
Citation: Nguyen, H.T.; Hoang, T.

A Novel Framework of Genetic

Algorithm and Spectre to Optimize

Delay and Power Consumption in

Designing Dynamic Comparators.

Electronics 2023, 12, 3392. https://

doi.org/10.3390/electronics12163392

Academic Editor: Andrea De

Marcellis

Received: 4 June 2023

Revised: 1 August 2023

Accepted: 7 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Framework of Genetic Algorithm and Spectre to
Optimize Delay and Power Consumption in Designing
Dynamic Comparators
Hoang Trong Nguyen and Trang Hoang *

Department of Electronics Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam National
University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam
* Correspondence: hoangtrang@hcmut.edu.vn

Abstract: In integrated circuit (IC) design, analog circuits contribute significantly as the interface
between real and digital world signals. Although they make up a relatively small portion of the
overall circuit, their design process is often most time-consuming, mostly from the phase of manual
iteration of circuit parameters to meet design specifications. Therefore, the design automation of
analog circuits with the help of efficient optimization techniques arises as a promising candidate to
address the issue. Among optimization algorithms, while the genetic algorithm (GA) has been shown
to be effective in finding near-optimal solutions, it has not been extensively applied to the field of
analog circuit design. Hence, this paper proposes a method to utilize GA in the optimization of a
widely used circuit topology, namely the comparator. The comparator is considered the fundamental
block in the design of most analog-to-digital converters (ADCs). For high-speed ADCs, dynamic
comparators are usually chosen for the purpose of high speed and power efficiency. In summary, this
paper introduces an innovative GA-Spectre architecture to optimize the dynamic comparator with
respect to delay and power consumption. The post-optimized results are optimistic with a 72.61 ps
delay and 3.11 µW power dissipation.

Keywords: automation; genetic algorithm; dynamic comparator; delay; power consumption

1. Introduction

Comparators are considered the heart of analog-to-digital converters (ADCs). They are
used as a means to convert from analog domain signals to digital domain signals in modern
signal processing and communications. In the design of high-speed ADCs, low-power
and high-speed comparators are of great demand [1]. Thanks to strong positive feedback
and dynamic bias provided by a pair of cross-coupled inverters as the latching stage,
dynamic comparators have higher speed and less static power consumption compared to
static comparators [2]. Therefore, with a view to optimizing comparators’ performance
with respect to speed and power consumption, the dynamic comparator is chosen as a
feasible candidate.

The analog circuit design consists of three main stages: topology selection, component
sizing, and layout extraction. In the design of the comparator, this paper focuses on the first
two stages. Both stages must ensure that the resulting circuit meets the specifications [3,4].
Since the first phase completes with the topology of the dynamic comparator, the second
phase involves choosing the size of components to meet design specifications. Due to the
repetitive task of manual iteration of circuit parameters, this sizing procedure is considered
time-consuming and monotonous [4,5]. Hence, automation in the process of optimizing
the sizes of circuits’ components is critical to the ability to design high-performance circuits
quickly [6].

To address the issue of laborious circuit sizing in analog circuit design, effective
optimization techniques are crucial. Automated component sizing for analog circuit op-
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timization can be classified as equation-based methods and simulation-based methods.
On the basis of circuit analysis, equation-based methods utilize posynomial or mono-
mial functions built on circuit parameters to represent specific circuit performances of
interest. Despite the fast execution time and high certainty of reaching a global optimum,
deriving such equations is often challenging and time-consuming. Moreover, to obtain
explicit and closed-form expressions for circuit performances, various approximations
and simplifications are usually applied, at the expense of MOSFET’s higher-order ef-
fects, hence the model’s accuracy and completeness. By contrast, simulation-based
counterparts are independent of analytical functions but instead rely on SPICE simula-
tion data. In the optimization procedure, these methods handle fitness functions (or
objective functions) and design constraints in the form of black box functions, which are
evaluated by simulated results. This approach might ensure better accuracy, generality,
and convenience. Consequently, our optimization system in this research is chosen to
be simulation-based.

