
Citation: Mossa, M.A.; El Ouanjli, N.;

Gam, O.; Do, T.D. Enhancing the

Performance of a Renewable Energy

System Using a Novel Predictive

Control Method. Electronics 2023, 12,

3408. https://doi.org/10.3390/

electronics12163408

Academic Editor: Balaji

Venkatasubramanian

Received: 19 July 2023

Revised: 3 August 2023

Accepted: 7 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Enhancing the Performance of a Renewable Energy System
Using a Novel Predictive Control Method
Mahmoud A. Mossa 1,* , Najib El Ouanjli 2 , Olfa Gam 3 and Ton Duc Do 4,*

1 Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt
2 Faculty of Sciences and Technology, Hassan 1st University, Settat 26000, Morocco; najib.elouanjli@uhp.ac.ma
3 Département École de Genie, Université Québéc en Abitibi Témiscamingue,

Rouyn-Noranda, QC J9X 5E4, Canada
4 Department of Robotics and Mechatronics, School of Engineering and Digital Sciences, Nazarbayev

University, Astana 010000, Kazakhstan
* Correspondence: mahmoud_a_mossa@mu.edu.eg (M.A.M.); doduc.ton@nu.edu.kz (T.D.D.)

Abstract: The current study concerns improving the performance of a renewable energy system
using systematically designed control algorithms. The performance of the system under study is
evaluated under two operating scenarios: the first in which the system consists of only a wind-driven
synchronous generator connected to the utility grid; in the second scenario, the generator is combined
with a photo-voltaic solar system and a battery for supplying a load. Each system component is
modeled and thoroughly described. To maximize the benefits of solar and wind energies, two separate
maximum power point tracking procedures are adopted. Furthermore, to enhance the generator’s
dynamics, a novel predictive control scheme is designed and validated by comparing its performance
with traditional predictive control. The novel predictive controller utilized a simple and unique cost
function to avoid the shortages of traditional predictive controllers. For standalone operation, an
effective procedure is adopted to ensure the power balance between the generation, storage, and
isolated load units. To evaluate the effectiveness of the designed controllers under different operating
regimes, Matlab/Simulink is utilized for this task. The obtained results confirm the superiority of
the novel predictive scheme used with the synchronous generator over the classic control approach
for the two operating scenarios. This has been shown in the form of reduced ripples and reduced
current harmonics. The obtained results are also confirming the validity of the adopted maximum
power tracking strategies with solar panels and wind turbines as well. Furthermore, balanced power
delivery is achieved thanks to the adopted management strategy for standalone operation, which
enhances the overall system performance.

Keywords: synchronous generator; wind; PV; predictive control; MPPT; grid connection; standalone
operation; power management

1. Introduction

The remarkable shortage in the deposits of fossil fuels around the world inspired
scientists to look for alternative sources. Renewable energy can be found in different
forms according to its origin, like wind, solar, geothermal, wave, and nuclear energy [1].
However, in order to realize the maximum exploitation of those types, a precise plan should
be followed in which the system emulation is fulfilled through the modeling and control of
each system component. The renewable energy system also has different configurations
according to the number of generation units used and the point of common coupling.
For example, there are systems that consist of only one generating unit [2]. The main
challenge when connecting these systems is ensuring power synchronization with the grid
and delivering power with high quality. In such systems, attention must be paid to ensure
appropriate dynamic performance for the generation unit and grid as well. Accordingly, the
choice of adopted control with machine and grid sides must be precisely accomplished [3].
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Alternatively, renewable energy systems can come in another form in which they are
disconnected from the grid but feed remote, isolated loads [4]. These types can consist of
only one generation unit. However, these types are not so favored due to their reduced
reliability and limited generation of power [5]. Consequently, the orientation towards
hybrid renewable systems is given higher attention. Higher dependability and increased
load ratings are provided by hybrid systems [6,7]. In general, these systems comprise
multiple generation units [8]. Additionally, due to natural weather conditions, hybrid sys-
tems are usually linked with storage devices such as batteries, fuel cells, and flywheels [9].
Accordingly, a proper power management system should be present to ensure smooth
power exchange between all system components.

Present studies show the viability of combining many energy sources, and they also
highlight the consequences of variations in weather conditions on hybrid systems [10]. The
majority of research; however, concentrated on the scale and operational conditions of
hybrid energy systems with straightforward structures. For example, various optimizers
were employed in [11,12] to scale the hybrid system components. The investigation that
was published in [13] examined how a hybrid system fed DC average loads while the
AC category loads were considered in [14]. Although the studies in [15,16] investigated
how hybrid power systems operate independently, they didn’t outline the examination of
energy management approaches.

Further research on hybrid power systems can be conducted by incorporating effective
power regulation and storage technologies. The target of power management (PM) is to
keep a balance among the generated, consumed, and stored powers. The investigation may
also take the form of developing new controllers. For example, the efficiency of the PV
modules has been improved through extensive research. To highlight this issue, several
techniques for monitoring the maximum power point (MPP) of a PV module have been
put forth [17,18]. PV systems must incorporate an MPPT technique for the solar array
because PV modules still have low conversion efficiency. The operating voltage of the array
determines how much power a PV system will produce. The MPP of a PV changes with
temperature and solar insulation [19]. Accordingly, the switching signals for the PV power
converter should be handled to ensure the achievement of this purpose.

In wind systems, a variety of generator topologies were utilized, starting with the
asynchronous generators with their different categories, such as squirrel cage or wound ro-
tor types [20,21], and then moving forward to the synchronous generators with permanent
magnets [22]. However, there is still an obvious gap in studying the performance of wind
generation systems using multi-phase machines as an alternative to the traditional, previ-
ously mentioned three-phase machine types. Multi-phase machines have recently attracted
new interest [23,24]. Furthermore, having a lot of phases enables power segmentation,
which distributes loads across a variety of components [25]. This makes it possible to use
power components with high switching frequencies, which reduces the current harmonics
and the torque ripples [26,27]. These benefits shouldn’t, however, obscure how intricate
their control is in both normal and impaired modes [28]. Due to the advantages of multi-
phase machines, several studies have been presented to achieve the optimal performance
of such machines.

