither module
is employed. Furthermore, compared to the isolated application of each module, there
are also noticeable enhancements. Moreover, considering the F-1 Score and Reliability
metrics, their values rise to 64.59% and 64.05%, respectively, when both modules are
employed. This signifies a substantial 13% and 14% boost, respectively, in comparison
to their absence. In contrast to using only one module, a noteworthy 4% to 6% elevation
can be observed in both metrics. The significant improvement in F-1 Score and Reliability
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metrics demonstrates the effectiveness of our method in enhancing the robustness of model
predictions and accurately detecting all objects in industrial images.

Regarding the specific performance on APθ , it can be seen in Figure 8 that our method
surpasses others when both modules are in use. This suggests that the enhancements
introduced by our proposed method indeed have a positive impact on the accurate pre-
diction of the ellipse rotation angle. Furthermore, the experimental results indicate that
each improvement is indispensable and collectively contributes to the overall enhancement
of performance.
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Figure 8. Comparison of APθ for different modules at various angle error thresholds. E_w: Proposal
extension module is included. L_w: Improved loss function module is included.

During the comparative experiments on the test sets, we first compare our model
with the classic object detection network, Mask R-CNN, in terms of several metrics. We
discard the mask prediction branch of Mask R-CNN and replace the box regression with
the regression of five ellipse parameters. The regression loss function is still the smooth
L1 function, keeping the rest of the structure unchanged. This network is considered our
baseline model. In the process of the experiments, we compare our method not only with
the baseline but also with the variations of the baseline network, such as replacing the
regression loss function with the Gaussian angle distance or KLD. Furthermore, we also
conduct comparative experiments using the hinge pins dataset on Ellipse R-CNN. Table 2
shows the specific results of the comparative metrics.

Table 2. The performance of our model compared with other methods is evaluated. The default
ellipse IOU for APθ , F-1 Score, and Reliability is 0.90.

Methods MeanIOU AP∗ AP80 AP90 APθ
∗ APθ

30 APθ
20 F-1 Reliability

Mask R-CNN (baseline) 88.12 77.49 90.38 36.24 27.10 29.72 29.45 51.04 50.76
Mask R-CNN (Gau) 88.34 76.44 81.43 49.28 32.17 39.32 33.73 51.38 48.08
Mask R-CNN (KLD) 85.45 73.25 80.64 45.33 29.54 37.73 30.28 50.95 46.29
Ellipse R-CNN 86.99 80.39 89.38 45.50 33.59 45.50 34.61 53.70 51.92
Our method 89.54 80.93 90.51 51.76 36.79 46.45 37.19 64.59 64.05

From Table 2, our method shows certain advantages over other models in all the
evaluation metrics. Our method achieves a MeanIOU of 89.54% and an AP∗ of 80.93%,
which are improvements of 1% and 3%, respectively, compared to the baseline. Furthermore,
our method achieves an APθ

∗ of 36.79%, which is a growth of 3∼9% compared to the
remaining four methods. This indicates that our method has an advantage in accurately
regressing the ellipse rotation angle. As for the F-1 Score and Reliability metrics, our method
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can reach 64.59% and 64.05%, respectively, showing a significant advancement of 13% and
14% compared to the baseline method. In the comparison experiments with other methods,
the metrics we adopt demonstrate the effectiveness of our proposal extension operation
and the combination of Gaussian angle distance with the smooth L1 loss function operation.

Additionally, we also compute the average ellipse parameter estimation errors of our
model and other models on the test sets. The statistical results can be seen in Table 3.

Table 3. The average ellipse parameter estimation errors.

Methods Position Error Radii Error Angle Error (◦)

Mask R-CNN (baseline) 3.02 2.37 26.18
Mask R-CNN (Gau) 3.05 2.30 26.27
Ellipse R-CNN 2.30 2.26 26.21
Our method 2.40 2.14 24.69

From Table 3, our method exhibits certain advantages over other methods in terms of
radii and angle estimation errors.

4.3.2. Visualization Experiments

In this section, we conduct some visualization experiments. To validate that our
method’s detection performance is not affected by real industrial environments, we sep-
arately add the Gaussian noise and perform low-light processing on the images of the
hinge pins in the test sets to simulate industrial environment noise. The specific detection
results are shown in Figure 9. The experimental results demonstrate that our method can
accurately detect the specific positions of the hinge pins even when the images are in a
blurred or low-light state, indicating a certain level of robustness against interference.
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Figure 9. The detection performance of hinge pins under two simulated industrial environmen-
tal conditions. Green ellipses are the ground truth, and red are detected by our method.
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We also conduct some experiments to provide a more detailed illustration of the
performance of our method compared to Mask R-CNN and traditional ellipse detection
methods on the hinge pins dataset, and the results are shown in Figure 10.
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Figure 10. Examples of ellipses detected from the hinge pins dataset use Mask R-CNN (baseline),
traditional detection method, and our method. Green ellipses are the ground truth, and red are
detected by these methods.

In the traditional detection method, we adopt von Gioi’s method [33] to extract sub-
pixel edge contours of the ellipse in the image and perform ellipse fitting to obtain the
hinge pins object in the image. By comparing it with the ground truth, the ellipse fitted by
this method is greatly influenced by the presence of the background, resulting in numerous
missed detections, false alarms, and inaccurate detections. Compared to our method, this
approach is not very reliable in detecting hinge pins. Furthermore, when using Mask
R-CNN for ellipse detection on the hinge pins dataset, the major issue is the inaccurate
detection of incomplete ellipse occurring at the image boundary. This method often exhibits
deviations and is unable to accurately detect such cases. Our method addresses the issue of
inaccurate regression by extending the proposal. Additionally, we enhance the accurate
prediction of ellipse rotation angle by incorporating Gaussian angle distance with smooth L1
loss as the loss function for this regression task. These visualization results demonstrate that
our method has better performance in accurately predicting all parameters of the ellipse.
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5. Conclusions

In this paper, we propose a CNN-based method for ellipse detection in industrial
images. An extension proposal operation is introduced to ensure accurate regression
for an incomplete ellipse located at the image boundary. Additionally, by combining
Gaussian angle distance and the smooth L1 loss function, we further enhance the accurate
prediction of the ellipse rotation angle. Due to the unavailability of a real hinge pins
dataset and the constraints of the actual industrial scene, the simulation platform is set
up in the laboratory to collect data using hinge pins. In subsequent research, on-site data
will be further accumulated. A variety of experiments have been designed based on the
existing data, including error estimation experiments and simulations under industrial
environment conditions. These experiments demonstrate the effectiveness of our method
for the automatic detection of hinge pin wear, which is of great significance for practical
industrial production. Although our method has certain advantages, there is still scope for
further improvement. In future research, we can acquire real industrial images of hinge
pins in the metallurgical field to address practical industrial challenges. Additionally, our
method can be further applied to other ellipse datasets to achieve a more comprehensive
ellipse detection application.
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