
Citation: Rodriguez-Martinez, E.;

Benavides-Alvarez, C.; Aviles-Cruz,

C.; Lopez-Saca, F.; Ferreyra-Ramirez,

A. Improved Parallel Implementation

of 1D Discrete Wavelet Transform

Using CPU-GPU. Electronics 2023, 12,

3400. https://doi.org/10.3390/

electronics12163400

Academic Editors: Pavel Lyakhov

and Maxim Deryabin

Received: 23 July 2023

Revised: 3 August 2023

Accepted: 8 August 2023

Published: 10 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Improved Parallel Implementation of 1D Discrete Wavelet
Transform Using CPU-GPU
Eduardo Rodriguez-Martinez † , Cesar Benavides-Alvarez , Carlos Aviles-Cruz *,† , Fidel Lopez-Saca
and Andres Ferreyra-Ramirez

Electronics Department, Autonomous Metropolitan University, Av. San Pablo 180, Col. Reynosa,
Mexico City 02200, Mexico; erm@azc.uam.mx (E.R.-M.); cesarbenavides@azc.uam.mx (C.B.-A.);
fidel.lopez.saca@gmail.com (F.L.-S.); fra@azc.uam.mx (A.F.-R.)
* Correspondence: caviles@azc.uam.mx; Tel.: +52-5553189030
† These authors contributed equally to this work.

Abstract: This work describes a data-level parallelization strategy to accelerate the discrete wavelet
transform (DWT) which was implemented and compared in two multi-threaded architectures, both
with shared memory. The first considered architecture was a multi-core server and the second one was
a graphics processing unit (GPU). The main goal of the research is to improve the computation times
for popular DWT algorithms for representative modern GPU architectures. Comparisons were based
on performance metrics (i.e., execution time, speedup, efficiency, and cost) for five decomposition
levels of the DWT Daubechies db6 over random arrays of lengths 103, 104, 105, 106, 107, 108, and
109. The execution times in our proposed GPU strategy were around 1.2× 10−5 s, compared to
3501 × 10−5 s for the sequential implementation. On the other hand, the maximum achievable
speedup and efficiency were reached by our proposed multi-core strategy for a number of assigned
threads equal to 32.

Keywords: discrete wavelet transform (DWT); graphics processing unit (GPU); OpenMP; CUDA;
lattice structure

1. Introduction

Nowadays, the number of electronic devices has increased worldwide, and with it has
come the need for more memory and more processing capacity, which has resulted in the
need to reduce signal processing time.

Significant progress has been made in optimizing algorithms, both in terms of process-
ing time and the accuracy of results. Central processing units (CPUs) perform optimally for
the design and technology conditions (nanometers) they are given, i.e., memory, number of
cores, bandwidth, processing speed. CPUs are designed to execute algorithms sequentially.
However, new techniques are constantly being explored to increase efficiency in terms of
time and information processing capacity. An alternative approach is, therefore, parallel
programming [1]. Running algorithms in parallel implies a change in the programming
paradigm [2], which becomes a challenge for the software engineering community [3].
The effectiveness and efficiency of the algorithms (serial or parallel) developed and imple-
mented are continuously evaluated and improved, taking into account parameters such
as execution time, speedup, efficiency, and cost [4]. The general term used to describe the
difficulty of an algorithm is “computational complexity”. Complexity is applied to both
serial and parallel algorithms.

Parallel algorithms can be designed and implemented in shared memory or non-
shared memory [5–7]. Parallelizing algorithms on GPUs is more complicated. The number
of basic operations, the type of arithmetic, the logic used, and the memory accesses directly
affect the actual computation time. As a result, algorithms (serial or parallel) implemented
on both CPUs and GPUs must have the following characteristics: versatility, simplicity,

Electronics 2023, 12, 3400. https://doi.org/10.3390/electronics12163400 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163400
https://doi.org/10.3390/electronics12163400
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1878-4304
https://orcid.org/0000-0001-7938-7727
https://orcid.org/0000-0002-2323-9335
https://orcid.org/0000-0003-2303-234X
https://doi.org/10.3390/electronics12163400
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163400?type=check_update&version=2

Electronics 2023, 12, 3400 2 of 14

ease of implementation, ease of modification, use of hardware resources, speedup achieved,
communication complexity, synchronization, and portability, among others.

There are several papers in the literature on the implementation of DWT filter banks
and DWT applications. In the following, we describe the application areas.

