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Abstract: Device-free localization (DFL) is a technology designed to determine the positions of targets
without the need for them to carry electronic devices. It achieves this by analyzing the shadowing
effects of radio links within wireless sensor networks (WSNs). However, obtaining high precision
in DFL often results in increased energy consumption, severe electromagnetic interference, and
other challenges that impact positioning accuracy. Most DFL schemes for accurate tracking require
substantial memory and computing resources, which make them unsuitable for resource-constrained
applications. To address these challenges, we propose an intelligent mesh cluster (IMC) algorithm that
achieves accurate tracking by adaptively activating a subset of wireless links. This approach not only
reduces electromagnetic interference but also saves energy. The IMC algorithm leverages geometric
objects, such as meshes and mesh clusters formed by wireless links, to achieve low computational
complexity. By scanning a subset of mesh cluster-related wireless links near the DFL target, the
algorithm significantly reduces the computational requirements. The target’s location estimate is
determined based on the connection information among the mesh clusters. We conducted numerous
simulations to evaluate the performance of the IMC algorithm. The results demonstrate that the IMC
algorithm outperforms grid-based and particle filter-based DFL methods, confirming its effectiveness
in achieving accurate and efficient localization.

Keywords: device-free localization; received signal strength; wireless sensor network; geometric
method

1. Introduction

In recent years, location-based services (LBS) and tracking technologies have become
increasingly important in various applications, ranging from indoor navigation to security
systems. Traditional active localization techniques require targets to carry electronic devices,
such as GPS-enabled tags or active transmitters, which can be impractical or intrusive
in certain scenarios. This limitation has spurred the development of DFL techniques,
which aim to determine the position of targets without relying on them to carry any
electronic devices. This makes DFL particularly suitable for scenarios where tracking
individuals or objects without their active cooperation is necessary or preferred, such as
in surveillance [1] or healthcare monitoring systems [2]. DFL techniques can leverage
existing infrastructure, such as wireless sensor networks, without the need for additional
infrastructure or modifications. This makes DFL cost-effective and facilitates its integration
into existing environments. DFL leverages the shadowing effects of radio links within
WSNs to infer the target’s location. By analyzing the characteristics of radio links, DFL
can accurately determine the position of the target and predict the direction of movement.
Moreover, DFL techniques are not limited to a specific radio based WSNs; other DFL
techniques based on different signals, such as RFID [3], UWB [4], FMCW [5–7], Bluetooth [8],
VLC [9], and more, have been explored, further expanding the potential applications, and
enhancing the versatility of DFL technology.
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In the DFL that utilizes received signal strength (RSS) based WSN, the accuracy of
positioning relies on the detection capability of wireless links and the density of these
links within a specific region of interest (RoI). Generally, higher density wireless networks
can achieve greater accuracy. However, there are challenges associated with handling a
large quantity of RSS data, leading to system delays due to lengthy signal processing times.
Additionally, indoor environments often experience severe multipath interference, which
further impacts the system’s accuracy. Moreover, when using a WSN to monitor a larger
RoI, scanning all of the wireless links in a high-density network consumes a significant
amount of time and reduces the lifespan of wireless nodes. This issue becomes particularly
impractical when the wireless nodes are battery powered. It is essential to strike a balance
between maintaining a high density of wireless links and ensuring optimal functioning of
the sensor network over an extended period.

To address these challenges, we propose the IMC algorithm, which falls under the
category of geometric methods, to address the RSS-based DFL problem within WSNs.
This algorithm dynamically controls the on/off state of wireless links, enabling only the
links in the vicinity of the target’s location to operate while others remain inactive. This
approach achieves a compromise between maintaining a high density of wireless links
for comprehensive coverage and practical considerations such as energy efficiency and
extended operational lifespan of the wireless nodes.

The main contributions of this paper are summarized as follows:

• We propose the IMC method, a geometric method built with an object-oriented pro-
gramming technique by abstracting the geometric elements in WSN, such as nodes,
links, segments on links, intersecting points among links, meshes formed by links, and
seeds, into different classes. The instances of the built classes are organically combined
to realize adaptively wireless link control and target location estimation.