The five-phase PMSG has proven itself as a superior multi-phase generator type in
comparison with the multi-phase induction machines. Different control algorithms are
considered for managing the performance of the five-phase PMSG. In [29], the authors
adopted the vector control principle to achieve decoupled regulation of the d-q components
of the generated current. A good steady-state performance was achieved; however, a
delay in the response was present. Alternatively, the DTC control was used in [30], which
replaced the PI current regulators with two hysteresis comparators and a unique voltage
look-up table. Faster dynamics and reduced complexity were obtained with the DTC in
comparison with vector control. However, the ripples of generated quantities and current
harmonics were very noticeable in DTC. After that, recent control theories such as sliding
mode control (SMC) [31] were adopted for controlling the operation of the five-phase PMSG.
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Better performance was obtained compared with the vector control and DTC techniques.
However, the use of PWM modulators with these control approaches increased the overall
system complexity. This is in addition to some internal control issues, such as the chattering
effect in the SMC approach. Accordingly, an effective control theory appeared and was
used as an alternative to the mentioned control topologies, which is the predictive control
(PC) theory [32]. This controller has the capacity to implement multiple control goals at
once. It also can perform its task without utilizing a modulation scheme such as PWM.
All of these facts provided more simplicity and flexibility for such a controller. The PC
depends on utilizing a unique convergence condition (CC) that must be achieved to fulfill
the control requirements. Based upon this hypothesis, different convergence conditions are
adopted according to which variables should be controlled. For example, in [33], predictive
torque control (PTC) is considered, in which the CC is expressed by a mathematical formula
that incorporates the definite errors of the generator torque and flux. The control target
is to minimize this CC when the actual variables deviate from their references. Better
performance was achieved with the PTC compared with the classic DTC and vector control.
However, the main challenge was determining the appropriate value of the weighting
coefficient to be used in the CC. Any imprecise selection of this value results in deteriorating
control performance due to inaccurate voltage selection. Accordingly, the need to use a
CC that doesn’t use a WC and combine control variables from the same category became
a requirement. The predictive current control (PCC) [34] is then adopted to fulfill these
requirements, and better performance is achieved. However, the high computation burdens
for the PTC and PCC were common and where not enhanced anymore. As a solution,
the current paper presents the design for an effective predictive controller that avoids the
deficiencies in previous controllers. The modified structure of the proposed controller
helped ensure better steady state and transient operations. Additionally, it succeeded
in relieving the computation capacity in relevant with the classic predictive controllers.
To ensure power balance, an effective power management (PM) procedure is adopted.
Furthermore, the control designs of the used converters are systematically explained.

Upon this detailed review, the paper contributions can then be outlined as follows:

1. Introducing a detailed examination of a renewable energy system operated in two
different modes: grid connected and standalone.

2. A detailed design for the control systems used for each system unit is discussed.
3. A novel predictive control topology is developed and applied to enhance the syn-

chronous generator’s dynamics.
4. An effective MPPT strategy for the PV system is formulated and validated.
5. For standalone operation, an efficient procedure is adopted to maintain the power balance.
6. The feasibility of the considered generation system is confirmed for different

operating conditions.

The current paper is organized as follows: in Section 2, the modeling of all system
components is provided in detail. Section 3 describes the control design for all system
components. Section 4 introduces and defines the procedure utilized to ensure power
balance. The testing results are provided and analyzed in Section 5. Finally, Section 6 gives
the study’s conclusion.

2. System under Study

The system under investigation is depicted in Figure 1. It consists of a wind generation
system that incorporates a five-phase PMSG, a PV solar system, and a battery. The system,
as mentioned earlier, can operate in two states: the first, in which the system is connected
to the grid via a converter (GSC), which is controlled using the PCC principle (Figure 1a);
and the second, in which the system is feeding an isolated load (Figure 1b). The system
also includes the controllers used with all components. The control systems include the
battery control system, the PV panel’s converter control system, the turbine power system,
and the five-phase PMSG control system as well. Therefore, all of these units must be
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accurately emulated and adjusted for each particular task in order to preserve proper
system operation.
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2.1. Wind Power System

This system consists of the turbine and five-phase PMSG and their relevant controllers.
Also, the system incorporates the machine-side converter, which needs to be controlled to
manage the delivered power to either the grid or an isolated load. Accordingly, the turbine
and generator modeling is presented in the following subsections.

2.1.1. Turbine Modeling

To represent the turbine’s dynamics, a numerical model is required. The MPPT is
often employed to obtain the highest amount of wind energy available [35].

The wind power (Pw) and turbine power (Pt) are expressed by

Pw = 0.5ρAω3
w, and Pt = CPPw (1)

The power coefficient CP can be calculated by [36]

CP(γ,β) =
[

80
γi
− 0.31β− 0.0011β2.14 − 6.99

]
e(
−18.4
γi

) (2)
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Using (1,2), the turbine’s torque is evaluated as

Tt =
Pt

ωt
=

CP.
(

0.5ρAω3
w

)
ωt

(3)

The generator’s torque (Tg) and speed (ωg) can be in turn evaluated by

Tg =
Tt

X
andωg = Xωt (4)

where X is the gear ratio.
The dynamics of the turbine/generator system are expressed by

dωt

dt
=

Tt − XTg − fXωt(
Jt
X + XJg

) (5)

where Jt and Jg are the turbine and generator inertias, and f is the friction constant.
It is argued that an ideal value of γopt must be chosen and used in order to ensure

maximum CP,max and accordingly Pw,max can be obtained.
Lastly, the reference speed signals to be used are calculated by

