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Abstract: Stochastic Computing (SC) is an alternative way of computing with binary weighted words
that can significantly reduce hardware resources. This technique relies on transforming information
from a conventional binary system to the probability domain in order to perform mathematical
operations based on probability theory, where smaller amounts of binary logic elements are required.
Despite the advantage of computing with reduced circuitry, SC has a well known issue; the input
interface known as stochastic number generator (SNG), is a hardware consuming module, which is
disadvantageous for small digital circuits or circuits with several input data. Hence, in this work,
efforts are dedicated to improving a classic weighted binary SNG (WBSNG). For this, one of the
internal modules (weight generator) of the SNG was redesigned by detecting a pattern in the involved
signals that helped to pose the problem in a different way, yielding equivalent results. This greatly
reduced the number of logical elements used in its implementation. This pattern is interpreted with
Boolean equations and transferred to a digital circuit that achieves the same behavior of a WBSNG
but with less resources.

Keywords: stochastic computing; stochastic number generator; digital circuits

1. Introduction

Six decades ago, the pioneering work of Gaines [1] introduced a novel computation
technique known as Stochastic Computing (SC) [2,3]. This technique relies on a data
domain transformation, i.e., from a weighted binary system (WBS) to an unary system,
where the resulting number is a string of 0’s and 1’s, with the property that the percent of 1’s
in the string represents the value of the number as a probability; hence, the string is known
as probabilistic sequence (PS) or probabilistic sequence, and the input transforming circuit
is known as Stochastic Number Generator (SNG). Each bit is assumed to be random, i.e., the
bits at different positions are uncorrelated [4]. Due to the fact that the interaction between
classic probabilistic sets can be set up with logical operators, working with probabilistic
sequences makes it possible to rely on single logical gates for implementing math operations,
resulting in smaller digital circuit designs than those obtained with the corresponding
counterpart based on a WBS. Once results are obtained, data are back-transformed to a
WBS by means of a counter, i.e., by counting the 1’s in the PS. It is worth mentioning that
the available computational resources at the time that Gaines proposed the SC were limited,
making SC unfeasible. Figure 1 shows a block diagram of a stochastic computing system
where domain transformation elements are evident.

One of the most attractive features of stochastic computing is the great reduction in
logic elements or gates for the design of specific applications, since basically the format in
which the numbers work has the property of randomness and depends on the probabilistic
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mathematical operations that can be performed between them and that can be implemented
with simple logic gates. On the other hand, fault tolerance is one of the advantages of
stochastic computing [5], since the impact due to the bit flip or soft error phenomenon (so
called because it is a transient error and is not related to physical damage to the device; it
only causes the change in an arbitrary bit [6]) has less impact because the bits in an PS are
not weighted. In terms of applications, SC is useful where small errors are tolerated, such
as image processing [7] and neural networks [8], although there are also more specific and
unconventional applications, such as the design of automatic controllers [9].

SNG
Mathematical
Operations

with
Logical Gates

Counter
PSData

WBS
Math.
Results
in PS

Math.
Results
in WBS

1

Figure 1. Block diagram of a stochastic computing system.

Advancements in digital devices technology have rendered cheaper, simpler and more
flexible implementations of algorithms based on SC as in [10], where a standalone SC
architecture that can perform accurate arithmetic operations such as addition, subtraction,
multiplication and sorting was designed as in-memory SC architecture based on 2D mem-
transistors. But in general, there is a drawback presented by SC; i.e., an n-bit binary number
can represent up to 2n levels, but in order to deal with the same resolution in SC, a string of
2n bits is required, which considerably increases latency, making the SC match low-speed
applications as artificial neural networks, as decoding low-density parity check codes and
polar codes, for digital filters, among others [4].