• The proposed scheme utilizes the mesh cluster to narrow the scope of monitoring by
scanning only the mesh cluster-related wireless links and inactive remaining links,
and the estimation of the target’s position is calculated by the weighted centroid coor-
dinates of triggered meshes in the mesh cluster, which reduces energy consumption
while ensuring positioning accuracy and noise interference.

• The performance of the proposed scheme is evaluated with groups of simulations
under different parameters. Results demonstrate the accuracy and effectiveness of
the method.

The remaining sections of this paper are organized as follows: Section 2 reviews the
related works on RSS-based DFL. Section 3 introduces the system description and main
structure of the IMC scheme. In Section 4, the performance of the proposed scheme is
evaluated through simulations. Section 5 presents the computational complexity analysis.
Finally, Section 6 provides conclusions and discusses future works.

2. Related Works

Several RSS-based DFL algorithms have been proposed in recent years, motivated by
the diverse range of promising applications that can benefit from DFL. Fingerprint-based
methods, as presented in [10–13], involve constructing a radio map through extensive
offline training. During this training phase, RSS measurements are collected while a person
stands at different locations. In the online phase, the current RSS measurements are com-
pared with the radio map entries to infer the target’s location. However, these methods
require significant manual calibration efforts during the offline phase. Statistical and proba-
bility methods, as presented in [14–19], employ a target-induced fading model that relies
on the target’s proximity to the link. These models, derived through experimental data, are
used in conjunction with particle filters to track the target’s location. The use of particle
filters overcomes the restrictive assumptions made by Kalman filters regarding state space
dynamics but introduces increased computational complexity. Radio tomographic imaging
(RTI) methods, discussed in [20–22], approach DFL as an ill-posed image reconstruction
problem that can be solved through regularization techniques. However, one drawback
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of these methods is that they often require significant computational resources, making
them computationally intensive and potentially limiting their real-time applicability. The
Bayesian grid approach (BGA) was introduced in [23] to address the DFL problem. While
BGA offers advantages in utilizing lightweight operations on shadowing effect maps and
incorporating prior and constraint information to obtain a location estimate, the drawback
is that BGA may require a large amount of training data to accurately capture the prior and
constraint information, which can be challenging and time-consuming to acquire in certain
scenarios. To achieve high performance localization in sparsely deployed scenarios, com-
pressive sensing (CS) theory [24–26] has been successfully utilized to model localization
as a sparse signal reconstruction problem and accurately estimate the target’s location by
solving the inversion problem. Although the CS-based indoor localization system could
achieve good performance, one drawback is the high computational complexity involved.
The process of signal reconstruction in CS-based indoor localization systems can be com-
putationally demanding, potentially limiting their real-time implementation, or requiring
significant computational resources.

Geometric methods, proposed in [27–32], employ a sensor-grid deployment and
assess the overlap of shapes formed by shadowed links to estimate the target’s location. A
drawback of these methods is the lack of prior information to filter subsequent location
estimates, rendering them sensitive to noise. In [29], a Kalman filter is used in conjunction
with location estimates derived from geometric methods to enhance tracking accuracy.
Our previous work in [32] introduced a geometric midpoint algorithm that aims to solve
the DFL problem in low-density wireless sensor networks. More recent years, machine
learning and deep learning method based DFL methods are also proposed. In [33], the
authors presented a method for accurate DFL in WSNs using convolutional deep belief
network (CDBN) to extract important features from raw signals. The results showed a high
accuracy of 98% even with reduced data dimensions and low signal-to-noise ratios (SNRs).
Refs. [34–37] proposed deep learning-based methods for accurate DFL. The drawback of
these approaches is that they often require a substantial amount of labeled training data,
which can be time-consuming and costly to acquire. This reliance on large training datasets
may limit their applicability in scenarios where collecting such data is challenging or
impractical. Additionally, the computational complexity involved in training deep learning
models for DFL can be significant, requiring powerful hardware resources for efficient
training and deployment.

Unlike the previously mentioned geometric model based DFL algorithms, the pro-
posed IMC method in this paper uses geometric objects such as line segments, points, mesh,
and mesh clusters to build a bridge between the possible target’s location and the active
subset of wireless links. This approach eliminates the need for continuous scanning of all
wireless links, making it more robust to noise and reducing the number of computations
and storage required.