ω∗t =
2γoptωw

D
andω∗g = Xω∗t (6)

2.1.2. Modeling of PMSG and Machine Side Converter

The dynamics of the surface mounted five-phase PMSG can be represented using
the following formulas [29,30]: defined in the rotating (d-q-x-y) synchronous frame and
defined in a discrete form at instant kTs

disd,k

dt
=

1
Ls

[
Vsd,k − Rsisd,k + pLsωg,kisq,k

]
disq,k

dt
=

1
Ls

[
Vsq,k − Rsisq,k − pLsωg,k

(
isd,k +

ψf,k

Ls

)]
disx,k

dt
=

1
Ll

Vsx,k −
Rs

Ll
isx,k

disy,k

dt
=

1
Ll

Vsy,k −
Rs

Ll
isy,k (7)

where Rs, Ls and Ll are respectively the stator resistance, stator inductance, and stator
leakage inductance. p is the pole pairs, ωg is the generator mechanical speed, and ψf is the
rotor flux.

The mechanical dynamics of the generator can also be represented by

dωg,k

dt
=

1
Jg

(
Tt,k − Tg,k − fωg,k

)
(8)

where the torque Tg in (8) can be expressed by

Tg,k =
5
2

p
(
ψf,kisq,k

)
(9)
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A five-phase converter can act as the handler of the generated power from the five-
phase PMSG, as stated in [37]. The switching states for this converter can be represented by

Sabcde,k =
[
Sa,k Sb,k Sc,k Sd,k Se,k

]T ∈ {0, 1}5 (10)

If Si = 1 for i ∈
{

a b c d e
}

, the lower switch is turned off and the upper one is
turned on. If Sk = 0, on the other hand, the lower switch will be on while the top switch
will be off.

Accordingly, the generator terminal voltages Vabcde can be evaluated as follows: [38]
Va,k
Vb,k
Vc,k
Vd,k
Ve,k

 =
Vdc,k

5


4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1
−1
−1

−1
−1
−1

4
−1
−1

−1
4
−1

−1
−1
4




Sa,k
Sb,k
Sc,k
Sd,k
Se,k

 (11)

2.2. DC Bus and Filter Modeling

Under grid tied operation, the generation system is composed only of the wind-driven
five-phase PMSG, with its output terminals connected to a five-phase converter (MSC). The
MSC handles the power through a DC bus, and then it delivers it to the grid through a
three-phase GSC. The control of GSC aims to adapt the DC bus voltage and maintain a
unity PF [39,40].

Given that the grid voltage Vg,k is aligned totally along the rotating frame quadrature
axis, accordingly

Vqg,k =
∣∣∣Vg,k

∣∣∣, and Vdg,k = 0.0 (12)

where Vdg and Vqg are the grid voltage components. Accordingly, the voltage distribution
across the grid filter is represented by

didf,k

dt
=
(

Ed,k − Rfidf,k +ωe,kLfiqf,k

)
/Lf (13)

diqf,k

dt
=
(

Eq,k − Rfiqf,k −ωe,kLfidf,k −Vqg,k

)
/Lf (14)

where the filter’s resistance and inductance are and Lf, respectively. The GSC d-q voltages
are noted as Ed and Eq, the grid angular frequency is ωe, which is determined by a PLL
system, and the d-q axis current components of the general utility are noted by idf and iqf.

Then, the dynamic of DC bus is represented by

C
dVdc,k

dt
= Idc,k = Ig,k − Iinv,k (15)

where C is bus capacitance, Vdc is the DC potential, Idc is the current through DC link, Ig is
the generated current and Iinv is the input current to the GSC.

2.3. PV and Battery Systems Modeling
2.3.1. Modeling of PV System

The second operation scenario for the system is the standalone operation, in which
the wind generation system is combined with a PV system and a battery while supplying
an island load. Accordingly, the modeling of PV and battery units should be derived.

In a solar cell, solar energy is converted into electrical energy using the photovoltaic
phenomenon. A solar cell’s circuit is shown in Figure 2a [41].
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Np parallel PV threads with Ns PV cells wired in series make up an array. To provide
the required load power, a combination of series/parallel attached cells and panels is
considered. The PV array’s circuit is illustrated in Figure 2b.

The current IPVc is computed by [42].

IPVc,k = Ic,k − ID,k − IRp,k = Ic,k − Io,k

[
e(q.

VPVc,k+RsIPVc,k
∇BT ) − 1

]
−

VPVc,k + RsIPVc,k

Rp
(16)

where Ic is the source direct current, Io is the reverse current, ID is the diode current, IRP is
the current through parallel resistance, ∇ is ideality factor, T is the temperature in Kelvin,
B is the constant of Boltzman, and VPVc is the cell voltage.

The source direct current Ic is then expressed by

Ic,k = [Isc,k + 0.001Tc(T− 298).Sr,k] (17)

where Isc is the short-circuit cell current, Tc is the temperature constant (A/K), and Sr is the
irradiation (W/m2).

By constructing a combination of PV cells, a PV array can be obtained that provides a
current IPVc that can be computed by

IPV,k = Np.Ic,k −NpIo,k

e
(q.