Nowadays, due to the recent available computational power in digital devices as
FPGAs [11] and due to other great features of SC techniques such as error resilience, low
power consumption and low resource arithmetical unit implementations, researchers in
different areas are thoroughly exploring this computation technique again [5,12]. Neverthe-
less, drawbacks are still present in SC, such as the loss of accuracy in relatively large circuits,
restrict the SC to small algorithms. Another important drawback is resource consumption by
the SNG. Each involved signal must be transformed by an SNG; hence, it is possible that all
the circuits involved in SNGs are larger than the stochastic digital circuit itself, clearly losing
the advantage of smaller circuit designs in the stochastic domain. The reason for this fact is
that the SNG consists of two parts: a Linear Feedback Shift Register (LFSR) that generates a
Pseudo-Random Binary Signal (PRBS) [13] and a comparator.

Recently, some researchers have focused their efforts on novel applications of SC, e.g.,
control algorithms [9], deep learning [14], machine learning [15] and estimation algo-
rithms [16], just to mention a few. Other researchers are concerned with the disadvantages
of SC, hence aiming their research at alleviating SC drawbacks; e.g., in [17], an area-efficient
SNG by sharing the permuted output of one LFSR among several SNGs is proposed; de-
spite novelties presented in this work using permuted readings to obtain more stochastic
sequences, it just avoids the implementation of more LFSRs, which is attractive, but the
SNG is not only composed of LFSRs, but of a comparator too. Precision degradation in
subsequent phases after the application of the method to select permuted pairs is still a risk.

SNGs can be divided into two types: True SNG (TSNG) and Pseudo-Random Number
Generator (PRNG). TSNG has a natural source of randomness to seed the comparator
generating outputs. Through the years, one of the most outstanding developments of this
type of SNG has been spintronic devices such as the one presented in [18], where a scalable
SNG based on the Spin–Hall effect is proposed, which is capable of generating multiple
independent stochastic streams simultaneously. The design takes advantages of the efficient
charge-to-spin conversion from the Spin–Hall material and the intrinsic stochasticity of
nano-magnets; although the proposal shows interesting results, it is not of practical use
as it requires custom non-commercial semiconductor devices also. Previous works [5]
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have concluded that SNGs that truly use randomness as presented in [18] can result in
worse results than those obtained with PRNG ones. One of the reasons could be that the
maximum length for the PS is not guaranteed with such semiconductor devices. SNG based
on spintronic devices as an n-bit random number generator still relies on the conventional
SNG main idea: comparison of a number to obtain a PS. Therefore, the chance of losing
accuracy sooner in a large system implementation using spintronic devices is higher than
that obtained with conventional SNG based on LFSR. On the other hand, PRNGs are not
fundamentally based on a natural randomness phenomena, but as was mentioned before,
PRNGs are more accurate than TSNG. Most of the PRNGs, at least the most popular, are
based on LFSR designs; others are based on quasi random number generators known as
low-discrepancy (LD) sequences or Sobol sequence generators [19], based on the Least
Significative Zero detection from a counter. Generating this kind of LD sequences has been
proposed to improve the accuracy and computation speed of stochastic computing circuits.
Nevertheless, the large amount of hardware for Sobol sequence generators makes them
expensive in terms of area and energy consumption. In [20], two minimum probability-
conversion circuits (MPCC) are proposed for reducing the hardware cost of SNGs, the
MPCC of two-level logic (MPCC-2L) design and the MPCC of multilevel logic (MPCC-ML)
design. The authors claim the MPCC-2L design slightly reduces SNG hardware cost, but
the MPCC-ML design significantly reduces hardware cost as much as 63% for a 10-bit word.
True results for the MPCC-ML are not presented since the authors state that additional
flip-flops are required in between multiple levels of logic.

It is clear that there are opportunities for solving drawbacks in SC and in particular
the issue with the SNG, i.e., its circuitry has the disadvantage of being relatively large, is
attractive for investigating an alternative digital circuit proposal with less hardware. To the
authors’ best knowledge, there are more PRNG works than TSNG in the literature due to
some arguments given above.

Hence, this work contributes with the proposal of a novel SNG of the pseudo-random
type that requires fewer logic gates. This is possible due to the structure of the comparator
inside the SNG, in which some patterns were detected in the transformation process from
WBS to PS, yielding in that way to a simpler digital circuit that represents such patterns
with respect to the one in a classic SNG [21] currently in use by engineers (see Remark 1).