Among various existing equation-free optimization methods, the genetic algorithm
(GA), based on the Darwinian principle of natural selection and concepts of natural genetics,
has been found to be an effective solution to large search spaces without being trapped in
local minima [5]. In spite of GA’s advantages, it has not been extensively applied to the
field of circuit design. To the authors’ best experience and knowledge, the algorithm is
mostly implemented in the design of operational amplifiers as in [5,6] and has not been
utilized for the case of the dynamic comparator. Furthermore, the design of [6,7] uses the
HSPICE simulator for circuit simulations, which normally requires an additional step of
using scripting languages for collecting necessary data. Alternatively, the Spectre simulator
allows the use of the SKILL programming language’s syntax in Ocean-based scripts. In
view of the role of the Spectre simulator in the overall optimization system, the flexibility
of SKILL programming establishes the authors’ preference of Spectre over its HSPICE
counterpart in terms of manipulating output data.

In recognition of GA’s strengths and Spectre’s convenience of data output, this paper
proposed a GA-Spectre model that might break new ground as the prototype for the opti-
mization problem of propagation delay and power dissipation for the dynamic comparator
design. With only 100 iterations of GA, the optimized dynamic comparator achieved a
power-delay product (PDP) of 0.2258 fJ, including an average delay of 72.61 ps and power
consumption of 3.11 µW at a 1 GHz clock frequency and 1.2 V supply voltage. These are
desirable and promising values for assessment parameters, especially for the case of PDP
since this work’s PDP surpasses its counterparts in the works of [8–11]. More importantly,
thanks to its flexibility and adaptability, our GA-Spectre framework could also be the
optimization tool for different circuits, which is likely to revolutionize the mindset and
work approach of analog circuit design engineers.

The remaining part of the paper is organized as follows. Section 2 demonstrates the
operation of the single-tail dynamic comparator as well as its delay and power analysis.
Subsequently, Section 3 illustrates the optimization process, including GA’s flow and the
proposed GA-Spectre model to optimize the delay and power of the dynamic comparator.
Simulation results and discussion are presented in Section 4, followed by the conclusion of
the paper in Section 5.

2. Dynamic Comparator Analysis
2.1. Working Principle of the Single-Tail Dynamic Comparator

The operation of the conventional single-tail dynamic comparator depicted in Figure 1
consists of two phases [12]:
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Figure 1. Conventional single-tail dynamic comparator.

Reset phase: The reset phase starts when clk = 0. In this phase, the reset transistors M8
and M9 are on while the tail transistor M1 is off. As a result, output nodes out+ and out−
are pulled up to VDD, which ensures the initial condition as well as a valid logic level for
the comparator.

Comparison phase (decision-making phase): The comparison phase starts when
clk = VDD. In this phase, the reset transistors M8 and M9 are off while the tail transistor M1
is on. The output nodes out+ and out−, previously precharged to VDD, turn M4 and M5 on.
Also, these two output nodes begin to discharge their voltages, which is still high enough
to keep M4 and M5 on. The discharging rate of out+ and out− depends on the voltages at
two input nodes in+ and in−.

When in+ > in−: Out+ discharges at a faster rate compared to out−. This means
that the voltage at out+ drops to VDD − |V THP| before out−, making M7 turn on before
M6. Since (M4, M6) and (M 5, M7) together form back-to-back inverters, the latch regen-
eration is activated. Hence, out+ and out− are pulled down to GND and pulled up to
VDD, respectively.

When in+ < in−: The circuit works in the opposite manner with the final result of out+
and out− being pulled up to VDD and pulled down to GND, respectively.

In summary, during the comparison phase:

in+ > in− ⇒
{

out+ = GND
out− = VDD

in+ < in− ⇒
{

out+ = VDD
out− = GND

.

2.2. Delay Analysis

The propagation delay is one of the key features of a comparator. It consists of
two parts:
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Delay for the capacitors C0 and C1 to discharge to the point when M6 and M7 turn on:

t0 =
Ci|VTHP|

I3
≈ Ci|VTHP|

I1
2

= 2
Ci|VTHP|

I1
(1)

where Ci is the load capacitor at the output nodes with equal values (i = 0, 1 and C0 = C1);
VTHP is the threshold voltage of p-channel MOSFETs M6, M7; and I1, I3 are the drain
currents through M1, M3, respectively.