VPV,k+
NS
Np

RsIPV,k
NpNS∇BT ) − 1

− VPV,k +
NS
Np

RsIPV,k

NS
Np

Rp
(18)

Then, the developed power is given by

PPV,k = VPV,k.IPV,k (19)

2.3.2. Battery Model

A power storage unit is essential to cover the power reduction during harsh weather
conditions due to the discontinuous wind speeds and low irradiation levels. Accordingly,
the equivalent battery circuit is illustrated in Figure 3. where the variables Vb and Ib pertain
to the voltage and current of the battery, Ibu and Isu to the bulk and surface currents, Rt, Re
and Rsu to the terminal, end, and surface resistances, and Csu and Cbu to the surface and
bulk capacitances, respectively [43].
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The battery voltage equations are expressed by

Vb,k = Ib,kRt + Isu,kRsu + Vsu,k = Ib,kRt + Ibu,kRe + Vbu,k (20)

3. Design of Control Systems

This section presents and describes the specific design processes for control systems.
At first, the control of the PV boost converter is explained. Then, the battery converter’s
control system, the classic PTC control, and the proposed predictive control algorithm
are explained.

3.1. Battery Converter Control

A bi-directional converter must be used to manage the battery operation. A view of
the battery storing system is illustrated in Figure 4. A converter’s continuous model is
used, through which the modulated voltage (Vm,bat) and current (Im,bat) of the battery are
represented by

Vm,bat,k = m∗bat,kVdc,k, and Im,bat,k = m∗bat,kIbat,k (21)
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To produce the reference index m∗bat,k, the reference battery voltage must first be
obtained, and to do this, a PID controller is designed systematically as follows:

As indicated in Figure 4, the output of the PID regulator (ε) can be represented by

ε(s) = Vbat(s)−V∗m,bat(s) = Vbat(s)−m∗batVdc(s) (22)

In (22), the voltage difference is equivalent to the voltage through the battery inductor
Lbat; accordingly

ε(s) = sLbatIbat(s) (23)
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Utilizing (22), the dynamics of the PID-based closed loop illustrated in Figure 4 can be
defined by

(Ibat(s)− I∗bat(s)) ∗
(

Kd,Bs2 + Kp,Bs + Ki,B

s

)
= sLbatIbat(s) (24)

The reference I∗bat is obtained by dividing the power difference by the voltage, as shown
in Figure 4. By dividing (24) on I∗bat(s) and carrying out some mathematical calculations,
the transfer function (tf) that outlines the PID dynamics is represented by

Y(s) =
Ibat(s)
I∗bat(s)

=
Kd,Bs2 + Kp,Bs + Ki,B

(Lbat + Kd,B)s2 + Kp,Bs + Ki,B
(25)

To ensure system stability, the denominator of (25) should have negative real roots.
Accordingly, the next level of equality must be present

(Lbat + Kd,B)s
2 + Kp,Bs + Ki,B = 0 (26)

Instead, the second-order dynamic system can be described using the next relationship

s2 + 2ζωos +ω2
o = 0 (27)

where ζ andωo are the damping factor and natural system frequency, respectively.
By comparing (26) and (27), the values of PID coefficients are calculated as follows:

Kd,B = 1− Lbat, Kp,B = 2ζωn, Ki,B = ω2
n (28)

3.2. Control Algorithm for PV System

As a simplified and effective solution at the same time, an incremental conductance
algorithm (ICA) integrated with a PID controller is utilized for providing the optimal
duty cycle, as illustrated in Figure 5. By comparing the incremental and instantaneous
conductance of the PV array, the ICA follows the MPP. The tracking method is articulated
on the observation that the slope tangent of the property power/voltage (P-V) in MPP is
equal to zero.
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This slope’s computation is provided by [44,45]:

dPPV

dVPV
=

d(VPV.IPV)

dVPV
= IPV + VPV

dIPV

dVPV
(29)
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IPV

VPV
+

dI
dVPV

= 0 (30)

The PID regulator in the proposed tracking system receives the calculated value of
(30) as an error signal and starts to minimize in favor of reducing the error between the PV
slope and reference value. After that, the PID starts to provide the reference signal to the
PWM generator to finally provide the switching signals to the converter IGBT.

The transfer function of a closed loop system using a PID regulator can be represented by

G(s) =
Gc(s)∗GPID(s)

1 + Gc(s)∗GPID(s)
(31)

where GPID(s) is the representation of PID dynamics in the s-domain and can be represented by

GPID(s) =
KDs2 + KPs + KI

s
(32)

Alternatively, the Gc(s) is the control object (output converter voltage) transfer func-
tion, which is defined by

Gc(s) =
1
s

(33)

Then, by substituting (32) and (33) into (31), the closed-loop control is represented by

G(s) =
KDs2 + KPs + KI

(KD + 1)s2 + KPs + KI
(34)

The denominator of (34) represents the characteristic equation of the closed loop
control based on a PID controller, which should be compared with the characteristic
equation of the transfer function that contemplates the duty cycle as an input and the
converter voltage as an output and which can be expressed by

H(s) =
(1−D)Vc(s)− LcIl(s)∗s

LcCcs2 + (Lc/Rl)s + (1−D)2 (35)

where D is the duty ratio, Vc is the converter output voltage, Lc and Cc are the specified
inductance and capacitance of the converter, Il is the current passing through the converter
inductance, and Rl is the load resistance connected to the converter terminals.

Now, by comparing the denominators of (34) and (35), the PID coefficients to be
utilized are given by

KP =
Lc

Rl
, KI = (1−D)2 and KD = LcCc (36)

3.3. Control of GSC

The control of GSC is concerned with maintaining unity pf at the grid terminals.
A predictive current scheme (PCC) is utilized for this purpose. The PCC employs a
cost function that aims to limit the current deviation. The cost function can then be
expressed by [46,47]

∆j
k+1 =

∣∣∣i∗df,k+1 − ĩdf,k+1

∣∣∣j + ∣∣∣i∗qf,k+1 − ĩqf,k+1

∣∣∣j (37)

where j is the index, and ĩdf,k+1 and ĩqf,k+1 are the filtered signals of grid currents are
calculated via utilizing (13) and (14) as follows:

ĩdf,k+1 =

(
didf,k

dt

)
Ts + idf,k, and ĩqf,k+1 =

(diqf,k

dt

)
Ts + iqf,k (38)
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The reference i∗qf,k+1 is derived while adopting a grid voltage orientation along the
quadrature axis of the synchronous frame by managing the error between the measured
and reference values of DC bus voltage, whereas the current i∗df,k+1 is obtained from the
reactive power reference signal Q∗g,k+1 that is kept to zero to maintain the unity pf running.