Remark 1. Although the generator is somewhat old, it is still used by engineers, as can be seen in
references [22–24]. Its popularity is due to the fact that it has the unique property of generating
low-correlation sequences that perform accurate multiplications; hence, new proposals are still taking
advantage of this property, as in [17,25]. It is worth mentioning that to the best of the authors’
knowledge, this generator has never been reduced, with the exception of the work [20]. Therefore,
it is of interest to be able to make improvements to this generator to allow future works to have an
economical and updated version of it.

2. Stochastic Computing Principles

Let xr ∈ R+
0 (R+

0 = R+ ∪ {0}) be a number represented in an n-bit WBS format,
transformed into a probabilistic sequence denoted by X. For that, the number needs to
be normalized, i.e., x = xr/xm, with x as the normalized number and xm = 2n; hence,
x ∈ [0, 1] and it relates to X with x = PX being the probability of 1’s appearing in the PS X,
permitting the binary sequences to compute with them in a probabilistic fashion. This fact
is possible because a PS is the accumulation of 1’s and 0’s in a period ω, which is permeated
with random properties due to transformation; hence, it allows probabilistic computations.
From this perspective, logical gates are treated as probabilistic experiments.

2.1. Basic Arithmetic Operations

Let Xj be a PS input for j = {1, 2, 3} and Y be a PS output; then, their corresponding
probabilities of 1’s appearing in the PS are PXj and PY, respectively. These probabilities are
related to numerical values corresponding to a PS of the following form: xj = PXj , y = PY.



Electronics 2023, 12, 3383 4 of 13

Assume that Xi and Xj are uncorrelated, with i = {1, 2, 3} and i 6= j. Now, the intersection
of two sets is solved with a multiplication,

P[Y = 1] = P[X1 = 1] ∩ P[X2 = 1]

PY = P[X1 = 1]P[X2 = 1]

= PX1 PX2 . (1)

It is clear that y = x1x2; therefore, dealing with PSs, multiplication is carried out with
an AND gate, as illustrated in Figure 2.

X1

X2

Y

Figure 2. AND gate as a multiplication operator of PSs.

The union of two sets is as follows:

P[Y = 1] = P[X1 = 1] ∪ P[X2 = 1]

PY = P[X1 = 1] + P[X2 = 1]− P[X1 = 1]P[X2 = 1]

= PX1 + PX2 − PX1 PX2 , (2)

which corresponds to the logical gate OR, as illustrated in Figure 3.

X1

X2

Y

Figure 3. OR gate implementing the operation y = x1 + x2 − x1x2 with PSs.

The logic gate NOT as shown in Figure 4 is interpreted in the following form:

P[Y = 1] = 1− P[X1 = 1]

PY = 1− PX1 . (3)

X1 Y

Figure 4. NOT gate implementing the operation y = 1− x1 with PSs.

To keep the results within the range [0, 1], a scaled addition is needed, and for that, a
multiplexer is considered, as shown in Figure 5.

Y

X1

X2

X3

Figure 5. Multiplexer for scaled addition, where X1, X2 are inputs, X3 is the selector and Y is the output.

Using Equations (1)–(3), the following relation for the multiplexer can be obtained

PY = PX1(1− PX3) + PX2 PX3 −
(

PX1(1− PX3)
)(

PX2 PX3

)
= PX1(1− PX3) + PX2 PX3 −

(
PX1(PX3 − PX3 PX3)

)
PX2

= PX1(1− PX3) + PX2 PX3 −
(

PX1(PX3 − PX3)
)

PX2

= PX1(1− PX3) + PX2 PX3 . (4)
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Now, by choosing x3 = PX3 = 1/2, Equation (4) yields to:

PY = PX1

(
1− 1

2

)
+

PX2

2

=
PX1 + PX2

2
,

and y = (x1 + x2)/2; therefore, in SC, addition is carried out with a multiplexer with an
even selection, as shown in Figure 6.

Y
X1 1

X2 0

1
2

Figure 6. Multiplexer as a scaled addition of PSs.