3. Proposed IMC Algorithm
3.1. System Description

We consider a WSN comprising several wireless nodes as depicted in Figure 1. As the
target moves across the RoI, it causes variations in the RSS values on subset of all wireless
links, resulting in the shadowing of certain links. The shadowed links change as the target
relocates to different positions. Hence, the DFL system can estimate the target’s position by
utilizing the information derived from the variations in RSS measurements.
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Under the framework of the proposed IMC algorithm, the presence of a single device-
free target results in the shadowing of only a subset of wireless links. Specifically, the target
is located within the segment BD, which corresponds to the boundary shared by Mesh1
and Mesh2. Subsequently, the target moves from this area to a different position along
one of the four segments: AB, BC, CD, or DA. Consequently, only specific links require
scanning, namely L1, L2, L3, L4, and L5, which correspond to the segments AB, BC, CD,
AD, and BD, respectively. Thus, the scanning strategy is significantly optimized. While
assuming scanning all 24 wireless links would typically take t time, the proposed approach
reduces this time to only 5/24t, theoretically. Moreover, the energy consumption is also
proportionally reduced to approximately 5/24 of the original value. The underlying idea is
to establish relationships among meshes, segments, links, nodes, and intersecting points
formed by links. Using these relationships, it becomes possible to infer the adjacent links
surrounding the target and derive a reasonable estimation of its location.

3.2. Geometric Elements Abstract

From a geometric perspective of WSNs, several key entities serve as the focal points of
research in IMC model. These entities include wireless nodes, links, intersecting points,
segments, meshes, and seed points that are the points generated around intersecting points
and nodes. To facilitate a systematic and structured approach, we adopt the object-oriented
programming method to abstract these research entities into classes. Specifically, the six
main research objects are represented by the classes Node, Link, Ip (Intersecting Point),
Segment, Seed, and Mesh. This abstraction enables a clear and organized representation of
the underlying elements and their relationships within the IMC model.

(1) Node and Link: Building of Node class is the first step of intelligence mesh model.
The attributes of Node class include id and coordinates of nodes. The created Node
instances are stored in list N. Then build the Link class, the instance of Link connects
pairwise nodes in the network. The built Link instances are temporarily stored in list L.

(2) Ip and Segment: The Ip (Intersecting Point) class represents the abstract of an
intersecting point formed by the intersection of different links in a WSN. Using the list
L, which contains link objects created in the previous step, the intersecting points are
calculated using the Intersection-Point algorithm described in [32].

All intersecting points on a Link object are sorted in ascending order based on their
x-axis coordinates. These points are then stored in the Ip list as an attribute of the cor-
responding Link instance, as illustrated in Figure 2a,b. Subsequently, instances of the
Segment class are instantiated by connecting the sequenced intersecting points from the Ip
list, including the two endpoints of the link.
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For instance, considering the link depicted in red color in Figure 2b with endpoints n0
and n1, the first segment is formed by connecting node n0 and intersecting point ip0. The
second segment connects intersecting point ip0 with intersecting point ip1, and the third
segment starts at ip1 and ends at ip2. Finally, the last segment starts at ip2 and ends at n1.
Similar segment lists are created for other links using the same approach. Furthermore, each
newly created segment object is added to the Seg list as an attribute of the corresponding
Link instance.

In addition to adding Segment instances as attributes to the Link instance, it is nec-
essary to include these Segment instances in the list as attributes of the corresponding
intersecting points. Figure 2b demonstrates this concept, where four segments are con-
nected to intersecting point ip0. Consequently, all four Segment instances should be added
to the Seg list of intersecting point ip0. Notably, segment s3 is added not only to intersecting
point ip0 but also to ip1.

Furthermore, during the creation of segment objects, the parent link attribute is
assigned as a reference to the link that the current segment belongs to. This attribute is
crucial as it aids in identifying the link based on its segments. For links situated at the
boundary of the RoI, the segment list only contains the link itself as a sole member. The
detailed process of generating the intersecting point list Ip and segments list Seg for each
link in L is outlined in Algorithm 1.

Algorithm 1 The method of creating Ip and Segment instances

Input: The list L including all Link instances in network.
Output: Intersecting point list Ip and Segments list Seg for each link in L.