Delay from the two cross-coupled inverters:
Since the threshold voltage of the comparator is considered to be half of the supply

voltage, or VDD
2 , it means that

∆Vout =
VDD

2
(2)

where ∆Vout is the output voltage swing and VDD is the supply voltage.
Therefore, the latch delay is calculated as

tlatch =
Ci

gmeq
ln
(

∆Vout

∆V0

)
=

Ci

gmeq
ln
(

VDD/2
∆V0

)
(3)

where gmeq is the equivalent transconductance of the latch and ∆V0 is the output volt-
age difference.

Also, at time t0:

∆V0 = |Vout+ −Vout−| =
∣∣∣∣(VDD − |VTHP|)−

(
VDD −

I2t0
Ci

)
=

∣∣∣∣|VTHP| −
I2t0
Ci

∣∣∣∣ = |VTHP|
(

1− I2
I3

)∣∣∣∣ = |VTHP|
∆Iin
I3

(4)

where I3 is the drain current through M3 and ∆Iin is the current difference at the input ends.
Since I3 ≈ I1

2 :

∆V0 = |VTHP|
∆Iin

I1/2
=

2|VTHP|
√

β2,3I1

I1
∆Vin = 2|VTHP|

√
β2,3

I1
∆Vin (5)

where β2,3 ≡ β2,β3 are the current factors of M2, M3, respectively.
Substitute (5) into (3):

tlatch =
Ci

gmeq
ln

(
VDD/2

2|VTHP|
√

β2,3/I1∆Vin

)
=

Ci

gmeq
ln

(
VDD

4|VTHP|∆Vin

√
I1

β2,3

)
(6)

The total delay is the sum of its two parts:

tdelay = t0 + tlatch = 2
Ci|VTHP|

I1
+

Ci

gmeq
ln

(
VDD

4|VTHP|∆Vin

√
I1

β2,3

)
(7)

The simulation results illustrate that t0 dominates tlatch [1] and tdelay follows the
change in t0. In other words, when I1 decreases, t0 increases and tdelay hence increases, and
vice versa.

2.3. Power Analysis

In order to prevent inaccuracies at boundaries between operating regions, instead of
MOSFET’s existing models, its time-variant model is applied to analyze the power of the
conventional dynamic comparator [13]. The formula for drain current applicable to all
operating regions is expressed in the work of [14] as

ID = IZ

[
ln2
(

1 + e
VGS−VT

2nφt

)
− ln2

(
1 + e

VGS−VT−nVDS
2nφt

)]
(8)



Electronics 2023, 12, 3392 5 of 14

where VGS is the gate–source potential difference, VT is the threshold voltage, VDS is the
drain–source potential difference, and φt is the thermal voltage kT

q .
IZ and n are given by

IZ = 2µCox
W
L

nφ2
t (9)

n =

1− γ

2
√

VGB −VT0 +
(
γ/2 +

√
2φF

)2

−1

(10)

where γ is the body-effect coefficient, VGB is the gate-bulk potential difference, VT0 is the
threshold voltage with zero source-bulk voltage VSB, φF = kT

q ln
(

Nsub
ni

)
, k is Boltzmann’s

constant, q is the electron charge, Nsub is the doping density of the subtrate, and ni is the
density of electrons in undoped silicon.

For one period of comparison, the average power of the supply voltage is calculated as

Poweravg =
1
T

∫ T

0
VDDIsupplydt = fclkVDD

∫ T

0
Isupplydt (11)

where fclk is the frequency of the comparator’s clock, VDD is the supply voltage, and Isupply
is the current drawn from the supply voltage.

When clk = 0 (reset phase), in order to charge the output nodes to VDD, a current is
drawn from the supply voltage source.

When clk = VDD (decision-making phase), assuming that in+ > in−, according to the
working principle of the conventional dynamic comparator explained above, M7 will turn
on before M6. Since M5 has already been on, there is a current drawn from VDD from M7.
Therefore, during this comparison phase, Isupply is equivalent to the current through M7.
Meanwhile, as the voltage at out− discharges to the ground, M5 will be off and there will
be no current drawn from VDD. As a result, such a comparator is classified as dynamic [13].

To calculate the average power during the comparison phase, we apply the time-
variant model for current through M7 described in (8) to the formula in (11):

Poweravg = fclkVDDI7

∫ tlatch

t0

[
ln2
(

1 + e
VDD−Vout−(t)−|VTHP |

2nφt

)
−ln2

(
1 + e

VDD−Vout−(t)−|VTHP |−n(VDD−Vout+(t))
2nφt

)]
dt (12)

where the lower and upper bound of the integral in (12), t0 and tlatch, respectively, are
clarified in the delay analysis part.