The logic gate XNOR as shown in Figure 7 can be analyzed in a similar fashion as the
multiplexer (see for instance [26]); hence, it is interpreted as the following form:

P[Y = 1] = P[X1 = 1]P[X2 = 1] + (1− P[X1 = 1])(1− P[X2 = 1])

PY = P[X1 = 1]P[X2 = 1] + 1− P[X1 = 1]− P[X2 = 1] + P[X1 = 1]P[X2 = 1]

= 1− PX1 − PX2 + 2PX1 PX2 .

X1

X2
Y

Figure 7. XNOR gate implementing the operation y = 1− x1 − x2 + 2x1x2 with PSs.

As an example, let us consider a function y = (x0x1 + x2)/2 where its corresponding
implementation with SC techniques is shown in Figure 8. It is clear that x0 = PX0 = 4/8,
x1 = PX1 = 6/8, x2 = PX2 = 5/8, x3 = PX3 = 1/2 and that the output of the AND gate
can be computed for two different forms: with the probabilistic values at the inputs, i.e.,
x0x1 = (1/2)(3/4) = x4 = 3/8 and by proceeding bit by bit, where the resulting PS X4
agrees with x4 = PX4 . Finally, the probabilistic values at the input of the multiplexer are
x4 = 3/8 and x2 = 5/8 and for the selector x3 = 1/2; hence, the output is determined as
y = (3/8 + 5/8)/2 = 1/2. This result agrees with y = PY.

X0 1 0 0 1 0 1 1 0

X1 0 1 0 1 1 1 1 1

X2 0 1 1 1 0 1 1 0

X3 1 0 1 0 1 0 1 0

X4 0 0 0 1 0 1 1 0

Y 0 1 0 1 0 1 1 01

0

Figure 8. Stochastic circuit for implementing function y = (x0x1 + x2)/2.

In the example of Figure 8, it is clear that the 3-bit input data are converted by means
of an SNG to a PS, where the zero state was artificially added in the LFSR, hence yielding
8-bit long PSs. See, for instance, Remark 2.

Remark 2. For the sake of simplicity, in this work, only the unipolar format is considered. For
dealing with SC based on bipolar or hybrid formats, the reader can consult the work [27].
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2.2. Domain Transformations
2.2.1. From WBS to PS

The SNG has two main modules:

(a) LFSR:
The LFSR consists of Flip-Flops (FFs) in a cascade interconnection. The LFSR is charac-
terized by a feedback from some memory elements through a Modulo-2 adder (XOR
gates) to the first FF. There are several feedback combinations from the memory ele-
ments. Some combinations will make the LFSR generate the largest output sequences.
In general, for an n-bit LFSR, the maximum length of a sequence (period) is given
by 2n − 1 (the subtraction of 1 is due to the fact that the LFSR cannot generate the
zero state). Other combinations will make the LFSR generate short output sequences,
where its length can be an integer common multiple of 2n − 1 [28].

(b) Comparator:
This is a module that receives a numerical value (normalized) x on one of its inputs
to compute if it is higher than or equal to the LFSR current state value y. A logical 1
is obtained each time condition x ≥ y is met and a 0 otherwise (with x as the binary
number and y as the random number from the current state of an LFSR; see, for
instance, Figure 9. Hence, an element of the PS X is generated at each clock cycle.

Figure 9 illustrates a transformation example from a four-bit binary fraction x to a PS X.

Binary number (x)

y0

Modulo-2
Adder

b

b

+

FF

FF

FF

FF

LFSR

COMPARATOR

x ≥ y
y1

y2

y3

x3 x2 x1 x0

X

Current state (y)

1

Figure 9. Block diagram of an SNG.

The LFSR module integrates a pseudo-random event which permeates X with random-
ness properties as outlined in the following paragraph. By convention, 1’s are considered
as favorable events and the transformation of x into X takes up to 2n − 1 clock cycles (when
the maximum length at the output of the LFSR is obtained), with n as the word length of x.
In summary, the scalar is encoded by the probability of obtaining a one (favorable event)
versus a zero. This is carried out by comparing all the LFSR states (2n − 1) with the same
scalar, hence obtaining a 2n − 1 binary sequence (bitstream) length.

