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Abstract: This paper presents a mathematical analysis of how energy return in grid-connected single-
phase photovoltaic systems affects the sizing of passive components. Energy return affects the size
of the link capacitor, making it larger than reported in the literature. One of the main points of this
article is that an inverter connected to the grid using a DC–DC converter with an appropriate link
capacitor is analyzed. The energy return is caused by the value (in Henry units) of the L-filter, which
is also analyzed in this paper. The analysis shows that there is a link between the value of the L-filter
and the voltage of the DC bus. The analysis assumes two conditions: (1) the DC bus voltage is always
higher than the peak value of the grid sinusoidal voltage, and (2) there is a unity power factor at
the connection point between the grid and the L-filter. To operate in an open loop, a compensation
phase angle is calculated and introduced in the single-phase inverter modulation; this phase angle
compensates the phase shift caused by the L-filter, avoiding the use of a phase-locked-loop (PLL)
control system. The L-filter ripple current is evaluated by Fourier analysis, and the DC bus ripple
voltage is evaluated by considering the energy returned to the link capacitor. The results of the
analyses are compared with existing methods reported in the literature. The results also show that, to
minimize the value of the L-filter, the DC voltage must be almost equal to the maximum voltage of
the grid. Equations to assess the value of the DC-link capacitor and the L-filter in function of their
ripples are developed. The results were verified with simulations in Simulink and experimentally.

Keywords: capacitors; DC–DC converters; DC–AC power converters; solar energy; passive filters;
power systems

1. Introduction

Solar energy is considered almost infinite; however, its great disadvantage is the
intermittency of its generation. In general, solar energy is converted by photovoltaic panels
(PVs) into electrical energy, which is interconnected through power converters to the grid
or isolated loads. This set of elements is called a photovoltaic system [1–3].

PVs have a lifetime of 20 to 30 years, while the lifetime of PV inverters is usually limited
to less than 15 years [4,5]. Therefore, power converters with high reliability are needed [6].
In a single-phase photovoltaic system, the power conversion from DC to AC requires
a link capacitor to compensate the power variations [7–10]. The electrolytic capacitor
is known to be a limiting component in the reliability and lifetime of a photovoltaic
system [11–13]. Recently, several new topologies have been proposed that do not use
electrolytic capacitors [14–17]. Previous research has yielded mathematical expressions to
assess the DC bus link capacitor for photovoltaic systems [18–20]. In addition, in recent
years, computational intelligence, artificial intelligence, and machine learning algorithms
have been used. These techniques have been widely used in the generation of energy from
renewable sources [21–24].

A typical schematic of a photovoltaic system is shown in Figure 1. The conventional
analysis to evaluate the DC-link capacitor assumes that energy always flows from the
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DC bus to the inverter. This will be true if passive filters, such as the L-filter, are not
necessary and are not placed between the grid and the inverter. However, these passive
filters are necessary to block the harmonics generated by the inverter. The addition of
these filters causes a phase shift between the voltage delivered by the inverter and the grid
voltage. Commonly, this phase shift and other variations are compensated with a PLL. The
PLL maintains a unitary power factor in the grid. Nevertheless, the phase shift causes a
non-unity power factor at the connection point between the inverter and the passive filter.
Therefore, there will be reactive power back to the inverter and to the DC bus. This situation
could be worse if, at the point of connection to the grid, the power factor is non-unity,
which would result in a higher power return to the link capacitor. The use of PLL does not
avoid this return of energy to the link capacitor; the traditional solution to this problem
is to choose a capacitor large enough to absorb the returned energy and to maintain the
ripple of the DC-bus voltage low.
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Figure 1. Photovoltaic system.

With respect to the passive filter added to block the harmonics of the inverter, it is
usually calculated using bode diagrams, but this procedure does not consider the effect
of these components on the DC-bus voltage and the link capacitor. This paper analyzes
the energy flow from the link capacitor to the grid to assess the effect of the L-filter on the
DC-bus voltage and the link capacitor. The analysis considers the ripple of current in the
L-filter and the ripple of voltage in the link capacitor as functions of the nominal power
injected into the grid, considering the following conditions:

1. The DC bus voltage is always higher than the peak value of the sinusoidal grid
voltage.

2. There is a unity power factor at the connection point between the grid and the L-filter.

The first condition is to avoid the grid delivering energy to the L-filter and the inverter.
These analyses have not been reported in the literature, so this is the main contribution
of the paper. The analysis is carried out for specific operation points defined by the
specifications, so the system is operating in an open loop without the use of a PLL. This
is necessary to observe the energy flow in the system without any perturbation. This
condition does not imply that one should always avoid the use of the PLL; the analysis
involves first designing the open loop operation with more precision and then adding the
PLL to compensate perturbations in the system. However, the operation will be optimized
for the nominal operating conditions.