In the analysis of EEG signals, DWT has been used to remove noise caused by in-
voluntary facial gestures [8,9], to detect movement intention (MI) has focused on the
design of descriptors that allow a better characterization of electroencephalographic signals
(EEG) [10], for pinpointing the source of chronic stress [11], for human emotion detec-
tion and classification [12], and for epileptic seizure identification [13]. Using DWT in
portable computing applications is attractive since it can be implemented in devices with
low power consumption without losing computing capacity. That combination would
eliminate the compromise between power consumption and performance, affecting most
brain–computer interface (BCI) systems. Overall strategies to eliminate the compromise
mentioned above tend to detect the start of MI through a separate unit. Such a unit is
independent of the BCI and acts in real time, thus avoiding turning on the BCI every time
there is a false positive. For instance, the work in [14] presents a wavelet-based strategy
that reduces the MI onset detection time (OdT) to three seconds. However, in lag-sensitive
applications [15–17], one expects the OdT to be below one second. On the other hand, the
work in [14] not only uses the DWT to characterize the EEG signal but also forms a feature
vector composed of auto-regression and FFT coefficients. This vector is projected onto a
space with better discrimination and lower dimensionality using Fisher’s discriminant
analysis method (FDA). After being projected, the low-dimensional descriptor trains a
classifier that produces a reliable MI start label.

The Dabuchies DWT has also been applied in several areas such as audio compres-
sion [18], analysis and quantification of in vitro drug dissolution behaviours [19], detection
of muscle fatigue during intense mouse use [20], discrimination of air pollutants [21],
cardiac arrhythmia classification using electrocardiogram signals [22], and uncovering
cadmium pollution in lettuce leaves [23]. Its popularity in such a wide range of applications
is due to its high selectivity and ability to filter information.

In terms of DWT implementations, the most prominent structures are lifting [24],
polyphase [25], direct matrix-based [26], and lattice [27]. Based on the construction of a
transformation matrix and a Fourier transform, the classical DWT algorithm is a direct
implementation of a two-channel filter bank [28].

The paper that comes closest to our proposal is Stokfiszewski [29], where the authors
present implementation variants of the discrete wavelet transform (DWT) algorithm and
compare their execution times with those of GPUs. The authors avoid short and slow
modular splits for low-pass, band-pass, and high-pass filters. The number of data points
processed in their algorithm varies from 256 to 8,388,608.

This work proposes a data-level parallelization strategy to accelerate the computation
of the DWT for the Dabubechies family. This strategy was implemented and compared in
two multi-threaded architectures with shared memory. The first considered architecture
was a multi-core server, where one or more processes are assigned to each core. The second
architecture was a graphics processing unit (GPU) programmed using CUDA. Comparison
metrics were based on execution times for five decomposition levels of the DWT Daubechies
db6 over random arrays of lengths 103, 104, 105, 106, 107, 108, and 109.

Comparing our proposal with Stokfiszewski’s work [29], we can say that we work
with a larger number of data, 1,000,000,000 (109), i.e., they process only 0.83% of our data.
The processing times with our proposal are much lower, as can be seen in the results section.
A final advantage of our proposal is that the DWT coefficients are introduced directly into
the convolution matrices. We emphasize that our approach is not comparable to any other
work found in the literature, as it depends strongly on the technology used, i.e., CPU speed,
memory, and GPU type.

Electronics 2023, 12, 3400 3 of 14

The organization of this paper is as follows. Section 2 details the proposed methodol-
ogy. Section 3 shows the experimental results. Finally, Section 4 argues the limitations of
this work and presents courses for future action.

2. 1D Discrete Wavelet Transform

The DWT heart consists of the iterative application of a pair of orthonormal filters, a low-
pass filter g = [g0, g1, g2, . . . , gm−1], and a high-pass filter h = [h0, h1, h2, . . . , hm−1], defined
by the coefficients of their respective impulse response, {gj} and {hj}, j = 0, 1, 2, . . . , m− 1.
Figure 1 shows the cascade structure of the DWT for three decomposition levels.

x[n]

g[n]

h[n] �2

�2

g[n]

h[n] �2

�2

g[n]

h[n] �2

�2

D1

D2

D3

A3

Figure 1. DWT cascade structure for three decomposition levels.

Given the input signal x = [x0, x1, x2, . . . , xn−1], with n >> m, its discrete wavelet
transform at the k-th decomposition level is given by the approximation and detail coeffi-
cients, Ak and Dk, respectively, defined as

Ak = (↓ 2)(g ∗ Ak−1)

Dk = (↓ 2)(h ∗ Ak−1)

where k = 1, 2, . . . , L, A0 = x, (↓ 2)(y) indicates subsampling of signal y, and (w ∗ z)
denotes convolution between the discrete signals w and z.

At each decomposition level, the response of both filters to the input Ak−1 has to be
calculated as the convolution with their respective impulse responses. Let y = g ∗ Ak−1 be
the response of filter g to the input Ak−1, with length p = n + m− 1. Each element of y can
be expressed as

y[i] =
m−1

∑
j=0

g[j]Ak−1[i− j] (1)

where y[j] = yj is the j-th element of array y. We can observe in Equation (1) that each y[i]
only depends on m elements of Ak−1; consequently, it is possible to parallel compute all
elements of y. That scheme can be used to compute the response of both filters to the input
Ak−1, thus achieving a single decomposition level in the DWT at once. To implement db6
DWT using the cascade structure, the coefficients of each filter are set as shown in Table 1.