On the other hand, the decoding is carried out by the summation of favorable events
in X divided by 2n; this yields the probability value P(X).
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Since no finite sequence is truly random, the sequence obtained with the LFSR is
totally deterministic; the output sequence of the LFSR agrees with the following properties
associated with randomness [28]:

• Balance: for every maximum period N = 2n − 1, the output of the LFSR is balanced
and it has approximately (N + 1)/2 1’s and (N − 1)/2 0’s;

• Runs: each maximum period has 2n−2−i runs of 1’s and 2n−2−i runs of 0’s, both of
length i with i = {1, 2, . . . , n− 2} and just one run of 0’s with length n− 1 and one
run of 1’s with length n;

• Span: taking into account all the memory states in the LFSR, it turns out that in a
maximum sequence period, all the 2n − 1 states appear just one time.

These three properties are the reasons the output sequence of the LFSR is considered a
PRBS and is hereinafter referred to as the random sequence (RS).

2.2.2. From PS to WBS

When a mathematical operation or algorithm is implemented with SC logical elements,
it can be interpreted as a probability experiment; hence, by counting favorable events, the
outcome will be the probabilistic value of such events.

2.3. Stochastic Number Generator

In some SC implementations, the advantage of a small circuit for implementing an
algorithm can be dimmed due to SNGs. An SNG requires a certain amount of resources
and each input signal or data to the algorithm needs to be transformed by means of an
SNG. On the other hand, for a sufficiently large LFSR, it will behave as an ideal random
source; otherwise, noise-like random fluctuations appear as errors at the output of the
SNG [5]. An alternative version of an SNG known as weighted binary SNG (WBSNG)
was introduced in [21], where it was demonstrated that a multiplication free of errors
was possible in certain cases by using LFSR. Nevertheless, the WBSNG still requires a
considerable amount of resources. In the following, the WBSNG will be reviewed and the
proposal of an economical WBSNG (EWBSNG) will be presented.

Remark 3. Although the WBSNG presented in [21] is is a classic generator, it is still very popular
and is used by engineers [2,5].

WBSNG Review

A four-bit version of WBSNG presented in [21] is shown in Figure 10. The main
idea behind a WBSNG is to provide an SNG with the capability of assigning to the input
xi binary weights in a descending progression fashion, i.e., (xn, . . . x1, x0), for the PS Xi,
supported by the LFSR. Assuming that an LFSR is producing the maximum PS length
(2n − 1), this guarantees that any individual LFSR output bit meets the span property,
which implies the balance property too. A balanced sequence has 2n−1 1’s and 2n−1 − 1 0’s.

Therefore, counting favorable events in any LFSR output bit Li position is equivalent to
the weight of the Most Significant Bit (MSB) (Ln−1) in a conventional binary number format.
This MSB will generate the fundamental sequence to produce the remaining weights. Runs
of 1’s and 0’s appear on the same proportions, with a single run of n− 1 0’s and a single run
of n 1’s; hence, it does not matter what type of run is looked for; both work the same. Here,
0’s runs are considered. Once Ln−1 was defined as a fundamental sequence, it is possible to
define weight functions as those shown in Equation (5), which are able to capture the run
patterns,
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Wn−1,k=Ln−1,k

Wn−2,k= L̄n−1,kLn−2,k = L̄n−1,kLn−1,k+1

Wn−3,k= L̄n−1,k L̄n−2,kLn−3,k = L̄n−1,k L̄n−1,k+1Ln−1,k+2

...

W0,k= L̄n−1,k L̄n−2,k L̄n−3,k . . . L0,k

= L̄n−1,k L̄n−1,k+1 L̄n−1,k+2 . . . Ln−1,k+n−1 (5)

with 0 ≤ k ≤ 2n − 1 as an index for the bit sequences produced for the LFSR (Lj,k) and by
the weights (Wj,k), with 0 ≤ j ≤ n− 1. Table 1 shows an example of the weight bit streams
generated from Ln−1, when n = 4.

1 1 1 1

1

1

1

0

W3

W2

W1

W0

L3

L2

L1

L0

X

Binary input x

Weights
generator

Figure 10. WBS for n = 4 [21].