3.4. Control of Five-Phase PMSG
3.4.1. Classic Predictive Torque Control

The controlled variables taken into account by the PTC technique are torque and
flux [34]. Consequently, the absolute errors and a weighting factor make up the convergence
condition (CC) used by the PTC approach. The utilization of this CC offers an alternative
operator to the hysteresis regulators that were previously used in classic DTC. Based upon
these hypotheses, the CC formula of the PTC can be represented by

δi
k+1 =

∣∣∣T∗g,k+1 − T̃g,k+1

∣∣∣i + wf

∣∣∣ψ∗g,k+1 − ψ̃g,k+1

∣∣∣i (39)

where T∗g,k+1 and ψ∗g,k+1 are the references.
The turbine system modeled using (1–6) provides the torque reference T∗g,k+1, and the

flux reference ψ∗g,k+1 is determined as follows:

ψ∗g,k+1 =

√√√√√√
Ls

0.0︷ ︸︸ ︷
i∗sd,k+1 +ψf,k+1


2

+
(

Lsi∗sq,k+1

)2
+

Ll

0.0︷ ︸︸ ︷
i∗sx,k+1


2

+

Ll

0.0︷ ︸︸ ︷
i∗sy,k+1


2

(40)

The reference current i∗sq,k+1 in (40) is evaluated by

i∗sq,k+1 =
T∗g,k+1

2.5pψf,k+1
(41)

Additionally, the actual predicted signals in (39) are obtained as

T̃g,k+1 = 2.5pψf,k+1̃isq,k+1 (42)

ψ̃g,k+1 =

√(
Ls̃isd,k+1 +ψf,k+1

)2
+
(

Ls̃isq,k+1

)2
+
(

Ll̃isx,k+1

)2
+
(

Ll̃isyk+1

)2
(43)

The currents in (43) are evaluated with the help of (7).
The control begins by doing the calculation of (39) using the thirty two voltages that

are accessible while using the FCS technique to select the vectors. It then selects and applies
the principal vector that keeps the (39) at its lowest value. To predict the torque and flux
(T̃g,k+1 and ψ̃g,k+1), the control system first senses the stator voltage Vs and current Vs and
uses these along with speed ωg. The used CC block in the scheme, which supplies the
control signals to the converter, receives the reference signals ψ∗g,k+1 and T∗g,k+1 as inputs
from the control system.

3.4.2. Predictive Flux Control

The predictive flux control (PFC) theory has been designed and applied to solve some
of the classic PTC approaches for synchronous generators [48]. This has been fulfilled in the
form of the convergence condition (CC). The formulated CC consisted of two similar parts,
which are the absolute errors between the reference (ψ∗αg,k+1, ψ∗βg,k+1, ψ∗zg,k+1, ψ∗wg,k+1)
and predicted values (ψαg,k+1, ψβg,k+1, ψzg,k+1, ψwg,k+1) of α-β-z-w components of stator
flux. This helped eliminate the use of the weighting factor used by the PTC. However, the
issue of using estimated variables in the CC still exists and will be handled later by the
newly designed predictive controller.
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The CC of the PFC can be then expressed by

Λi
k+1 =

∣∣∣ψ∗αg,k+1 −ψαg,k+1

∣∣∣i + ∣∣∣ψ∗βg,k+1 −ψβg,k+1

∣∣∣i + ∣∣∣ψ∗zg,k+1 −ψzg,k+1

∣∣∣i + ∣∣∣ψ∗wg,k+1 −ψwg,k+1

∣∣∣i (44)

By expressing the generator model in the stator frame, the flux references (ψ∗αg,k+1,ψ∗βg,k+1,

ψ∗zg,k+1, ψ∗wg,k+1) in (44) can be evaluted using the reference flux
∣∣∣ψ∗g,k+1

∣∣∣, the torque angle
δ∗k+1 and the rotor position θg,k.

The α-β reference flux components can be derived with the help of the reference load
angle that can be expressed by [48]:

δ∗k+1 = sin−1

 T∗g,k+1

2.5 p
Ls

∣∣∣V∗g,k+1

∣∣∣ψf,k+1

 (45)

Alternatively, the predicted actual flux components (ψαg,k+1, ψβg,k+1, ψzg,k+1, ψwg,k+1)
can be evaluated using the generator model in (7) expressed in the stator frame. Finally, the
PFC starts to evaluate (44) and determines the optimal vector that minimizes it and applies
it to the terminals of the MSC.

3.4.3. New Designed Predictive Control Technique

The new control topology is designed to overcome the disadvantages of the PTC and
PFC schemes. The designed controller employs a CC made up of two identical components,
which eliminates the weighting coefficient and consequently helps limit the oscillations that
can be brought on by inaccurate selection. Furthermore, the designed CC uses a variable
that doesn’t require a lot of processing, in contrast to the variables used in PTC, such as
torque and flux, and in PFC, such as flux components. This contributes to more effective
control structure simplification and enhanced dynamic behavior.