Table 1. Filter coefficients needed to implement db6 DWT.

j 0 1

hj −0.1115407434 0.4946238904

gj −0.0010773011 0.0047772575

j 2 3

hj −0.7511339080 0.3152503517

gj 0.0005538422 −0.0315820393

j 4 5

hj 0.2262646940 −0.1297668676

Electronics 2023, 12, 3400 4 of 14

Table 1. Cont.

gj 0.0275228655 0.0975016056

j 6 7

hj −0.0975016056 0.0275228655

gj −0.1297668676 −0.2262646940

j 8 9

hj 0.0315820393 0.0005538422

gj 0.3152503517 0.7511339080

j 10 11

hj −0.0047772575 −0.0010773011

gj 0.4946238904 0.1115407434

3. Methodology

The following subsections describe two implementations of the db6 DWT, which differ
in the parallel strategy adopted to compute the elements of y. The first implementation
was carried out in a multi-core architecture with shared memory, where the number
of simultaneously executed threads equals the number of available cores. The second
implementation was carried out in a GPU, which can simultaneously execute as many
tasks as operations are needed. Each implementation takes advantage of the unique
characteristics of the architecture to maximize throughput.

3.1. Sequential Multi-Core Strategy

The strategy designed for the multi-core architecture is shown in Figure 2 as a block
diagram. It consists of four operations inside the main loop. Each iteration in the main loop
performs a one-level decomposition of signal Ak−1. The first operation performs padding
on Ak−1 by concatenating the last m elements of Ak−1 at its head and the first m elements of
Ak−1 at its tail. The padding described above was used to implement circular convolution
as described in [30].

Figure 2. Multi-core strategy for parallel DWT.

Electronics 2023, 12, 3400 5 of 14

The second operation in the main loop of Figure 2 performs parallel convolution on the
padded signal. It creates t threads, each of which computes q elements of the convolution
sequence y, so that the relationship p = qt + r is met, where r ∈ Z+ is the number of
extra operations assigned to the first r threads. The k-th thread computes y[i], ∀i ∈ Ek =
{k− 1, t + k− 1, 2t + k− 1, . . . , p− t + k− 1}, so that |Ek| = q, ∀k ∈ {1, 2, 3, . . . , t}, when
r = 0. On the other hand, when 0 < r < t, the first r threads additionally compute
the elements y[j], j = qt + 1, qt + 2, . . . , qt + r. Each thread computes the convolution
sequence for both filters, the low-pass filter response is stored in the array Rg, and the
high-pass filter response is stored in the array Rh.

The third block subsamples the filter responses to the padded signal. Padding is
removed after subsampling, discarding the first and last m elements of Rg and Rh, leading
into the approximation coefficients Ak and the detail coefficients Dk. Finally, the fourth
operation, depicted as block number four in Figure 2, saves Ak and Dk.

3.2. Parallel Graphics Processing Unit Strategy

Figure 3 shows our proposed GPU strategy. It mainly differs from our multi-core
strategy in how convolution is computed. Equation (2) presents the symmetrical version of
Equation (1). It is called symmetrical because m/2 elements before and after Ak−1[i] are
required to compute y[i].

y[i] =
m−1

∑
j=0

g[m− 1− j]Ak−1

[
j− m− 1

2
+ i

]
(2)

Figure 3. GPU strategy for parallel DWT.

There is an additional requirement for Equations (1) and (2) to produce the same
convolution sequence; both convolutions must be circular. Therefore, padding Ak−1 is
needed again, but only m elements are added. As can be seen in Figure 3, padding
concatenates the last m/2 elements of Ak−1 at its head, and the first m/2 elements of Ak−1
at its tail.

Once padding has been performed, we compute y using as many threads as there
are elements in the convolution sequence, since each thread computes one element of y[i].

Electronics 2023, 12, 3400 6 of 14

Threads belong to computational units called CUDA blocks. The number of CUDA blocks
b is automatically computed using the relationship p = ab + c, where a is the number of
threads per block, and c ∈ Z+ is the number of extra operations assigned to the last CUDA
block. The number of assigned CUDA blocks b is a function of p and a. Thus, for an input
signal of n = 103 samples, a filter with m = 12 coefficients, and a = 32 threads per CUDA
block, b ≈ p

a = 103+12−1
32 = 31.59, setting b = 31 give us a ∗ b = 992 threads, thus the last

CUDA block would need to perform c = p− a ∗ b = 19 extra operations. The number of
CUDA blocks changes at each decomposition level because p also changes. Within each
decomposition level, the number of CUDA blocks is computed in the same way as in
the last example. The computational model in CUDA requires building a grid of blocks.
Therefore, each block is modeled as a grid of threads. For this work’s purposes, we consider
one-dimensional grids for both blocks and threads, as shown in Figure 3. Therefore, each
block is a one-dimensional array of threads.

Equation (2) also can be used to compute the high-pass filter response, substituting
the filter coefficients g with those of h. Thus, each thread computes one element of both
responses, which are stored in Rg and Rh, respectively. The following stages in our proposed
GPU strategy are similar to those of the multi-core strategy except that subsampling only
removes m/2 samples from the start and end of both Rg and Rh to produce Ak and Dk,
respectively.