For the integral in (12) to be solvable, it is necessary that the approximation
ln2 (1 + ex) ≈ln2 (ex) = x2 when ex � 1 is used. Since the exponential terms of (12)
are much larger than 1, the mentioned approximation is valid.

Therefore:

Poweravg = fclkVDDI7

∫ tlatch

t0

[(
VDD −Vout−(t)− |VTHP|

2nφt

)2
−
(

VDD −Vout−(t)− |VTHP| − n(VDD −Vout+(t))
2nφt

)2
]

dt (13)

Simplifying the integral in (13), the closed-form expression for power is obtained as

Poweravg = fclkVDDI7

(
1

8nφ2
t

)
τlatch|VTHP|

[
2k− n|VTHP|+ (2k + n|VTHP|)e

−2(tlatch−t0)
τlatch − 4ke−

tlatch−t0
τlatch

]
(14)

where k = VDD − |VTHP| and τlatch =
gmeq

Ci
(gmeq is the equivalent transconductance of

the latch as mentioned in the delay analysis).
For the case in+ < in−, power dissipation can be obtained by substituting I6 with I7 in

the formula of (14):

Poweravg = fclkVDDI6

(
1

8nφ2
t

)
τlatch|VTHP|

[
2k− n|VTHP|+ (2k + n|VTHP|)e

−2(tlatch−t0)
τlatch − 4ke−

tlatch−t0
τlatch

]
(15)
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2.4. Cadence Virtuoso Simulation

The conventional dynamic comparator is designed and simulated in the 65 nm technol-
ogy of the TSMCN65 process. The frequency at which the circuit functions is fclk = 1 GHz
and the supply voltage is VDD = 1.2 V. The voltage at node in− is constant at 1 V as a
reference voltage, while in+ is a pulse voltage source with the maximum and minimum
value of 1.005 V and 0.995 V, respectively, and a frequency of 100 MHz. With this input
configuration, ∆Vin = 5 mV.

Figure 2 shows the transient simulation of the conventional comparator in one clock
period that consists of both the comparison and the reset phase. t0 and tlatch are the
parameters explained above in Section 2. The total propagation delay of the dynamic
comparator is the sum of t0 and tlatch in Figure 2, tdelay = t0 + tlatch.
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Figure 2. Transient simulation of the conventional dynamic comparator.

Figure 3 demonstrates the transient simulation of the current Isupply drawn from the
supply voltage VDD in one period from 0 to 1 ns. To calculate the power dissipation of the
dynamic comparator, we integrate Isupply with respect to time from 0 to 1 ns and multiply
with fclk and VDD as in Equation (11) to obtain the result.
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3. Optimization by Genetic Algorithm
3.1. Genetic Algorithm (GA)

The genetic algorithm (GA) is one of the evolutionary computation methods used for
a wide variety of optimization problems. GA’s basis is the principle of natural selection, in
which suitable individuals in a specific environment survive and reproduce while others
are eliminated [15]. With the idea of “survival to the fittest”, better solutions are generated
thanks to the successive evolution of generations.

The implementation of GA is described in the flowchart of Figure 4:
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As illustrated in Figure 4, rather than a single solution, GA utilizes a population of
individuals for parallel search in the problem space. The algorithm starts by initializing
a population of a fixed size with randomly created solutions. These solutions, usually
encoded in a bitstring of a fixed length, are modeled as chromosomes. The chromosomes
consist of genes, which are represented by one bit or a group of bits. Every generation,
the bitstrings of chromosomes are decoded into their actual representation. Then, based
on a fitness function, the fitness values of all individuals are evaluated to find the best
individual in the current population. These fitness values evaluate how close the current
solution is to the predetermined target or the optimal solution of the problem. After
this step, the stop condition, including the number of iterations or the comparison with
the target, is considered. If this condition is not met, the algorithm continues with the
selection process.