The formulated controller’s CC comprises the stator voltage errors. Thus, it is ex-
pressed by

{i
k+1 =

∣∣V∗sd,k+1 −Vsd,k+1
∣∣i + ∣∣∣V∗sq,k+1 −Vsq,k+1

∣∣∣i + ∣∣V∗sx,k+1 −Vsx,k+1
∣∣i + ∣∣∣V∗sy,k+1 −Vsy,k+1

∣∣∣i (46)

By checking (46), it is realized that all used variables are of a unique type (voltage sig-
nal). The actual voltage components (Vsd,k+1,Vsq,k+1,Vsx,k+1,Vsy,k+1) are obtained directly
from the switching states of the converter with the help of the FCS principle, which selects
from definite number of voltage vectors; accordingly, there is no need for high calculation
capacity. On the other hand, the reference voltage signals V∗sd,k+1, V∗sq,k+1, V∗sx,k+1 and
V∗sy,k+1 are derived by utilizing the backstepping control theory as follows:

The current error signals are given by

esdq,k+1 = i∗sdq,k+1 − isdq,k+1 and esxy,k+1 = i∗sxy,k+1 − isxy,k+1 (47)

From (47) and using the current derivatives in (10), the current error derivatives can
be calculated by

.
esd,k+1 =

−1
Ls

[
−Rsisd,k+1 + pLsωg,k+1isq,k+1 + Vsd,k+1

]

.
esq,k+1 =

di∗sq,k+1

dt
− 1

Ls

[
−Rsisq,k+1 − pLsωg,k+1isd,k+1 − pωg,k+1ψf,k+1 + Vsq,k+1

]
.
esx,k+1 =

−1
Ll

[−Rsisx,k+1 + Vsx,k+1]
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.
esy,k+1 =

−1
Ll

[
−Rsisy,k+1 + Vsy,k+1

]
(48)

Moreover, the speed error can also be defined by

eω,k+1 = ω∗g,k+1 −ωg,k+1 (49)

where ω∗g,k+1 is the target speed given by (6). Then, using (49) and (8), the dynamics of
speed error can be defined by

.
eω,k+1 =

dω∗g,k+1

dt
−

dωg,k+1

dt
=
−1
Jg

[
Tt,k+1 − 2.5pψf,k+1isq,k+1 − fωg,k+1

]
(50)

To maintain a stable shaft dynamic system, Lyapunov’s function is adopted as [13]:

L1,k+1 =
1
2

e2
ω,k+1 (51)

By differentiating (51) and utilizing (50), it results in

.
L1,k+1 = eω,k+1

.
eω,k+1 = −kωe2

ω,k+1 +
eω,k+1

Jg

[
−Tt,k+1 + 2.5pψf,k+1isq,k+1 + Tf,k+1 + kωJgeω,k+1

]
(52)

where kω is a positive constant.
In order to ensure a zero error and achieve convergence, the value of (52) must be

negative. Consequently, the currents isd,k+1 and isq,k+1 are treated as virtual inputs to the
system. So, the virtual input reference current i∗sq,k+1 can be evaluated by

i∗sq,k+1 =
1

2.5pψf,k+1

[
Tt,k+1 − Tf,k+1 − kωJgeω,k+1

]
(53)

Accordingly, the derivative of Lyapunov’s candidate (52) turns out to be

.
L1,k+1 = eω,k+1

.
eω,k+1 = −kωe2

ω,k+1 < 0 (54)

Which means that the tracking stability condition is achieved by utilizing the con-
structed dynamic base in (53).

Following that hypothesis, the error dynamic in the second equality of (48) can be
expressed using (49) and (53) by

.
esq,k+1 =

[
f− kωJg

]
2.5pψf,k+1

.
eω,k+1 +

1
Ls

[
Rsisq,k+1 + pLsωg,k+1isd,k+1 + pωg,k+1ψf,k+1 −Vsq,k+1

]
(55)

The dynamics of speed error
.
eω,k+1 can be reformulated from (50) considering (47)

and (53) as
.
eω,k+1 =

1
Jg

[
−kωJgeω,k+1 − 2.5pψf,k+1esq,k+1

]
(56)

By replacing (56) with (55), it gives

.
esq,k+1 =

[
f− kωJg

]
2.5pJgψf,k+1

[
−kωJgeω,k+1 − 2.5pψf,k+1esq,k+1

]
+

1
Ls

[
Rsisq,k+1 + pLsωg,k+1isd,k+1 + pωg,k+1ψf,k+1 −Vsq,k+1

]
(57)

A new Lyapunov’s candidate is then declared to control the system utilizing the
voltage vectors as follows:

L2,k+1 =
1
2

e2
ω,k+1 +

1
2

e2
sd,k+1 +

1
2

e2
sq,k+1 +

1
2

e2
sx,k+1 +

1
2

e2
sy,k+1 (58)
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Taking the time derivative of (58), it results

.
L2,k+1 = eω,k+1

.
eω,k+1 + esd,k+1

.
esd,k+1 + esq,k+1

.
esq,k+1 + esx,k+1

.
esx,k+1 + esy,k+1

.
esy,k+1 (59)

By utilizing (48), the below relationship is obtained:

.
L2,k+1 = −kide2

sd,k+1 − kiqe2
sq,k+1 − kixe2

sx,k+1 − kiye2
sy,k+1 − kωe2

ω,k+1 +
esq,k+1

Ls

[
Ls[f−kωJg]
2.5pJgψf,k+1

(
−kωJgeω,k+1−

−2.5pψf,k+1esq,k+1

)
+ Rsisq,k+1 + pLsωg,k+1isd,k+1 + pωg,k+1ψf,k+1 −Vsq,k+1 + kiqLsesq,k+1 −

2.5pψf,k+1Ls
Jg

eω,k+1

]
+

esd,k+1
Ls

[
Rsisd,k+1 − pLsωg,k+1isq,k+1 −Vsd,k+1 + kidLsesd,k+1

]
+

esx,k+1
Ll

[Rsisx,k+1 −Vsx,k+1 + kixLlesx,k+1]+
esy,k+1

Ll

[
Rsisy,k+1 −Vsy,k+1 + kiyLlesy,k+1

]
(60)

where kid, kiq, kix and kiy are positive constants.