Table 1. SNG output sequence X for x = 0.1111.

k L3 L2 L1 L0 W3 W2 W1 W0 X

0 1 1 1 0 1 0 0 0 1
1 1 1 0 0 1 0 0 0 1
2 1 0 0 0 1 0 0 0 1
3 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 1 1
5 0 0 1 0 0 0 1 0 1
6 0 1 0 0 0 1 0 0 1
7 1 0 0 1 1 0 0 0 1
8 0 0 1 1 0 0 1 0 1
9 0 1 1 0 0 1 0 0 1

10 1 1 0 1 1 0 0 0 1
11 1 0 1 0 1 0 0 0 1
12 0 1 0 1 0 1 0 0 1
13 1 0 1 1 1 0 0 0 1
14 0 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0 1

3. EWBSNG Proposal

Analyzing the dynamics behavior inside the original WBSNG design, a key pattern is
noticed. In Table 1, each time the LFSR has a new state, the defined functions in (5) filter out the
binary input by letting pass the most significant bit with value one (MSBO) in the LFSR. Notice
that Wj sequences shown in Table 1 do not overlap with each other due to the fact that there
is just one bit set to 1 each time, i.e., the MSBO of each LFSR state. Hence, the same MSBO is
used like a reference to delimit subsequent runs of 0’s, as can be seen in (5).

Therefore, for a given weight position inside the LFSR, the total number of MSBOs for
such a position in a period is equal to the total number of runs of 0’s of length r given before
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the MSBO. This particular number is 2n−r−1. Table 2 shows the above-mentioned facts in an
ordered table of states (for n = 4), where it can be noted that the only run of three 0’s (r = 3)
matches with only one MSBO of weight one, satisfying 1 = 24−3−1. After the MSBO, the
remaining part of the LFSR state consists of do-not-care terms. Hence, the WBSNG shown
in Figure 10 searches for all the individual patterns presented in (5), requiring several AND
gates to implement them.

Table 2. Number of MSBOs is equal to the number of runs of 0’s.

k L3 L2 L1 L0

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

A new weight-generating circuit with less hardware can be designed for finding
the MSBO in each LFSR state, with the remaining bits as do-not-care terms. For that,
the state of the LFSR is complemented, where the MSBO will be zero and propagated
through a concatenated structure of AND gates, yielding in that way to the do-not-care bits.
Finally, for generating the MSB weight, it is directly connected to the MSB of the LFSR, i.e.,
Wn−1 = Ln−1, as in the WBSNG. For the remaining weights, XOR gates are used, issuing a
logic 1, where a change from 1 to 0 is detected and the remaining weights will issue zeros
from the propagated zeros of the concatenated structure of AND gates. The corresponding
equations that describe the above-mentioned procedures are as follows:

Wn−1,k=Ln−1,k

Wn−2,k= L̄n−1,k ⊕ L̄n−1,k L̄n−2,k

Wn−3,k= L̄n−1,k L̄n−2,k ⊕ L̄n−3,k L̄n−2,k L̄n−3,k

... (6)

W0,k= L̄n−1,k L̄n−2,k . . . L̄1,k ⊕ L̄n−1,k L̄n−2,k . . . L̄0,k.

Finally, the proposed weight-generating circuit for an EWBSNG is shown in Figure 11
for the case of n = 4. The rest of the EWBSNG circuit is similar to that shown in Figure 10.

With respect to Figure 11, the number of occurrences or clock cycles (denoted c. c.)
of detected patterns (MSBO in every state of the LFSR) are shown in Tables 3–6. It can be
seen in Table 3 that there are eight occurrences of pattern 1 ([1 χ χ χ]), where χ represents
do-not-care terms.
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W3 W2 W1 W0

L3

L2

L1

L0

L̄3

L̄2

L̄1

L̄0

M3 M2 M1 M0

Figure 11. Weight-generating circuit for n = 4.

Table 3. Phase 1 of the weight-generating circuit.