According to the fitness value, a subgroup of chromosomes—the parents—is selected
to create the new population of offspring by the process of crossover and mutation. During
crossover, two parents are randomly selected from the set of chosen parents; their bitstrings
are separated into parts at the same location and swapped together to create two child
chromosomes for the next generation. In order to prevent the solutions from becoming
stuck at local optima, the next step involves the mutation process, which can be as simple as
inverting one bit in the bitstring or more complicated as complete gene modifications [15].
The crossover and mutation steps are implemented with certain probabilities rcross and rmut
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inside the range [0, 1], respectively. Since a new population has already been created, the
algorithm continues with the decoding and fitness calculation. When the fitness results of
the children population are available, the best chromosome can be found. Afterward, the
terminating condition is re-evaluated. GA stops only when this condition is true; otherwise,
the loop of regeneration carries on. The output result of GA is the decoded solution of the
chromosome with the best fitness value.

From another viewpoint, GA can also be summarized by Pseudocode 1:

Pseudocode 1: Genetic algorithm (GA)

decoded_solution genetic_algorithm() {
population = initial_population();
best = calculate_fitness(decode(population));
while (!stop_condition) {

parents = select(population);
children = crossover(parents);
new_population = mutation(children);
best = calculate_fitness(decode (new_population));

}
return decode(best);

}

3.2. Proposed GA-Spectre Model to Optimize Delay and Power of the Dynamic Comparator

When applying GA to optimization problems, the structure of the algorithm almost
remains unchanged. Meanwhile, it is necessary to make suitable modifications to the
step of fitness calculation for specific problems. For the optimization of analog circuit
design, the “Calculate fitness” block in Figure 4 consists of two substeps. The first one
is delay and power simulations, which are executed by the Cadence Virtuoso tool in the
TSMCN65 process, with the help of the Spectre simulation platform. The remaining step
is the evaluation of fitness values according to delay and power data collected in the
previous step.

In this research, GA is implemented by the Python programming language since
Python is currently considered the most widely used programming language and has
various built-in libraries for AI algorithms’ programming. Also, Spectre is chosen as
the circuit simulator for the whole design as an alternative to related studies. Circuit
simulations in the works of [6,7] are performed by HSPICE, whose output data are
mostly presented in the simulator’s predetermined format. Thus, scripting languages
are usually necessary to create files containing output results of compatible format for
Python processing of GA. On the other hand, it is possible for SKILL programming’s
syntax to be integrated in Ocean-based scripts of the Spectre simulator. This means
that simulation results can be arranged in users’ desirable format without further use
of scripting languages. On account of its function in the optimization system and
convenience in output data format, Spectre is preferably chosen as a practical candidate
for circuit simulations.

The interrelation between Spectre and Python is described as follows: At first, the
values for the population of design variables are created by Python and sent to Spectre via
an Ocean-based script. This Ocean script is responsible for automated circuit simulations
based on received numbers and the results are sent back and further processed by the
Python script to evaluate fitness scores of each individual. This repetitive process carries on
until the algorithm reaches its stopping point. The mentioned Spectre-Python correlation is
further clarified by the block diagram in Figure 5:
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Regarding the case of optimizing the delay and power of the dynamic comparator, first
and foremost, determining the optimization variables—parameters that mainly contribute
to delay and power results—is essential. Since we use the TSMCN65 process for the design,
the lengths of all the MOSFETs in the circuit are set to 65 nm. According to the delay analysis
in Section 2, since ∆Vin of the dynamic comparator is fixed at 5 mV, I1 and Ci are responsible
for delay adjustment. Therefore, we declare two delay-related variables: the width of M1
(W1) and the capacitors’ values (Ci). Similarly, as the values of VDD and the frequency
of the clock signal clk are assigned to 1.2 V and 1 GHz, respectively, our power-related
variables are determined based on the current Isupply, which is the sum of four currents
flowing through M6, M7, M8, and M9. Due to the symmetry of the circuit, the widths of M6
and M7, and M8 and M9 should be equal. Hence, we declare two more variables: the width
of M6 and M7 (W67) and the width of M8 and M9 (W89). For the remaining MOSFETs, the
widths of M2 (W2) and M3 (W3), and M4 (W4) and M5 (W5) are also set to equal values to
ensure the circuit’s symmetry. For optimal performance of delay and power consumption,
the simulation results indicate that W2 = W3 = 0.21 µm, and W4 = W5 = 0.12 µm.
In total, we need four optimization variables, namely W1, W67, W89, and Ci. In order to
satisfy the range of the process and assure the functional correctness of the conventional
dynamic comparator, the simulation results indicate that the bounds for the four above-
mentioned variables are [0.12 µm; 2 µm], [0.12 µm; 2 µm], [0.12 µm; 2 µm], and [0.1 fF;
0.8 fF], respectively.