1. for all links lj in L do
2. for all links lk in L, j 6= k do
3. Compute intersecting point cp using Intersection-Point algorithm.

4. if cp /∈
{

na
j , nb

j , na
k , nb

k

}
then

5. lj.Ip∪ {cp}
6. lk.Ip∪ {cp}
7. for all links lj in L do
8. Sort the intersecting points in Ip including two endpoints in ascending order of

x-axis coordinates.
9. Create Segment instances with sequenced intersecting points and endpoints

na
j and nb

j , then stored in Seg list.

(3) Seed and Mesh: The Seed class represents the generated points around intersecting
points (Ips) and Node. The Mesh class abstracts the meshes formed by intersections among
links in wireless network. Based on the intersecting point list Ip derived from all of the
links and nodes in N, a set of Seed instances are generated at intersecting points and nodes
on a circle with a radius of r, as depicted in Figure 3.
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The creation of seed objects around the nodes involves a partial distribution on a circle.
For nodes located at the four corners of the RoI, seeds should be generated within a range
of approximately 90◦. Similarly, for nodes positioned in the middle of the sides, the angle
is approximately 180◦, as shown in Figure 3a. The radius of the circle around all the nodes
can be set to an appropriate value. Generally, a denser network with a larger number of
nodes results in a smaller radius value. The main principle is to avoid overlapping between
the current circle and the one surrounding intersecting points. On the other hand, the seeds
created around intersecting points are uniformly distributed on the circle, as illustrated in
Figure 3b. Each intersecting point is connected by four segments to neighboring intersecting
points or nodes, as depicted in Figure 3c. The blue-colored intersecting point, labeled as
ip1, is connected to four segments (s1 to s4) marked in blue. Similarly, the orange-colored
intersecting point, labeled as ip2, is connected to four segments (s1 to s4) marked in orange.
Notably, segment s4 in blue and s3 in orange are the same segment, as they connect both
ip1 and ip2. To ensure there is no overlap between adjacent circles, the radius of the circle
should meet the specified limitations, as defined:

r <
1
2

min{||si||}, i = 1, . . . , 4 (1)

where s1 represents the four segments connected to the current intersecting point. ||·|| is
Euclidean norm that is used to calculate the length of segment.

Once all the seeds have been created and stored in the list P as attributes for intersecting
points or nodes, the next step involves calculating the positional relationship between
each seed and all the links in the network. The general equation of a link is given by
Ax+ By+C = 0, where the parameters A, B and C are associated with the two endpoints of
the link. Given a seed pi from the P list, with coordinates (xpi

, ypi
), the position relationship

with link lj from the list L can be calculated as follows:

φij =


1, i f (Ajxpi + Bjypi + Cj > 0)
0, i f

(
Ajxpi + Bjypi + Cj = 0

)
−1, i f (Ajxpi + Bjypi + Cj < 0)

(2)

To illustrate this, we select a subset of seeds as depicted in Figure 4. In the given sketch
map, there are eight links, and we choose six seeds distributed at different positions. By
calculating the position relationship using Equation (2), the results are presented in Table 1.
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Table 1. The position relationship between seeds and links.

Seed
Link

l0 l1 l2 l3 l4 l5 l6 l7

p0 1 1 −1 1 1 −1 −1 −1

p1 1 1 1 1 1 −1 −1 −1

p2 1 1 −1 1 1 −1 −1 −1

p3 −1 1 1 1 1 −1 −1 −1

p4 1 1 −1 1 1 −1 −1 −1

p5 −1 1 −1 1 1 −1 −1 −1

From the obtained results, it is observed that seeds p0, p2 and p4 exhibit the same
position relationship with all eight links. Therefore, these three seeds can be categorized into
a single class. When creating seeds around the circle with the center at intersecting points
or nodes, each generated seed possesses the attribute of the circle center. Consequently,
given any generated seed, we can infer the corresponding intersecting point or node.