Theoretical calculations are validated with simulations in Simulink; the simulation is
performed in an open loop by adjusting the switching angle of the MOSFETs of the inverter,
thus emulating the operation of a control system for synchronization with the grid with a
unity power factor. The paper is organized as follows: Section 2 presents an analysis of the
effects caused by the L-filter in PV systems. Section 3 presents the assessment of the link
capacitor as a function of the returning current from the inverter to the coupling capacitor.
In Section 4, an isolated Cuk converter is designed and implemented as a DC–DC converter
to supply the link capacitor. The simulation results are provided in Section 5, and Section 6
presents the experimental validation. Finally, Sections 7 and 8 present the discussion and
conclusion of this work.
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2. Effects of the L-Filter in Photovoltaics Systems

The blocks in Figure 1 show a commercial photovoltaic system. The DC-generated
voltage of the PV is boosted with the DC–DC converter, and the capacitor Clink is the link
between the DC–DC converter and the inverter. Moreover, the grid-connected inverters use
a filter to obtain an injected current with a low THD. In this case, the analyzed system uses
an L-filter, an isolated Cuk converter as a DC–DC converter, and a single-phase full-bridge
as an inverter (see Figure 2).
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Figure 3 shows the control diagram of the gates of the MOSFETs of the full-bridge
inverter. It is the control that will be used in the experimental part of this article.
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Figure 3. Block diagram of full-bridge inverter control.

In the literature, there is very little information about how to calculate the L-filter
and there are no mathematical expressions for its calculation. The articles found [25–30]
introduce the analysis and present the L-filter value but do not explain how they obtained it.
They mention that the high value is based on a cutoff frequency that must be much larger
than the grid frequency and show the Bode diagrams for a proposed value [25,28,29,31,32].

To analyze the effect of the inductor L in the assessment of the DC-level bus voltage, a
simplified circuit is used (see Figure 4). For simplicity, in this circuit only the fundamental
component in the inverter output voltage is considered, and a phasor analysis is applied,
where V1 represents the phasor of vinv, vL represents the inductor voltage, XL = ωL is the
reactance, and Vgrid represents the phasor of the main grid voltage (vgrid = Vgridsin(ωt)).
As it was pointed out, all the analysis is carried out at the fundamental components of
f = 60 Hz or ω = 2πf, and IL is the phasor of the current injected into the grid. The reference
for all the phasors is the grid voltage.
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2.1. Output Current Due to Fundamental Components in the Inverter Output Voltage

The analysis of the circuit voltages of the series connection in Figure 3 is undertaken
with the grid frequency set so that V1 is the magnitude of voltage at the fundamental
frequency of the sinusoidal pulse width modulation (SPWM). The inductor voltage (VL) is
substituted by the multiplication of the inductive reactance (XL) with IL and an imaginary
number (j). The fundamental voltage V1 can be obtained from (1) by expressing it in polar
form, where V1 is the magnitude of the phasor V1. This is shown in Equation (1):

V1 = Vgrid + (jXLIL) = V1∠φinv (1)

The magnitude and phase of Equation (1) are obtained, as shown in Equations (2) and (3):

V1 = |V1| =
√

Vgrid
2 + (ILXL)

2 (2)

φinv = tan−1

(
ILXL
Vgrid

)
(3)

The angle φinv is the lag phase angle that must be added to the inverter output voltage
to obtain a unity power factor at the connection point with the grid. Assuming that IL must
be in phase with the grid voltage Vgrid to obtain a unity power factor at the connection point
and that IL is a pure sinusoidal waveform, the average power Pavg can then be calculated
using Equation (4):

Pavg =
IL√

2

Vgrid√
2

cos(0◦) =
ILVgrid

2
(4)

Solving IL from Equation (4) results in Equation (5):

IL =
2Pavg

Vgrid
(5)

2.2. Output Current Due to Harmonic Components in the Inverter Output Voltage

To determine the harmonic content of the inverter output voltage, a relationship
between the frequency of the triangular carrier signal fsw of the SPWM modulation and
the frequency of the grid fgrid is defined. This relationship will be called β, and it is shown
in Equation (6):