For subsequent GA initializing steps, the number of bits for each chromosome rep-
resentation is defined to be 16 bits and the population size is chosen to be six individuals
per population, correspondingly. While crossover has a high probability, the probability
of mutation is typically low; the authors in [16] showed that rcross and rmut are inside the
ranges [0.8; 0.95] and [0.001; 0.05], respectively. Finally, the choice of a suitable fitness
function is also critical. The figure of merit (FoM) to compare the performance of dynamic
comparators can be either energy efficiency as in [8] or PDP as in [17]. With a view to
optimizing both delay and power of the dynamic comparator, we choose the FoM in the
form of PDP as the fitness function for GA. The comparator is considered to perform
better with a lower value of PDP, which means that a lower PDP is equivalent to higher
fitness values.
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In other words, our optimization problem can be summarized as

minimize PDP(W1, W67, W89, Ci)
subject to L = 65 nm, W2 = W3 = 210 nm, W4 = W5 = 120 nm

∆Vin = 5 mV, VDD = 1.2 V, fclk= 1GHz
0.12 µm ≤W1, W67, W89 ≤ 2 µm
0.1 fF ≤ Ci ≤0.8fF

4. Results and Discussion

The simulation results indicate that the lowest value for PDP of 0.2254 fJ is achieved
for the case of rcross = 0.8 and rmut = 0.05. With PDP = 0.2254 fJ, the delay and power
of the conventional dynamic comparator are 72.48 ps and 3.11 µW, respectively. PDP
fitness values as well as the delay and power over 100 iterations of GA are illustrated in
Figures 6 and 7, respectively.
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As can be clearly observed in Figure 7, the values for delay and power vary in an
unpredictable and non-monotonous manner. However, their corresponding PDP in Figure 6
decreases monotonously throughout the 100 iterations. Since GA produces chromosomes
with better fitness values at the end of each iteration, PDP’s downward trend conforms
to the working principle of the algorithm. In terms of the variables declared for GA, the
optimal set (W1, W67, W89, Ci) = (0.4463 µm, 0.1277 µm, 0.1553 µm, 0.1 fF) is obtained after
100 iterations of the algorithm. Nevertheless, it is worth noticing that the process grid of the
TSMCN65 process is 5 nm. This means that the widths of M1, M6, M7, M8, M9 need to be
rounded to their closest feasible values as (W1, W67, W89) = (0.445 µm, 0.13 µm, 0.155 µm).
Re-simulated results with the set (W1, W67, W89, Ci) = (0.445 µm, 0.13 µm, 0.155 µm, 0.1 fF)
vary slightly with the final values of 72.61 ps for delay, 3.11 µW for power consumption,
and 0.2258 fJ for PDP.

The post-optimization sizes of all MOSFETs in the circuit are presented in Table 1:

Table 1. Post-optimization transistors’ sizes.

Device Size (W/L)

M1 0.445 µm/65 nm
M2, M3 0.21 µm/65 nm
M4, M5 0.12 µm/65 nm
M6, M7 0.13 µm/65 nm
M8, M9 0.155 µm/65 nm
C0, C1 0.1 fF

Table 2 summarizes the performance of the conventional dynamic comparator of this
research and other research works:

Table 2. Performance summary of different dynamic comparator designs.

Parameters
References

[1] [8] [9] [10] [11] This Work

CMOS Process (nm) 90 65 65 90 40 65
Supply voltage (V) 1.2 1 1.2 1 1.1 1.2

Clock frequency (GHz) 3.07 20 6 1 6 1
Average delay (ps) 410 14.28 42.7 51.76 54 72.61

Power dissipation (µW) 0.24 67.8 381 32.62 288 3.11
PDP (fJ) 0.0984 0.968 16.3 1.67 15.552 0.2258

Energy per conversion (fJ/conv.) 0.07818 3.39 63.5 32.62 48 3.11
Kickback noise (mV) N/A N/A N/A N/A N/A 122