Based on this mechanism, by iteratively finding the center point for seeds p0, p2
and p4 in the class, we can deduce the circle centers center n4, ip2, and ip1, respectively.
Subsequently, an instance of the Mesh class can be created with vertices at n4, ip2, and
ip1. Additionally, since the intersecting points ip2 and ip1, as well as the node n4, possess
attributes about the connected segments, by iteratively identifying the duplicate segment,
we can readily determine that the sides of the newly created mesh are composed of segments
s1, s2, and s5.

Using the aforementioned approach, it becomes possible to create all the meshes
within the network. The precise procedure for generating the seeds P and constructing the
meshes Q is summarized in Algorithm 2.

Algorithm 2 The method of creating Seed and Mesh instances

Input: All nodes N, intersecting points Ip, and links L.
Output: Seeds list P and meshes list Q.

1. for all nodes ni in N do
2. Create seeds Pn around nodes ni.
3. for all intersecting points ipi in Ip do
4. Create seeds Pip around intersecting points ipi.
5. P = Pn ∪ Pip

6. for all seeds pi in P do
7. Calculate the position relationship φij with all links in L using Equation (2).
8. Classify the seeds based on φij, infer the vertexes and sides, then create meshes Q.
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It is noted that when create new mesh instance, the reference of new mesh is also
added to the meshes’ slide, that is segments or links on the edge of network. Also, it is
possible to infer the corresponding link from a segment. Therefore, a mapping relation
from a mesh qi to the links where its sides belong to is realized as

f (qi) =
{

lj|j = 1, . . . ,|Lqi

∣∣} (3)

where
∣∣Lqi

∣∣ represents the quantity of mesh qi related links.

3.3. Mesh Cluster (MC) and Mesh Expansion Index (MEI)

When a target enters the region of interest covered by a WSN, typically the edge links
are the first to be triggered. In order to achieve adaptive control of the links and activate
only the related links in the area where the target is present while keeping other links
inactive, the tracking process for the target should commence from the initially triggered
edge links. Subsequently, the tracking can expand to include the connected meshes and
their related links. As a result, we establish two definitions in this context:

Definition 1. The mesh cluster (MC) Qη, ?
i —a set of meshes that consists of a central mesh qi and

the expanded neighbor meshes.

Definition 2. The mesh expansion index (MEI) η—the order (layer) of the neighbor meshes
expanded from the central mesh qi
.

For example, mesh cluster Qη, ?
i includes: central mesh qi, and expanded meshes Q2

i
on layer 2 to Qη

i on layer η. It should be noted that central mesh qi can also be represented
as the mesh Q1

i on layer 1. Qη
i denotes a set of meshes that have the same MEI η to central

mesh qi. The relation can be expressed in equation as:

Qη,?
i =

⋃η

k=1
Qk

i = Qη
i ∪Qη−1

i ∪ . . . ∪Q1
i (4)

Qη
i =

{
qη,k

i

∣∣∣k = 1, . . . , Jk

}
(5)

especially,
Q1,?

i = Q1
i = qi (6)

where symbol ? represents the whole mesh members in all layers. Jk represents the total
number of the meshes in current layer. Intuitive examples for mesh cluster Q1,?

i , Q2,?
i , and

Q3,?
i are shown shown in Figure 5a–c. The structure of a mesh cluster can be abstracted as a

concentric circle, and the innermost layer is the central mesh, and the other layers consist
of the expanded neighbor meshes in different orders of mesh expansion index as shown in
Figure 5d.

Given a mesh cluster Qη,?
i , we can get the mesh cluster related links by

LQη,?
i

=
⋃|Qη,∗

i |
j=1

f
(

qj

)
(7)

where function f (·) is the mapping relation in Equation (3).
∣∣∣Qη,∗

i

∣∣∣ represents the total

number of meshes in mesh cluster Qη,∗
i . It should be noted that there are no duplicate

elements in LQη,?
i

. For example, the related links LQ3,?
i

for mesh cluster Q3,?
i are links in

orange in Figure 5c.
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3.4. Location Estimation

The location estimation based on IMC algorithm is divided into two phases: the
initialization of mesh cluster and the update of mesh cluster.

Phase 1: Initialize mesh cluster.