β =
fsw

fgrid
(6)

To calculate the harmonics of a unipolar SPWM signal, the Fourier series is used [33–35].
In a unipolar SPWM modulation, there are only odd harmonics, and the DC compo-
nent is equal to 0. The Fourier series of a unipolar SPWM signal [35,36] is shown in
Equations (7) and (8):

vn =
4Vdc
nπ

N

∑
k=1

(−1)k+1 cos(nak) (7)
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n = (2β− 1), (2β + 1), (4β− 1), (4β + 1), (6β− 1), (6β + 1) . . . (8)

where Vdc is the average amplitude of the DC bus, N is the number of switching angles per
quarter of the signal period, ak are the switching angles for a quarter-period signal and are
conditioned as shown in Equation (9), and k is the k-th switching angle.

a1 < a2 < . . . < aN <
π

2
(9)

By obtaining the switching angles and solving Equation (7) for the harmonic nsw = 2β + 1,
it is possible to obtain the maximum output voltage at the harmonic nsw (Vnsw) as a function
of (Vdc), as shown in Equation (10), where mnsw is the relationship between the maximum
output voltage at the harmonic nsw (Vnsw) and (Vdc). For a modulation index, this is
equal to 1.

mnsw =
Vnsw

Vdc
= 0.176 (10)

For this work, the unipolar SPWM modulation technique was used with a carrier
switching frequency fsw = 15 kHz, where the harmonics after the fundamental appear at a
frequency of 2β + 1, 2β − 1, 2β + 2, and 2β − 2, respectively. The harmonic 2β + 1 (nsw) is
one of the largest harmonics and is the inverter output voltage (vinv) at the frequency of the
harmonic nsw (fnsw). To evaluate the magnitude of the current at harmonic nsw = 2β + 1, a
phasor analysis is again used. For this harmonic, the circuit is simplified to the circuit of
Figure 5, where Vnsw represents the voltage phasor at the inverter output at harmonic nsw,
VLnsw represents the inductor voltage at the same harmonic, XLnsw =ωnswL is the reactance
in the same harmonic nsw, and ILnsw is the phasor of the current at harmonic nsw. Given that
Vgrid has only the fundamental frequency (60 Hz) and does not have harmonic components,
it is no longer included in the analysis of ILnsw current.
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Applying the Kirchhoff voltage law to the circuit of Figure 4 and substituting the
inductor voltage (VLnsw) by the equivalent product of the inductive reactance (XLnsw) with
ILnsw gives Equation (11):

Vnsw − (jXLnswILnsw) = 0 (11)

Subtracting the current phasor (ILnsw) from Equation (11) gives Equation (12):

ILnsw =
Vnsw

jXLnsw
(12)

The magnitude ILnsw is obtained from Equation (12). This is shown in Equation (13):

ILnsw = |ILnsw| =
Vnsw

XLnsw
(13)

where XLnsw is the inductive reactance at harmonic nsw. This can be calculated with Equation (14):

XLnsw = ωnswL (14)
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2.3. Calculation of the L-Filter from the Ripple Current

For this analysis, the current harmonics of iL(t) after the harmonic nsw will be neglected
since they are very small compared with the harmonic ILnsw. Therefore, the inductor
current in the time domain can be approximated by the sum of IL and ILnsw, as shown
in Equation (15):

iL(t) ≈ IL sin(ωt) + ILnsw sin(ωnswt) (15)

According to Equation (15), it can be observed that the current ripple in the inductive
L-filter is caused by the peak-to-peak amplitude of the current signal in the nsw harmonic.
Hence, the percentage of current ripple in the L-filter can be approximated by Equation (16):

%riL ≈
(2ILnsw)(100)

IL
(16)

By substituting Equations (5) and (13) into Equation (16), the expression (17) is obtained.

%riL =
100(mnsw)VdcVgrid

XLnsw Pavg
(17)

Solving for L from Equation (14) and substituting Equation (17) results in Equation (18):

L =
100(mnswVdc)Vgrid

ωnswPavg%riL

(18)

2.4. Calculation of the DC-Level Bus Voltage

Once the inductor value is obtained, the analysis is performed to calculate the DC-level
bus voltage. The inverter’s fundamental maximum output voltage V1 is related to the
modulation index m, see Equation (19). The inverter output voltage is equal to the DC-level
bus voltage [37,38].