Both {gj} and {hj} are stored in constant memory, but x and y are stored in shared
memory. The arrays holding x and y are allocated using the cudaMalloc instruction. Data
exchange between GPU and CPU is implemented by means of the cudaMemcpy instruction.

4. Experimental Setup and Results

The parallel architecture selected to implement the proposed multi-core strategy
consisted of a PowerEdge T630 server with two Intel Xeon E5-2670 v3 and 70 GB in RAM
running on Ubuntu 18.04. Each processor hosts 12 cores and manages up to 24 active
threads simultaneously. The GPU strategy was implemented on an NVIDIA GeForce GTX
1080 with the characteristics listed in Table 2. All programs were implemented using the C
language and compiled using gcc version 7.4.0, the OpenMP API for the multi-core strategy
(release 5.0.1), and the CUDA API (release 9.1) for the GPU strategy. The accuracy will be
the same as both the CPU and GPU are configured for simple FP64 precision.

Table 2. Device GeForce GTX 1080.

Attribute Value

CUDA driver version/runtime version 11.0/10.2
CUDA capability 6.1
Total amount of global memory 8 GB
(20) Multiprocessors, (128) CUDA cores/MP 2560 CUDA cores
Maximum number of threads per multiprocessor 2048
Maximum number of threads per block 1024
Max dimension size of a thread block (x, y, z) (1024, 1024, 64)
Max dimension size of a grid (x, y, z) (2,147,483,647, 65,535, 65,535)

4.1. Parallel Convolution Performance and Scalability

Since parallel convolution is the core of both proposed strategies, we analysed its
performance using three standard metrics: speedup, efficiency, and cost. Additionally,
we measured the scalability of parallel convolution by computing each of the metrics
mentioned above over a set of test signals with lengths varying from 103 to 109 with a
unit increment in the exponent. The test signals were built using a Gaussian random
number generator with zero mean and unit covariance. The parallel convolution algorithm
in each proposed strategy was used to compute the convolution of each test signal with
the impulse response of the low-pass filter g detailed in Table 1. Since the algorithm

Electronics 2023, 12, 3400 7 of 14

performance depends on the number of assigned threads t, we decided to compute the
referred metrics as t changes from 2 to 512.

4.1.1. Multi-Core Strategy

The plots shown in Figure 4 describe the parallel convolution performance and scala-
bility for the proposed multi-core strategy. As expected, execution times are reasonably
linear; the more threads are assigned to the algorithm, the faster it finishes. Regarding
speedup, the algorithm displays a sublinear behaviour for most test signals, except for the
lengths 103 and 104. Considering efficiency measures the amount of time a thread is active,
the parallel convolution algorithm assigns less work to a given thread as the number of
threads increases, thus decreasing the time each thread remains active. As a result, the
efficiency becomes almost linear as the test signal length increases.

1 2 4 8 16 32 64 128 256 512

Threads

10
-4

10
-2

10
0

10
2

(a)

1 2 4 8 16 32 64 128 256 512

Threads

0

0.2

0.4

0.6

0.8

1

10
3

10
4

10
5

10
6

10
7

10
8

10
9

(b)

1 2 4 8 16 32 64 128 256 512

Threads

10
-2

10
-1

10
0

10
1

(c)

1 2 4 8 16 32 64 128 256 512

Threads

10
-4

10
-2

10
0

10
2

10
4

(d)

Figure 4. Scalability and performance analysis of parallel convolution for the multi-core strategy.
The number of threads t assigned to compute the convolution sequence is shown on the x-axis. The
legend in (b) shows the colour and marker used to plot the results for each test signal. (a) Execution
time (s). (b) Efficiency. (c) Speedup. (d) Cost.

Based on the previous results, the proposed parallel convolution algorithm scales
relatively well to the input size, showing an efficiency increase with the input size for a
given number of assigned threads. The algorithm can also be cost-optimal by adjusting the
number of assigned threads and the input size. Cost-optimality occurs when the algorithm
is assigned between 32 and 64 threads, and the test signal length is greater than 106.

4.1.2. Graphics Processing Unit Strategy

The fundamental difference between the multi-core and GPU strategies lies in how the
total number of convolution elements p is divided among threads. In the multi-core strategy,
each thread must compute q = p/t elements of y, while in the GPU strategy, each thread
computes one element of y; thus, we need to create p threads at once. Threads are grouped

Electronics 2023, 12, 3400 8 of 14

and executed in CUDA blocks, which are assigned and executed in multiprocessors [31].
We can change the amount of work performed by each multiprocessor, varying the number
of assigned threads t.

The performance and scalability analysis of the parallel convolution algorithm in our
proposed GPU strategy followed the same design as in the multi-core strategy. However,
due to constraints in the memory size of the selected GPU, the maximum test signal length
was 108. The plots in Figure 5 detail the analysis results, where instead of changing the
number of threads assigned to the parallel convolution algorithm, we changed the number
of threads t per CUDA block. Execution times significantly decrease compared to the
parallel convolution in our multi-core strategy. Nonetheless, all the curves in Figure 5a
show similar behaviour and range within the same interval, pointing out that there is not a
significant difference between the amount of work performed by the parallel convolution
as the test signal length increases.