Before the target enters the RoI, the system can only activate the edge links to save
energy. Once one of the links is triggered, based on the triggered link’s neighbor mesh
qi, we build the first mesh cluster Qη,?

i . Then the system turns to scan the mesh cluster
related links LQη,?

i
. If there is any links in LQη,?

i
are triggered, the target location estimate x̂

will be calculated. The location estimate is calculated by weighted average of the centroid
coordinate of triggered links related meshes in Qη,trig

i . The detailed algorithm about

determining the Qη,trig
i is introduced as follows.

Firstly, the central mesh qi is the first element in the set Qη,trig
i . The system scans the

links in LQη,?
i

, and if any links are triggered by the target, the triggered links are saved in set

L
Qη,trig

i
. Then, we utilize L

Qη,trig
i

to find the related meshes Qη,trig
i , which is a subset of Qη,?

i .

Starting with the central mesh qi, we examine the segments set qi.Seg around qi. For
each segment sj in qi.Seg, we verify if the parent link sj.l for segment sj belong to the part of
the triggered links L

Qη,trig
i

. If the answer is yes, then, we add the newly discovered neighbor

mesh to Qη,trig
i . Otherwise, we proceed to evaluate the next segment qi.Seg. Similarly, we

continue evaluating the next mesh in Qη,trig
i until recursion stops.

The complete process of finding the triggered links’ related meshes is actually the
process of building and traversal of an n-ary tree as shown in Figure 6. When building the
n-ary tree, the root node of the n-ary tree is the central mesh qi, and the other meshes in
Qη,?

i are the leaf nodes at corresponding heights of the tree based on the parameter MEI
η. The n-ary tree is traversed by depth-first search (DFS). In DFS, backtracking is used
for traversal. In this traversal, the deepest node is visited first and then backtracks to its
parent node if no siblings of that node exist. In the mesh cluster, DFS can be interpreted
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as searching from a segment of qi to a related neighbor mesh until no related neighbor
meshes are found, and then backtracking to the next segment of qi. It is also noted that the
minimum set of Qη,trig

i is {qi}, when the set L
Qη,trig

i
is null.
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The procedure of search tree algorithm is summarized in Algorithm 3.

Algorithm 3 A n-Ary Tree Traversal Algorithm

Input: The mesh cluster Qη,∗
i and triggered links LQη,trig

i

Output: The set of triggered links related meshes Qη,trig
i

1. Add the first item to Qη,trig
i ← main mesh qi

2. for all mesh qi in Qη,trig
i do

3. for all segment sj in qi.Seg do
4. if sj.l ∈ LQη,trig

i
then

5. Add the neighbor mesh of segment sj into Qη,trig
i without duplicate.

Phase 2: Update mesh cluster.

We have determined the triggered links related meshes Qη,trig
i in phase 1. Due to the

environmental noise interference, we need to define a distance-based weight to improve
the capacity of resisting disturbance. Simply speaking, the meshes in Qη,trig

i except central
mesh qi that have shorter centroid coordinate distance to qi should have larger weight
value in calculating the location estimate. The distance-based weight is computed as

wk1,k2
i =

1∣∣∣∣∣∣∣∣xq
k1,k2
i
− xqi

∣∣∣∣∣∣∣∣ (8)

where x
q

k1,k2
i

and xqi are the centroid coordinates of mesh qk1,k2
i and qi, respectively. ||·|| is

the Euclidean norm, and k1 = 2, . . . , η, k2 = 1, . . . , γ. η is mesh expansion index. γ is the
number of meshes in corresponding level.

The location estimate at time t is calculated as

x̂t = ∑|Qη,trig
i |

i=1 wi × x
q

k1,k2
i

(9)

where wi =
w

k1,k2
i

∑ w
k1,k2
i

are the normalized weights,
∣∣∣Qη,trig

i

∣∣∣ denotes the cardinality of the set

Qη,trig
i , and x

q
k1,k2
i

represents the centroid coordinate of the mesh qk1,k2
i .
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After the location estimate x̂t is calculated by the mesh cluster Qη,?
i , it needs to be used

to update and determine the next mesh cluster Qη,?
i+1. For all mesh members qk1,k2

i in mesh
cluster Qη,?

i , we calculate the distance from centroid coordinate to location estimate x̂t and
find the corresponding mesh q∗i that has the minimum distance to x̂t

q∗i = argmin
q

k1,k2
i

d
(

x
q

k1,k2
i

, x̂t

)
(10)

where d(·) represents the Euclidean distance operation.
If the q∗i and the central mesh qi is the same mesh, the system will keep scanning the

links in LQη,?
i

and calculate new location estimate rather than update mesh cluster Qη,?
i+1.