To ensure system stability, the derivative
.
L2,k+1 in (60) should have a negative value

to have zero error. According to this, the reference voltages that ensure this requirement
and are to be used in the convergence condition of the proposed predictive controller in
(46) are given by

V∗sd,k+1 = Rsisd,k+1 − pLsωg,k+1isq,k+1 + kidLsesd,k+1

V∗sq,k+1 =
Ls[f−kωJg]
2.5pJgψf,k+1

(
−kωJgeω,k+1 − 2.5pψf,k+1esq,k+1

)
+ Rsisq,k+1 + pLsωg,k+1isd,k+1+

pωg,k+1ψf,k+1 + kiqLsesq,k+1 −
2.5pψf,k+1Ls

Jg
eω,k+1

V∗sx,k+1 = Rsisx,k+1 + kixLlesx,k+1

V∗sy,k+1 = Rsisy,k+1 + kiyLlesy,k+1 (61)

After evaluating the reference voltages, the convergence condition used by the pro-
posed predictive controller in (46) can be evaluated, and the control can identify the optimal
vector to be considered when the absolute voltage error diverges from zero. The schematic
diagram for the developed control is shown in Figure 6. The control starts its operation
by measuring the five-phase signals of voltages and currents, and then the coordinate
transformation and current prediction are performed. After that, the reference currents
and predicted currents are used by the backstepping algorithm to produce the voltage
references, which are then used to evaluate (46). The control then evaluates the value of
(46) instantaneously and checks and selects the vector that minimizes (46) and applies it to
the five-phase converter.
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4. Power Management (PM) Topology for Standalone Operation

For the standalone operating mode, a particular PM topology is designed to process the
solar and wind power systems at full capacity under a variety of environmental situations
(i.e., weak wind speed and low irradiation levels). As a result, the PM plan is to balance the
power exchange between wind and PV generation systems, battery storage systems, and
loads. The PM also regulates the battery’s state of charge (SOC) to prolong battery life.

According to the power flow through the DC connection bus, the power may have
various signs. As a result, the PM’s objective is to divide the electricity among these units
fairly. The configured PM topology is viewed in Figure 7, and it is observed that when
the extra power Pext > Pb,max is reached, the extra power Pext will enter the battery when
the net power (Pg + PPV) exceeds the load power PL and the condition Pext ≤ Pb,max is
achieved. When the battery is fully charged or Pext > Pb,max, the extra power cannot be
stored and should be restricted. If the produced power Pg + PPV is less than the load,
there would be a power shortfall evaluated by Psh =

[
PL −

(
Pg + PPV

) ]
. To counteract

the shortage of electricity, the battery will discharge. Due to the finite capacitance, this
condition can only be present for a limited period. Calculating the capacity should take
into account periods when no energy is provided or when the amount of energy produced
is reduced.
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5. Evaluation Results
5.1. Results under Grid Connection Mode

The performance evaluation is performed for the grid connection case, in which
only the wind generation system is connected to the grid. In this evaluation procedure,
the turbine system dynamics are investigated, considering the MPPT and PAC controls.
Moreover, the five-phase PMSG dynamics are evaluated using the three predictive schemes
(traditional PTC, PFC, and a newly designed predictive scheme). Additionally, the PCC
control is used to manage the operation of the GSC converter to ensure unity pf operation.
Figure 8 provides the wind speed change ωw; while Figure 9 illustrates the shaft speed
ωg. From Figure 9, it is confirmed that the shaft speed tracks the wind speed change
properly. Figure 10 shows the turbine coefficient Cp from which it is observed that its value
changes at each instant that the wind speed overlaps its nominal values, which validates
the adopted MPPT and pitch angle controls. This fact is also approved in Figures 11 and 12,
which respectively illustrate that the tip ratio γ is preserved at its optimum value (to
ensure MPPT), while the balde angle β exhibits an increase each time the wind overlaps
the nominal value. All system’s parameters are given in Appendix A.
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After that, the five-phase PMSG dynamics are analyzed using the three predictive
controllers to visualize the performance of each controller. In Figure 13, the generated
powers are shown, from which it is confirmed that the new predictive controller provides
reduced power oscillation compared to the classic PTC and PFC schemes, which enhances
the quality of the delivered power. This is also ensured by the torque profile in Figure 14.
The fact is confirmed in Figure 15, which provides the actual and reference values of
generator currents d-q components. The currents are exhibiting reduced ripples using
the designed controller compared with the other two predictive schemes. Moreover, it is
noticed that the q- axis current emulates the change in the active power and torque profiles.
Figure 16 illustrates the DC link voltage dynamics under the three controllers, from which it
is clear that the designed control provides much less voltage fluctuation around its reference
value. Figure 17 illustrates the grid power signals, from which it is approved that a unity
pf operation is properly achieved, while the obtained values have lower ripples under the
designed predictive controller. Figures 18–20 present the generated five-phase currents
under the three controllers. The generated currents are uniformly distributed sinusoidal
currents with much fewer harmonics using the designed controller. The current THD
analysis under the three controllers is recorded in Table 1, which emphasizes the capability
of newly designed controllers in comparison with classic controllers. Additionally, a
comparison in terms of the number of computations is addressed in Table 2, which confirms
the superiority of the designed controller in reducing the computation time.
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Table 2. Number of commutations under three controllers.