Although speedup is less impressive than in the multi-core strategy, where almost a
10-fold gain can be achieved, the parallel convolution algorithm behaviour is sublinear for
all the test signals. Efficiency and cost plots are linear, in log scale, after four threads per
CUDA block have been assigned. The curves in Figure 5b,d for all test signals are almost
identical. Hence, the scalability of parallel convolution in our proposed GPU strategy scales
better than that of the multi-core strategy, as the efficiency and cost can be kept constant
as the problem size increases. This algorithm can also reach cost-optimality by assigning
32 threads per CUDA block, as in this point we achieve a fair trade-off between speedup,
efficiency and cost.

1 2 4 8 16 32 64 128 256 512

Threads

2

4

6

8

10

10
-6

10
3

10
4

10
5

10
6

10
7

10
8

(a)

1 2 4 8 16 32 64 128 256 512

Threads

10
-2

10
-1

10
0

(b)

1 2 4 8 16 32 64 128 256 512

Threads

1

2

3

4

5

6

(c)

1 2 4 8 16 32 64 128 256 512

Threads

10
-5

10
-4

10
-3

(d)

Figure 5. Scalability and performance analysis of parallel convolution for the GPU strategy. The
number of threads t per CUDA block assigned to compute the convolution sequence is shown in the
x-axis. The legend in (a) shows the colour and marker used to plot the results for each test signal.
(a) Execution time (s). (b) Efficiency. (c) Speedup. (d) Cost.

Electronics 2023, 12, 3400 9 of 14

4.2. Dwt Performance and Scalability

To test the cascade implementation performance and scalability, we computed the db6
DWT of each test signal using a five-level decomposition; thus, the parallel convolution
algorithm was executed five times, one per decomposition level. The number of assigned
threads was kept constant among levels. We recorded the DWT execution time for each test
signal and computed speedup, efficiency and cost. This analysis was performed for both
strategies. The performance and scalability results for the multi-core strategy are shown in
Figure 6 and those for the GPU strategy are displayed in Figure 7.

1 2 4 8 16 32 64 128 256 512

Threads

10
-4

10
-2

10
0

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

(a)

1 2 4 8 16 32 64 128 256 512

Threads

10
-5

10
0

10
5

(b)

1 2 4 8 16 32 64 128 256 512

Threads

10
-2

10
0

10
2

10
4

10
6

(c)

1 2 4 8 16 32 64 128 256 512

Threads

10
-4

10
-2

10
0

10
2

(d)

Figure 6. Scalability and performance analysis of the DWT for the multi-core strategy. The number
of threads t assigned to the parallel convolution is shown in the x-axis. The legend in (a) shows the
colour and marker used to plot the results for each test signal. (a) Execution time (s). (b) Efficiency.
(c) Speedup. (d) Cost.

Electronics 2023, 12, 3400 10 of 14

1 2 4 8 16 32 64 128 256

Threads

1

1.5

2

2.5
10

-5

10
3

10
4

10
5

10
6

10
7

10
8

(a)

1 2 4 8 16 32 64 128 256 512

Threads

10
-3

10
-2

10
-1

10
0

(b)

1 2 4 8 16 32 64 128 256 512

Threads

1

1.2

1.4

1.6

1.8

2

(c)

1 2 4 8 16 32 64 128 256 512

Threads

10
-5

10
-4

10
-3

10
-2

(d)

Figure 7. Scalability and performance analysis of the DWT in the GPU strategy. The number of
threads t per CUDA block assigned to the parallel convolution is shown in the x-axis. The legend in
(a) shows the colour and marker used to plot the results for each test signal. (a) Execution time (s).
(b) Efficiency. (c) Speedup. (d) Cost.

4.2.1. Multi-Core Strategy

Execution times for a five-level DWT decomposition using the multi-core strategy are
displayed in Figure 6a. Each curve in the referred to subfigure shows how the execution
time changes with the number of assigned threads t for a given test signal. One should
note that one can tell each curve apart before t = 32; after that, all curves cluster together
in a single linear trend. A similar behaviour is observed for cost curves in Figure 6d, as
the cost is defined as the product of execution time and the number of assigned threads.
Thus, the DWT execution time is almost the same for all test signals after t = 32, no
matter the input size. Regarding speedup, the multi-core DWT implementation inherits
the parallel convolution properties, showing a sublinear behaviour for all test signals, as
can be observed in Figure 6c. Efficiency curves for all test signals show an inflexion point
at different t values; all efficiency curves are almost parallel and decrease linearly after
that point.

Based on our previous analysis, an appropriate DWT operation point in the multi-core
strategy is t = 32, as it offers a good trade-off between execution time, efficiency, speedup,
and cost. Additionally, such an algorithm boasts excellent scalability, as efficiency can be
kept constant by increasing the number of assigned threads and the test signal length.