On the contrary, if the q∗i and the central mesh qi are not the same, the q∗i will be selected
as the central mesh qi+1 for updating the new mesh cluster Qη,?

i+1. The process of building
Qη,?

i+1 with the mesh expansion index η is the same with building Qη,?
i . As soon as the

mesh cluster Qη,?
i+1 is built, the system turns to scan the links LQη,?

i+1
, which is calculated

by Equation (7) based on the mesh cluster Qη,?
i+1. In this way, the system can calculate the

location estimate continuously in real time as the target moves until it leaves the RoI. The
complete work flowchart is shown in Figure 7.
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The procedure of the proposed IMC algorithm is summarized in Algorithm 4.

Algorithm 4 Intelligent Mesh Cluster Algorithm

1. Network initialization: Build Nodes N, and Links L.
2. Build Ips Ip and Segments Seg for each link using Algorithm 1.
3. Build Seeds P for each intersecting points and nodes, Meshes Q using Algorithm 2.
4. Scan the edge links of the network and build the first mesh cluster Qη,?

i .
5. Scan the links in LQη,?

i
and calculate the location estimate x̂t using Equation (9).

6. Find the nearest mesh q∗i using Equation (10).
7. if q∗i is qi then
8. Go back to step (7).
9. else
10. Update the next mesh cluster Qη,?

i+1 and go back to step (7).

4. Performance Analysis and Evaluation

In this section, we evaluate the performance of the proposed IMC algorithm based DFL
system with simulation analysis. We compare the proposed scheme with a conventional
signal dynamic model based DFL system in terms of energy consumption and location
estimation accuracy. To evaluate the performance of the IMC scheme, we designed four
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typical courses and simulated them under different system parameters. Some of the
simulation results are shown in Figure 8.
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The average error of the estimated target location is defined as

ε =
1

Ks
∑Ks

k=1

√
(xk − x̂k)

2 + (yk − ŷk)
2 (11)

where Ks is the total number of samples, xk and yk are the actual target location coordinates
of the x-axis and y-axis, x̂k and ŷk are the estimated x and y coordinates at sample time k.

In order to test the anti-interference performance of the proposed algorithm, we
designed a group of simulations. As shown in Section 3.4, the system only scans a subset
of links in LQη,?

i
. We give a concept to describe noise interference level which is defined as

Definition 3. The interference level (IL) equals the number of links in LQη,?
i

that have the inverse
state compared to the actual triggered state.

In the ideal situation, there is no environmental interference and all links in LQη,?
i

are
triggered by the target, at this time, IL = 0. The noise interference become more serious as
the value IL increases.

In our previous work [38], we discussed the power consumption model for the wireless
communication links among the wireless nodes in the WSN. For a single wireless link
with length d, the received power Pr in Watt at receiver node is represented in the terms of
antenna as:

Pr(d) =
PtGtGrλ2

(4π)2d2γ
(12)
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where Pt is the transmitted power in Watt, Gt and Gr are the antenna gains for the transmit-
ter and receiver, λ is radio carrier wavelength, γ is a constant system loss factor. The model
can also be represented in units of dBm as:

PR(d) = PT − 20lgd + φ + Xn (13)

where PT and PR are the transmitted and received power in dBm, respectively.
φ = log10

GtGrλ2

(4π)2γ
is a constant value related to the system, Xn is a random variable that

obeys a zero-mean Gaussian distribution. Due to variations in the lengths of wireless links
within the WSN and the complexity of calculating energy loss consumed by the system
itself, we focus solely on the energy consumption attributed to mesh cluster-related wireless
links during the localization process. Assume the energy consumption for scanning all
the wireless links in L in turn is ε, the energy consumption εimc with the scanning strategy
under the proposed IMC scheme can be represented as follows:

εimc =

∣∣∣LQη,?
i

∣∣∣
|L| ·ε (14)

where LQη,?
i

is described in Equation (7); ε ≈ N(N−1)
2 ·Pr·t, in which N equals the quantity

of wireless nodes in the WSN, t is localization process time.
The average number of opened links