As the conventional dynamic comparator in this work has zero static power consump-
tion, its power consumption at 1 GHz is much lower than that of the circuit of [10]. Since
clock frequency is directly proportional to power dissipation as presented in Equation (11),
the designs of [8,9,11] with higher clock frequency exhibit a higher power than our design,
which is reasonable. Meanwhile, the power consumption in [1] is still lower despite operat-
ing at higher frequency. The parameter energy per conversion, which is equal to the ratio
of power over sampling frequency (or clock frequency), is therefore needed to evaluate
dynamic comparators’ performance with respect to power. From Table 2, it is clear that our
research work has the second-lowest energy per conversion value at 3.11 fJ per conversion.

In addition, compared to [9–11], our work has approximately a 20% higher average
delay. On the contrary, our average delay is less than one-fifth in comparison with the
delay of [1]. Because delay and power trade off with each other, PDP is utilized as the FoM
in the case of optimizing both parameters. With respect to PDP, our design obtains the
second-best value of 0.2258 fJ versus the lowest number of 0.0984 fJ by [1].

For further assessment of our optimization system, the optimization platform of the
Analog Design Environment (ADE) GXL, which offers both local and global optimization
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of circuit performances of interest, can be utilized as a suitable reference model. For
setup steps, PDP is chosen as the optimization function, and the optimization variables
and their bounds are similar to the GA-Spectre-based system. Regarding ADE GXL’s
local optimization, the post-optimization transistors’ sizes (W1, W67, W89, Ci) = (0.445 µm,
0.13 µm, 0.155 µm, 0.1 fF) obtained from the GA-Spectre framework are set as the reference
points. With regard to global optimization from ADE GXL, due to our constrained data, the
C version Feasible Sequential Quadratic Programming (CFSQP) is selected by the Spectre
simulator as the optimization algorithm. It is worth acknowledging that while the CFSQP
utilizes a single individual for each iteration rather than a population of individuals, GA
in our system is implemented on a population of six individuals per iteration. Hence,
for a decent comparison, the PDP result of 100 iterations of our GA-based optimization
system should be compared with that of 6 × 100 = 600 iterations of the ADE GXL’s global
optimization tool.

Table 3 indicates that the result of PDP acquired by our optimization system is lower
and has a higher convergence rate compared to that of ADE GXL’s local as well as global
optimization tool.

Table 3. Comparison between different optimization models.

Parameters
Optimization Model

ADE GXL’s Local
Optimization

ADE GXL’s Global
Optimization

This Work’s GA-Based
Optimization

PDP (fJ) 0.227 0.236 0.2258

Figure 8 depicts the layout of the conventional dynamic comparator, which occupies
an area of approximately 198.4 µm2 (16 µm × 12.4 µm). Additionally, Table 4 demonstrates
layout parameters of different designs while Table 5 represents a comparison between
pre-layout and post-layout simulation results.
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Table 4. Layout summary of different dynamic comparator designs.

Parameters
References

[1] [8] [9] [10] [11] This Work

CMOS Process (nm) 90 65 65 90 40 65
Estimated dimension (µm × µm) N/A 12.22 × 15 10.9 × 13 7.2 × 8.1 13.5 × 4.5 16 × 12.4

Estimated area (µm2) N/A 183.3 141.7 58.32 60.75 198.4

Table 5. Comparison between pre-layout and post-layout simulation results of this work’s comparator.

Parameters Pre-Layout Post-Layout

Average delay (ps) 72.61 82.32
Power dissipation (µW) 3.11 3.58

PDP (fJ) 0.2258 0.2947
Energy per conversion (fJ/conv.) 3.11 3.58

Kickback noise (mV) 122 163

5. Conclusions

GA can be considered a novel approach of using a software algorithm to optimize
analog circuits. Instead of a trial-and-error process of circuit sizing, the GA-Spectre model
solves the problem in a much more effective and time-saving manner. This paper proposes
a new GA-Spectre model to design the dynamic comparator and successfully applies this
model to optimize the dynamic comparator with a result of 72.61 ps of delay and 3.11 µW
of power dissipation. Hence, the algorithm proves to be a promising solution to the optimal
circuit’s parameters. Since the mentioned GA-Spectre architecture could also be applied to
optimization problems of different circuits, it might be the driving force to transform the
way analog circuit engineers work.
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