No. of Pattern L3 L2 L1 L0 c. c.

pattern 1 1 χ χ χ 8
pattern 2 0 1 χ χ 4
pattern 3 0 0 1 χ 2
pattern 4 0 0 0 1 1

In Table 4, the MSBO in each pattern was turned to logic 0. Logic 0 can easily be issued
through the do-not-care terms by means of the concatenated AND gates.

Table 4. Phase 2 of the weight-generating circuit.

L̄3 L̄2 L̄1 L̄0 c. c.

0 χ χ χ 8
1 0 χ χ 4
1 1 0 χ 2
1 1 1 0 1

The propagated zeros can now be found in Table 5.

Table 5. Phase 3 of the weight-generating circuit.

M3 M2 M1 M0 c. c.

0 0 0 0 8
1 0 0 0 4
1 1 0 0 2
1 1 1 0 1

In Table 6, it can be noted that a change from logic 1 to 0 is detected from left to right
in the state represented by [M3 M2 M1 M0], yielding to the isolation of the MSBO. This bit
represents the weight of its position. This is carried out with XOR gates.

Table 6. Phase 4 of the weight-generating circuit.

W3 W2 W1 W0 c. c.

1 0 0 0 8
0 1 0 0 4
0 0 1 0 2
0 0 0 1 1

Instead of designing a digital circuit for detecting each pattern as in the original
WBSNG; here, a single digital circuit capable of self adjusting for detecting all patterns
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with less resources was designed. Finally, as can be seen in Figure 10, the last step is the
comparison of the weight state [W3 W2 W1 W0] with the binary input data x, selecting in
that way the weights that represent the binary input data in the PS.

Remark 4. It is clear that the LFSR cannot produce the zero state, but in Tables 1 and 2, the zero
state is added [5].

Remark 5. Since we are not modifying the pseudo-random source (LFSR) and only the comparator
inside the SNG is modified without changing its functionality, the effects of the initial seed and the
effects of different feedback configurations in the LFSR [28,29] and the correlation study of permuted
LFSR outputs as well [17,30] remain the same with respect to the original SNG.

4. Results

The weight-generating circuit is quantified for the one proposed here and is compared
with those presented in [20,21]. In order to be able to compare with [20], the final part of
the comparator (see Figure 10) was taken into consideration for the one proposed here and
the one presented in [21]. Results are shown in Table 7 for any number of bits n.

Remark 6. In the work [20], two new comparator circuits are presented: MPCC-2L and
MPCC-ML. According to the authors, the MPCC-ML circuit requires fewer logic gates, but
the corresponding logic gates from some flip-flops are not taken into consideration; hence, in this
work, the MPCC-2L circuit is taken for comparison purposes.

Figure 12 shows a bar graph of total gates required for the weight-generating circuit
here proposed and for that in [20,21]. From Table 7 and Figure 12, it can be appreciated
that the proposed circuit has a linear growth of the required logic gates as the number of
bits in the word increases, in contrast to the quadratic growth of required logic gates of the
proposals in [20,21].

1 2 3 4 5 6 7 8 9 10 11 12
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10

20

30

40

50

60

70

80

90

100

Figure 12. Bar graph of required logic gates. Proposed circuit (black), [21] (grey), [20] (light grey).
Logic gates vs. word length in bits.
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Table 7. Logic gates for weight-generating-plus-comparator circuits.

Gates Proposed [21] MPCC-2L [20]

XOR n− 1 0 0
OR n− 1 n− 1 n− 1
NOT n n− 1 n− 1

AND 2n− 1 (n + 1)n
2

n2 + n− 2
2

Total 5n− 3 n2 + 5n− 4
2

n2 + 5n− 6
2

5. Conclusions

It is well known that one of most hardware-consuming elements in SC implementation
is the SNG; in some cases, the area consumption has been reported to be higher than 80%
of the SC circuit itself. From Figure 12, it can be observed that there is a real advantage
provided by the proposed circuit with respect to n ≥ 5. Nevertheless, common values
used in applications are for n ≥ 10. In particular, for n = 11, the proposed EWBSNG
reduces by 47.7% the number of logic gates with respect to the WBSNG presented in [21].
This is a significant advance that alleviates the problem of large SNG circuits, making SC
implementations more attractive.
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