∣∣∣LQη,?
i

∣∣∣ during the localization process is shown in
Figure 9a. The energy ratio εimc/ε about the saved energy in IMC scheme with conventional
scan strategy is shown in Figure 9b. The proposed IMC scheme demonstrates significantly
reduced energy consumption, approximately 20% to 30% compared to the conventional
wireless link scanning strategy.
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Figure 9. Parameter influence analysis graph. (a) The number of opened links under different mesh
expansion index η as the target moves. (b) The comparison of energy consumption with different
mesh expansion index η.

The performance of the proposed method under different parameter settings, namely
Mesh Cluster Expansion Index η and standard distance λ, in an ellipse model proposed
in [20] is illustrated in Figure 10. Figure 10a demonstrates the impact of increasing Mesh
Cluster Expansion Index η on the system’s localization accuracy. As η increases, the
system exhibits improved accuracy in localizing the target. However, Figure 9a suggests
that excessively large values of η may lead to the loss of the target. Through simulation
experience, it has been determined that the system achieves stable and accurate tracking
performance when η is set to 6 or 7. Figure 10b focuses on the effect of different values
of standard distance λ in the ellipse model on tracking accuracy. It is observed that both
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extremely large and extremely small values of λ result in decreased tracking accuracy. The
optimal value for λ in this scenario is approximately 2.5.
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The mean tracking error and cumulative distribution function (CDF) [39] for the
proposed algorithm are compared with RTI [20–22], BGA [23], GF [30], and sequential
importance resampling (SIR) particle filter [16], as illustrated in Figure 11. The simulation
results demonstrate the effectiveness of the proposed algorithm.
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5. Computational Complexity Analysis

The IMC algorithm leverages geometric relationships among various objects, such
as nodes, links, segments, intersecting points, seeds, meshes, and mesh clusters. These
relationships are utilized to combine wireless link triggering, link switching, and mesh
cluster conversion processes to achieve DFL target tracking. Importantly, this approach
does not require a complex building model or the storage of a substantial amount of RSS
data from all wireless links simultaneously.

In the view of algorithms, according to Algorithms 1 and 2, the running time is domi-
nated by the two-layer loop to calculate the intersecting points and create the seed around
these points, which is related to the quantity of the wireless links L, whose complexity is
O
(

L2). The classification algorithm (line 8) in Algorithm 2 is used to classify the arrays
including 0, 1, and −1 with the same array length to classify seeds, introducing a complex-
ity of O(L). In the localization process, the computational complexity for the n-Ary Tree
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traversal algorithm in Algorithm 3 is O(K). A traversal of a tree touches every node in the
tree once, by definition. If there are K tree nodes, the time complexity is O(K). Overall, the
total computational complexity is O

(
L2 + L + K

)
.

In the BGA and RTI schemes, an M× Ng matrix is computed offline to generate an
image representing target-induced shadowing within the deployment area. BGA employs
addition and multiplication operations on a series of vectors to estimate the target’s location.
However, in BGA, the Ng × 1 prior region must be constructed at each iteration, even for
grids where the target is highly unlikely to be located.

6. Conclusions and Future Work

In this study, we proposed an IMC algorithm aimed to solve the DFL problem. Inspired
by the object-oriented programming idea of Python, we divide the WSN into different
intelligent modules, which can exchange more information and improve the ability to
detect target of the monitored system. The algorithm can localize the targets based on
the predetermined transforming relationship of all meshes and realize energy saving by
only scanning parts of targets related links, which is also achieved through the relationship
of meshes and links. The simulation results show that the proposed IMC algorithm has
achieved accurate positioning and decrease the energy consumption than conventional
DFL scheme.

In the future, the practical implementation of the IMC algorithm is a crucial aspect
that requires in-depth exploration. As for the proposed scheme is to be used in practice,
it is important for achieving accurate switching between different mesh cluster-related
wireless link groups, while also maintaining continuous tracking of device-free targets as
they move within the region of interest. Real-world deployment and extensive field testing
will be necessary to validate its performance under various environmental conditions and
network scenarios.
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