V1 = mVdc (19)

Combining Equations (19) and (14) and substituting the inductive reactance in
Equation (2) results in Equation (20):

Vdc =
|V1|

m
=

√
Vgrid

2 + (ILωL)2

m
(20)

Substituting (5) and (18) in Equation (20) results in Equation (21):

Vdc =

√
Vgrid

2 + 4000mnsw2Vdc
2ω2

%riL
2ωnsw2

m
(21)

Equation (10) is substituted and Equation (21) is divided into two parts, A and B, as
shown in Equations (22) and (23):

A = Vgrid
2 (22)

B =
30976ω2

25%riL
2ωnsw2 (23)

Combining (22) and (23) in Equation (21) results in Equation (24):

Vdc =

√
A + BVdc

2

m
(24)

Solving Vdc of Equation (24) results in Equation (25):

Vdc =

√
A√

m2 − B
(25)
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Substituting Equations (22) and (23) into Equation (25) results in Equation (26):

Vdc =

√
Vgrid

2√
m2 − 30976ω2

25%riL
2ωnsw2

(26)

It is possible to calculate the DC bus level using Equation (26). The DC bus value
must exceed the peak value of the grid voltage [39–42], even with ±5% variations. This
equation is a function of the grid voltage (Vgrid), the ripple percentage (%riL), the modulation
index (m), and the angular switching frequency (ωnsw). The average power of the DC–DC
converter is approximately equal to the average output power supplied to the grid and the
output power of the inverter without considering the switching losses of the MOSFETs; see
Equation (4). Therefore, the average power delivered by the inverter can be expressed as a
cosine function of the lag phase angle (φinv), and it is approximately equal to the average
power delivered to the grid when the power factor at the connection point with the grid is
unitary. This is shown in Equation (27).

Pavg =
V1 IL

2
cos(φinv) =

Vdc IL
2m

cos(φinv) (27)

Substituting (5) and solving for the angle phase caused by the L-filter results in
Equation (28). For a modulation index, this is equal to 1.

φinv = cos−1
(Vgrid

Vdc

)
(28)

Equation (26) was solved for various values of the filter ripple current (%riL) and the
specifications are shown in Table 1. Figure 6 shows the variation between Vdc and the
current ripple. Figure 7 shows the different values of the L-filter for different Pavg and Vdc
values when m is equal to 1.

Table 1. Specifications to obtain the DC-level bus voltage as a function of the L-filter ripple current.

Parameter Symbol Value

Maximum grid voltage Vgrid 180 V
Switching frequency of the SPWM fsw 15 kHz

Relationship between the maximum output voltage at the harmonic
nsw (Vnsw) and the DC-level bus voltage (Vdc) 1 mnsw 0.176

Percentage of current ripple in the filter L %riL 0.08% to 0.6%
1 Corresponding values for a SPWM unipolar modulation with modulation index = 1.
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2.5. Evaluation of the Current Total Harmonic Distortion (THDi)

The THDi in the L-filter can be calculated with Equation (29)

%THDi =

√
Insw1

2 + Insw2
2 + Insw3

2 + . . . + Inswn
2

IL
(100) (29)

where Insw1, Insw2, Insw3 up to Inswn are the main harmonics that are multiples of the har-
monic nsw. These harmonics are found at frequencies of 30.06 kHz, 60.06 kHz, 90.06 kHz,
and so on. To calculate the values of the currents in these harmonics, we use Equation (30).

Inswn =
Vnswn

ωnswL
(30)

where Inswn is the current for any harmonic, Vnswn is the inverter voltage for any harmonic,
and ωnswn is the angular frequency for any harmonic. Using Equations (7) and (30) and
substituting into Equation (29) gives the THD result for the L-filter current, as shown
in Equation (31).

%THDi = 0.23% (31)

The THD is very low due to the high switching frequency f sw = 15 kHz.