Classic PTC [34] PFC [48] Designed Predictive Controller

1.45 × 104 1.35 × 104 1.04 × 104

5.2. Results under Standalone Operation

In this test, the wind generation system is hybridized with a PV solar system and a
battery to feed a separate load. The effectiveness of the controllers for the five-phase PMSG,
DC boost converter, and bi-directional converter is investigated in detail. Additionally,
the validity of power flow regulation is investigated. A wind speed variation similar to
that adopted in the grid connection mode is adopted and illustrated in Figure 21. The
generator’s performance are shown through Figures 22–27, which illustrate respectively
the generator active and reactive powers, the generator torque, the current components,
and the generated five-phase currents using the three predictive controllers. From these
illustrations, it is easy to distinguish the effectiveness of the new control in comparison with
the traditional PTC and PFC schemes by achieving fewer power and torque fluctuations
and fewer current harmonics as well. The PFC, of course, presents better performance than
the PTC; however, it is still unable to beat the newly designed PVC. The DC link voltage is
also presented in Figure 28. To analyze the current harmonics deeply, the THD analysis
for the five-phase currents is presented numerically in Table 3. By analyzing the THD
values, it is approved that the suggested PVC control succeeded in achieving lower current
harmonics than the other two controllers. The validity of the designed controller for the
PV converter is illustrated through Figures 29–32, which show the solar irradiation, the
delivered power from the converter, the delivered current, and the output voltage. The
control system succeeded in maintaining smooth power tracking for the solar irradiation
while maintaining MPPT operation. Additionally, the output voltage is kept properly at its
reference value.
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Table 3. THD analysis for standalone operation.

Phase
Classic PTC PFC Designed

Predictive Controller

Fundamental THD Fundamental THD Fundamental THD

‘a’ 10.4947 A 2.43% 10.6124 A 2.16% 9.6333 A 1.11%

‘b’ 10.1032 A 1.69% 10.4282 A 1.31% 9.6534 A 1.02%

‘c’ 10.2737 A 2.53% 10.5652 A 1.86% 9.5876 A 1.48%

‘d’ 10.3919 A 1.96% 10.5726 A 1.25% 9.6739 A 0.74%

‘e’ 10.0283 A 2.13% 10.4509 A 1.86% 9.6001 A 1.43%
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view of the transfer process, as shown in Table 4. 

Figure 32. PV converter output voltage.

The validity of the power regulator and the battery charging/discharging system has
been investigated in Figures 33–38, which illustrate the power and current exchanges in the
system considering the three predictive controllers with the five-phase PMSG. From these
illustrations, the validity of the PM system is confirmed in achieving a balanced power flow
in the system and preserving smooth charging/discharging processes for the battery. The
illustrated power flow can be divided into intervals to give a detailed view of the transfer
process, as shown in Table 4.
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Table 4. Power exchange in a hybrid system.

Period (0→ 20
6 ) s ( 20

6 →
40
6 ) s ( 40

6 →
60
6 ) s ( 60

6 →
80
6 ) s ( 80

6 →
100
6 ) s ( 100

6 →25) s

Power state

The load is
almost covered
from PV power
and the battery
is charging with
a power almost

equal to the
wind power

The load is
increased, and
the battery is
still charging

but with a
lower value
than that in

previous period.
The load is

covered from
both the wind

and PV powers.

The load is
further

increased, and
the wind and
solar powers

together are not
sufficient to

cover it. Thus,
the battery
started to

discharge to
cover the power

shortage.

The load Is
slightly

reduced in this
period;

however the
generated

powers are still
not totally

sufficient. Thus
the battery

continues to
discharge but
with a smaller

rate than
previous
interval.

The load
continues to

decrease, and
the combined

wind and solar
powers are now

sufficient to
cover the load.

The battery as a
result starts to
recharge again.

The load has an
increase again,
and there is a

shortage in the
delivered

power which is
compensated

through
discharging the

battery.

Finally, the charging/discharging processes can be investigated through the battery
state charge profiles shown in Figure 39.
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6. Conclusions

The presented study aims to enhance the dynamics of a renewable energy system that
operates in two different modes: grid connection and standalone. A detailed description
of all system units is provided. The system used for grid connection is constructed of
a wind-driven five-phase PMSG connected to the grid via a rectifier/DC link/inverter
configuration. Alternatively, the system used for standalone operation consisted of a
combination of a wind energy system, a PV solar system, a storage battery, and an isolated
load. A MPPT tracking strategy is utilized with the wind turbine to maximize its power.
The dynamics of the five-phase generator are also enhanced using a newly designed
predictive controller. A systematic design for the control of PV converter systems is
provided using a combination of the incremental conductance algorithm and a designed
regulator. The battery’s operation is regulated using an effective control system. An
effective PM procedure is adopted to ensure a balanced power distribution among all
units for standalone operation purposes. The evaluation results reveal and affirm the
superiority of the proposed scheme in comparison with the classic predictive control.
This has been approved by ensuring lower fluctuation in the controlled variables and
fewer harmonics in the generated currents, which enhances the quality of the generated
power. The results also confirm the validity of the adopted PM procedure under standalone
operation. For future works, the designed predictive scheme can be applied for managing
the operation of different categories of generators after adopting the operation theory
of each topology. Additionally, artificial intelligence-based power management can be
considered for balancing the power flow.
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Appendix A

Table A1. Turbine and generator parameters.

Parameter Value Parameter Value

D 4 m R 0.67 Ω

Prated 3.9 KW Ls 0.0032 H

ωw,nom 10 m/s ψf 0.2 Vs

X 3.83 Cdc 2200 µF

p 2 Ts 100 µs
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Table A2. Parameters of battery.

Parameter Value Parameter Value

Rt 0.0275 Ω Csu 0.0821 F

Re 0.0375 Ω Lbat 0.03 H

Rsu 0.0375 Ω Vbat,rat 240 V

Cbu 8.8373 F Capacity 50 Ah

Table A3. Data of PV array.

Variable Value

Pnom 1 KW

Voc 64.2 V

Isc 5.96 A

NS 2

NP 2
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