Electronics 2023, 12, 3400 11 of 14

4.2.2. Graphics Processing Unit Strategy

The GPU DWT implementation loses the desired characteristics of its multi-core
counterpart, namely, excellent scalability and inflexion points in the efficiency and speedup
curves. It also inherits the properties of its parallel convolution algorithm, that is to say,
similar execution times, efficiencies, and costs for all test signal lengths as the number
of threads per CUDA block changes, as can be observed in Figure 7a,b,d, respectively.
Execution times are also significantly lower than in the DWT multi-core implementation.
The fact that we launch as many threads as elements in the convolution sequence leads to
flat execution time and speedup curves after t = 8, as it will always launch p threads in
total, no matter how many threads are assigned per CUDA block. Based on the previous
analysis and the results shown in Figure 7, we can say that an appropriate DWT operation
point in the GPU strategy is t = 8, as at such a point we achieve the highest speedup and
similar execution times, for most test signals.

5. Comparison vs. Most Competitive Work

The comparison is made with the most recent work found in the bibliography [29],
as the other articles found are more than five years old. The main reason is that the
performance of the algorithms (both serial and parallel) depends strongly on the equipment
used, i.e., CPU, memory, GPU, among others. In the present proposal, four performance
parameters are analysed: execution time, speedup, efficiency, and cost. By comparison,
Stokfiszewski’s work [29] only presents the execution time.

The first advantage of our proposal is the number of data to be processed (see Table 3).
The maximum number processed by Stokfiszewski is 223, that is, 8, 388, 608 elements.

Comparing this proposal with Stokfiszewski’s work, the proposal works with a larger
number of data, 1,000,000,000 (109), that is, they process only 0.83% of the number of
elements processed in this proposal.

Table 3. Comparison of maximum data processing length.

Data
Size 1

Data
Size 2

Data
Size 3

Data
Size 4

Data
Size 5

Data
Size 6

Data
Size 7

Stokfiszewski [29] 210 213 217 220 223 – –
Proposal 103 104 105 106 107 108 109

The second and main advantage of our proposal is the processing time. In the case of
CPU processing (see Table 4), our results are better when processing more than one million
elements. As for GPU processing (see Table 5), our results are more or less constant and
better than those of the compared author.

Table 4. Comparison of computing time using CPU for filter length 4 (milliseconds).

Length/Time

Stokfiszewski [29] 210/0.001 213/0.014 217/0.227 220/1.879 223/18.14 – –
Proposal 103/1. 104/1.01 105/1.1 106/1.15 107/1.2 108/1.25 109/1.3

Table 5. Comparison of computing time using GPU for filter length 4 (milliseconds).

Length/Time

Stokfiszewski [29] 210/0.1971 213/0.2339 217/0.6547 220/4.6263 223/30.1746 –
Proposal 103/0.12 104/0.12 105/0.121 106/0.123 107/0.123 108/0.125

6. Conclusions and Further Research

We presented a data-level parallelization strategy to accelerate DWT computation. Said
strategy was implemented and compared in two multi-threaded architectures, each with
shared memory. The first considered architecture was a multi-core server and the second one

Electronics 2023, 12, 3400 12 of 14

was a graphics processing unit (GPU). All programs were implemented using the C language,
the OpenMP API for the multi-core server, and the CUDA API for the GPU. The DWT was
implemented through the cascade structure shown in Figure 1, which consists in iteratively
applying a pair of orthonormal filters to the approximation coefficients (i.e., the low-pass filter
response). As the main operation to compute the approximation and detail coefficients at each
decomposition level is convolution, the proposed data-level parallelization strategy focused
on distributing the computation of convolution sequence elements among as many threads as
possible, leading to the design of a parallel convolution algorithm.

The convolution sum structure was a significant difference in the parallel convolution
algorithm designed for each architecture, which led to two different padding methods. The
multi-core strategy used the classical convolution sum described in Equation (1), where
causal filters are assumed. Conversely, the GPU strategy used the symmetric convolution
described in Equation (2), where time-centred filters are assumed. The resulting convolution
sequences are equivalent up to a unit delay.

We analysed the parallel convolution algorithm using execution times, speedup,
efficiency and cost as performance metrics in each multi-threaded architecture. The results
showed that the multi-core strategy scales reasonably well with the input size. However,
execution times remain high compared to those of the GPU strategy. Furthermore, both
parallel implementations displayed sublinear behaviour in their speedup curves as the
number of assigned threads increased. However, there was no significant gain after t = 8
in the GPU strategy because the workload is already evenly distributed among threads.
Based on the performance analysis results, we were able to identify an optimal number of
threads assigned to the parallel convolution algorithm for both architectures. That number
nearly matches the available cores in the multi-core strategy, while in the GPU strategy, it is
convenient to select the smallest t in the flat zone of the speedup curves.

To sum up, although the multi-core strategy boasts excellent scalability, the GPU
strategy is preferred as it is faster. It is recommended to use the multi-core strategy for
signals greater than 108 elements in length, as the GPU architecture cannot allocate enough
RAM in the selected device.