3. Link Capacitor Analysis

The theoretical analysis to assess the link capacitor’s effect on the DC-level bus voltage
is shown below. According to experimental and simulation results, the voltage on the
link capacitor as a function of time could be approximated to one expression with two
components: one DC component and one AC component. The AC component is the ripple
voltage in the capacitor, as shown in the Equation (32):

vClink = Vdc +
∆Vdc

2
sin(2ωt + φinv) (32)

where Vdc is the DC bus voltage, ∆Vdc is the peak-to-peak voltage of the ripple on the link
capacitor, which oscillates at twice the grid frequency (2ωt), and φinv is the phase angle
evaluated in (3). The DC bus level can be defined by Equation (33):

Vdc = Vmax −
(

∆vdc
2

)
(33)
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where Vmax is the maximum voltage of the ripple on the link capacitor. The percentage of
the voltage ripple on the link capacitor is calculated with Equation (34):

%∆rvdc =
∆Vdc(100)

Vdc
(34)

The expression of current in a capacitor is (35):

iClink = Clink
dvClink

dt
(35)

where iClink is the current in the link capacitor. Substituting (32) and into Equation (35) gives (36):

iClink = ωClink∆vdc cos(2ωt + φinv) (36)

Kirchhoff’s current law is applied to the node where the link capacitor is located
(see Figure 7). When the inverter returns energy, the capacitor is charged, and when the
inverter demands energy, the capacitor is discharged. In Figure 8, the red signal is the
output current of the DC–DC converter, the purple signal is the current at the inverter
input, and the blue signal is the current in the link capacitor. The red ellipses show the
energy return from the L-filter to the DC bus and the link capacitor. Considering Figure 9,
Kirchhoff’s current law at the node of the link capacitor is given in Equation (37).

idc + iClink − iinv = 0 (37)
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Equation (36) is substituted into (37) and the maximum values are taken. Solving for
iclink results in (38):
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IClinkmax = Iinvmax − Idcmax = ωClink∆vdc (38)

By subtracting Clink from Equation (38), considering that the magnitude of the current
Iinvmax is the same as IL because the losses in the inverter are minimized, the link capacitor
can be calculated with Equation (39):

Clink =
ILmax − (Idc)

ω∆vdc
=

(
2Pavg
Vgrid

)
−
(

Pavg
Vdc

)
ω∆vdc

(39)

Combining Equation (28) with Equation (39) results in (40):

Clink =

(
2Pavg
Vgrid

)
−
(

Pavg
Vgrid

cos(φinv)

)
ω∆vdc

(40)

Simplifying Equation (40) results in (41):

Clink =
Pavg(2− cos(φinv))

Vgridω∆vdc
(41)

Combining (34) with (41) gives Equation (42):

Clink =
100Pavg(2− cos(φinv)) cos(φinv)

Vgrid
2ω%∆rvdc

(42)

In Equation (42), the capacitor value is a function of the energy returned by the L-filter
caused by the phase-shift angle φinv. Figure 10 shows the values for the link capacitor at
different power and ripple percentages.
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4. Design Methodology

To validate the above equations, a step-by-step design methodology is proposed in
this work. The design specifications are based on the information shown in Table 1. Table 2
shows the general design specifications. The general specifications are proposed for the
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application of a microinverter connected to the grid, which is why the average power is low,
the β ratio is high to obtain a low %THDi, and the percentage of voltage ripple is small.

Table 2. General design specifications.

Parameter Symbol Value

Average power Pavg 60 W
Grid frequency fg 60 Hz
Frequency ratio β 250

Voltage ripple percentage %∆rvdc 15%
Angular grid frequency ω 120 π rad/s

Given the conditions in Table 2, Table 3 shows the DC–DC converter design specifi-
cations. The input voltage of the DC–DC converter comes from photovoltaic panels, the
switching frequency is a typical value in DC–DC converters, and the current and voltage
ripples are proposed to be small.

Table 3. DC–DC converter design specifications.

Parameter Symbol Value

Voltage of PV panels VPV 30.3 V
Switching frequency of the DC–DC converter fs 100 kHz

Current ripple on inductor L1 ∆iL1 0.3 A 4.5% of IPV
Current ripple on inductor L2 ∆iL2 0.066 A 10% of Idc

Voltage ripple on capacitor C1p ∆vC1p 1.5 V ≈ 5% of VPV
Voltage ripple on capacitor C1S ∆vC1s 10 V ≈ 5% of Vdc

Transformer turns ratio np/ns 1/4

Table 4 shows the step-by-step design methodology for the inverter and L-filter. The
only value proposed is Vdc and the others are obtained with the equations shown in
the tables.

Table 4. Proposed design methodology for the inverter and L-filter.