Future work involves implementing better convolution schemes that reduce RAM
requirements, such as overlap-and-add or overlap-and-save, in frequency space. Addi-
tionally, we could design truly parallel DWT algorithms, taking advantage of hardware
pipeline designs that improve throughput, such as the lifting scheme.

Author Contributions: Conceptualization, C.A.-C. and F.L.-S.; methodology, C.A.-C., C.B.-A. and
F.L.-S.; software, C.B.-A. and F.L.-S.; validation, C.A.-C., E.R.-M. and F.L.-S.; formal analysis, C.A.-C.,
A.F.-R., C.B.-A. and F.L.-S.; investigation, C.A.-C. and F.L.-S.; resources, C.A.-C. and A.F.-R.; data
curation, C.B.-A. and F.L.-S.; writing—original draft preparation, C.A.-C.; writing—review and
editing, C.A.-C.; supervision, C.A.-C.; project administration, E.R.-M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yin, F.; Shi, F. A Comparative Survey of Big Data Computing and HPC: From a Parallel Programming Model to a Cluster

Architecture. Int. J. Parallel Program. 2022, 50, 27–64.
2. Di Rocco, L.; Ferraro Petrillo, U.; Palini, F. Using software visualization to support the teaching of distributed programming. J.

Supercomput. 2023, 79, 3974–3998. [CrossRef]

http://doi.org/10.1007/s11227-022-04805-9

Electronics 2023, 12, 3400 13 of 14

3. Umayanganie Munipala, W.; Moore, S.V. Position paper: An evaluation framework for scientific programming productivity. In
Proceedings of the 2016 IEEE/ACM International Workshop on Software Engineering for Science (SE4Science), Austin, TX, USA,
16 May 2016; pp. 27–30.

4. Barlas, G. Computer Architecture: A Quantitative Approach, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2022.
5. Gulcan, S.; Ozdal, M.M.; Aykanat, C. Load balanced locality-aware parallel SGD on multicore architectures for latent factor based

collaborative filtering. Future Gener. Comput. Syst. 2023, 146, 207–221. [CrossRef]
6. Ketchaya, S.; Rattanatranurak, A. Parallel Multi-Deque Partition Dual-Deque Merge sorting algorithm using OpenMP. Sci. Rep.

2023, 13, 6408. [CrossRef]
7. Williams-Young, D.B.; Asadchev, A.; Popovici, D.T.; Clark, D.; Waldrop, J.; Windus, T.L.; Valeev, E.F.; De Jong, W.A. Distributed

memory, GPU accelerated Fock construction for hybrid, Gaussian basis density functional theory. J. Chem. Phys. 2023, 158, 234104.
[CrossRef]

8. Peng, H.; Hu, B.; Shi, Q.; Ratcliffe, M.; Zhao, Q.; Qi, Y.; Gao, G. Removal of ocular artifacts in EEG—An improved approach
combining DWT and ANC for ubiquitous applications. IEEE J. Biomed. Health Inform. 2013, 17, 600–607. [CrossRef]

9. Hu, B.; Peng, H.; Zhao, Q.; Hu, B.; Majoe, D.; Zheng, F.; Moore, P. Signal quality assessment model for wearable EEG sensor on
prediction of mental stress. IEEE Trans. Nanobioscience 2015, 14, 553–561.

10. Guger, C.; Allison, B.Z.; Miller, K. (Eds.) Brain-Computer Interface Research: A State-of-the-Art Summary 8; SpringerBriefs in Electrical
and Computer Engineering; Springer: Cham, Switzerland, 2020.

11. Peng, H.; Hu, B.; Zheng, F.; Fan, D.; Zhao, W.; Chen, X.; Yang, Y.; Cai, Q. A method of identifying chronic stress by EEG. Pers.
Ubiquitous Comput. 2013, 17, 1341–1347. [CrossRef]

12. Wagh, K.P.; Vasanth, K. Performance evaluation of multi-channel electroencephalogram signal (EEG) based time frequency
analysis for human emotion recognition. Biomed. Signal Process. Control 2022, 78, 103966. [CrossRef]

13. Sharmila, A.; Geethanjali, P. DWT based detection of epileptic seizure from EEG signals using naive bayes and k-nn classifiers.
IEEE Access 2016, 4, 7716–7727. [CrossRef]

14. Chamanzar, A.; Shabany, M.; Malekmohammadi, A.; Mahammadinejad, S. Efficient hardware implementation of real-time
low-power movement intention detector system using FFT and adaptive Wavelet transform. IEEE Trans. Biomed. Circ. Syst. 2017,
11, 585–596. [CrossRef]

15. Healey, J.A.; Picard, P.W. Detecting stress during real-world driving task using physiological sensors. IEEE Trans. Intell. Transp.
Syst. 2005, 6, 156–166. [CrossRef]

16. Strickland, E. Mind games. IEEE Spectr. 2018, 55, 40–41. [CrossRef]
17. Qiu, S.; Li, Z.; He, W.; Zhang, L.; Yang, C.; Su, C.Y. Brain-machine interface and visual compressive sensing-based teleoperation

control of an exoskeleton robot. IEEE Trans. Fuzzy Syst. 2017, 26, 58–59. [CrossRef]
18. Ali, A.H.; George, L.E. High synthetic audio compression model based on fractal audio coding and error-compensation. Ann.

Emerg. Technol. Comput. 2022, 2, 1–12.
19. Ding, E.; Ozdemir, N.; Ustundag, O.; Buker, E.; Tikan, G.; Hoang, V.D. Wavelet signal processing tools for quantifying and

monitoring the in-vitro dissolution profiles of Tenofovir Disoproxil Fumarate and Emtricitabine in tablets. J. Mex. Chem. Soc.
2022, 66, 488–499.

20. Mota-Carmona, J.R.; Pérez-Escamirosa, F.; Minor-Martínez, A.; Rodríguez-Reyna, R.M. Muscle fatigue detection in upper limbs
during the use of the computer mouse using discrete wavelet transform: A pilot study. Biomed. Signal Process. Control 2022,
76, 103711.

21. Dong, Y.; Zhou, H.; Fu, Y.; Li, X.; Geng, H. Wavelet periodic and compositional characteristics of atmospheric PM2.5 in a typical
air pollution event at Jinzhong city, China. Atmos. Pollut. Res. 2021, 12, 245–254. [CrossRef]

22. Wang, Y.; Yang, G.; Li, S.; Li, Y.; He, L.; Liu, D. Arrhythmia classification algorithm based on multi-head self-attention mechanism.
Biomed. Signal Process. Control 2023, 79, 104206. [CrossRef]

23. Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Fu, L. Classification of heavy metal Cd stress in lettuce leaves based on WPCA algorithm and
fluorescence hyperspectral technology. Infrared Phys. Technol. 2021, 119, 103936. [CrossRef]

24. La Cour-Harbo, A.; Jensen, A. Wavelets and the Lifting Scheme. In Encyclopedia of Complexity and Systems Science; Meyers, R.A.,
Ed.; Springer: New York, NY, USA, 2009; pp. 10007–10031.

25. Relkar, R.E.; Rathkanthiwar, A.P. VLSI architecture design for DWT: Using polyphase and pipelining and their effective
comparasion. In Proceedings of the 2015 International Conference on Information Processing (ICIP), Pune, India, 16–19 December
2015; pp. 828–832. [CrossRef]

26. Zhi, L.; Liu, W.; Liu, Q. Matrix Operation of Discrete Wavelet Transform. In Proceedings of the 2012 International Conference on
Industrial Control and Electronics Engineering, Hangzhou, China, 23–25 March 2012; pp. 1214–1216. [CrossRef]

27. Wang, Y.; Li, Z.; Wang, C.; Feng, L.; Zhang, Z. Implementation of discrete wavelet transform. In Proceedings of the 2014 12th
IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 28–31 October 2014;
pp. 1–3.

28. Nicolier, F.; Laligant, O.; Truchetet, F. Discrete wavelet transform implementation in Fourier domain for multidimensional signal.
J. Electron. Imaging 2002, 11, 338–346.

29. Kamil, S.; Kamil, W.; Mykhaylo, Y. An efficient implementation of one-dimensional discrete wavelet transform algorithms for
GPU architectures. J. Supercomput. 2022, 78, 11539–11563.

http://dx.doi.org/10.1016/j.future.2023.04.007
http://dx.doi.org/10.1038/s41598-023-33583-4
http://dx.doi.org/10.1063/5.0151070
http://dx.doi.org/10.1109/JBHI.2013.2253614
http://dx.doi.org/10.1007/s00779-012-0593-3
http://dx.doi.org/10.1016/j.bspc.2022.103966
http://dx.doi.org/10.1109/ACCESS.2016.2585661
http://dx.doi.org/10.1109/TBCAS.2017.2669911
http://dx.doi.org/10.1109/TITS.2005.848368
http://dx.doi.org/10.1109/MSPEC.2018.8241733
http://dx.doi.org/10.1109/TFUZZ.2016.2566676
http://dx.doi.org/10.1016/j.apr.2020.09.013
http://dx.doi.org/10.1016/j.bspc.2022.104206
http://dx.doi.org/10.1016/j.infrared.2021.103936
http://dx.doi.org/10.1109/INFOP.2015.7489496
http://dx.doi.org/10.1109/ICICEE.2012.322

Electronics 2023, 12, 3400 14 of 14

30. Proakis, J.; Manolakis, D. Digital Signal Processing: Principles, Algorithms, and Applications; Pearson-Prentice Hall: Hoboken, NJ,
USA, 2007.

31. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach, 6th ed.; Morgan Kaufmann: Burlington, MA, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	1D Discrete Wavelet Transform
	Methodology
	Sequential Multi-Core Strategy
	Parallel Graphics Processing Unit Strategy

	Experimental Setup and Results
	Parallel Convolution Performance and Scalability
	Multi-Core Strategy
	Graphics Processing Unit Strategy

	Dwt Performance and Scalability
	Multi-Core Strategy
	Graphics Processing Unit Strategy

	Comparison vs. Most Competitive Work
	Conclusions and Further Research
	References