Step Parameter Symbol Equation Value

1 DC bus voltage Vdc Proposed Value 209 V

2 Offset angle φinv φinv = cos−1
( Vgrid

Vdc

)
0.53 rad/s

3 Link capacitor Clink Clink =
100Pavg(2−cos(φinv)) cos(φinv)

Vgrid
2ω%∆rvdc

34.7 µF

4 Current ripple percentage %riL See Figure 5 0.14%

5 L-filter L L =
100(mnswVdc)Vgrid

ωnsw Pavg%riL
417 mH

6 Percentage harmonic
current distortion %THDi %THDIL =

√
Insw1

2+...+Inswn
2

IL
(100) 0.23%

7 Filter inductor current IL IL =
2Pavg
Vgrid

0.663 A

8 Inductive reactance of the
filter inductor XL XL = ωL 157.2 Ω

Table 5 shows the step-by-step design methodology for the DC–DC converter; this
methodology is based on Table 3.

The magnetic design of the transformer is carried out using the geometric constant
method (Kgfe) applied to transformers [43]. Table 6 shows the parameters obtained for
the construction of the transformer, where the number of wires indicates the thickness
of the transformer windings. The number of turns is determined with reference to the
reel (ETD29).
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Table 5. Design methodology for the DC–DC converter.

Step Parameter Symbol Equation Value

9 Duty cycle D Proposed Value 63.40%

10 DC–DC converter gain M D =
(

nPVdc
nSVin+nPVdc

)
(100%) 6.93

11 Switching period of the DC–DC converter Ts TS = 1
fs

10 µS

12 DC–DC converter on-time tom ton = DTS 6.34 µS

13 DC–DC converter off-time toff to f f = (1− D)TS 3.66 µS

14 Inductor 1 L1 L1 = Vin DTs
∆iL1

(ton)
0.640 mH

15 Inductor 2 L2 L2 = Vdc(1−D)TS
∆iL2 (to f f )

3.24 mH

16 Capacitor C1p C1p C1p = ns
np

Idc D
∆VC1p

fs
4.915 µF

17 Capacitor C1s C1s C1s =
Idc D

∆VC1s
fs

0.1843 µF

Table 6. Magnetic transformer design.

Number of Primary
Winding Turns

Number of Primary
Winding Wires

Number of Secondary
Windings Turns

Number of Secondary
Winding Wires Caliber Reel/Material

10 35 40 13 AWG 30 ETD29/3C90

5. Simulation Results

To verify the performance of the design, an open-loop simulation was performed with
Simulink software. The schematic is shown in Figure 11, where the DC–DC converter is
connected to the inverter, which is controlled by the phase-shift angle φinv and the unipolar
SPWM modulation technique. The inverter is connected to an L-filter and connected to the
grid. The schematic is shown in Figure 11.
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Figure 12. Isolated Cuk converter.

Figure 13 shows the simulation results for voltage, current, instantaneous power, and
average power in the grid. The theoretical value of the grid current is 0.66 A, and the
value obtained in simulation is 0.6775, giving an error of 1.5%. The theoretical value of the
maximum instantaneous power is 120 W, and the measured value is 121.8 W, giving an
error of 1.5%. The calculated average power is 60 W, and the measured value is 60.9, which
is a 1.5% error. The current and voltage are at a fundamental frequency of 60 Hz, and the
instantaneous power is at a frequency of 120 Hz.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 12. Isolated Cuk converter. 

Figure 13 shows the simulation results for voltage, current, instantaneous power, and 
average power in the grid. The theoretical value of the grid current is 0.66 A, and the value 
obtained in simulation is 0.6775, giving an error of 1.5%. The theoretical value of the max-
imum instantaneous power is 120 W, and the measured value is 121.8 W, giving an error 
of 1.5%. The calculated average power is 60 W, and the measured value is 60.9, which is a 
1.5% error. The current and voltage are at a fundamental frequency of 60 Hz, and the 
instantaneous power is at a frequency of 120 Hz. 

 
Figure 13. Simulation results: current (upper trace), voltage (middle trace), and instantaneous power 
injected into the main grid (lower trace). 

To obtain the percentage of the magnitude in the harmonic nsw shown in Figure 14, 
Equation (16) must be divided by 2 since this equation expresses the percentage of ripple. 
However, in the FFT shown in Figure 13, the percentage is a function of the fundamental 
peak magnitude. The current ripple percentage in the L-filter was proposed to be 0.14%, 
so when substituting this value in (43), we obtain a percentage of 0.07%, which is what is 
shown in the FFT.  

%
% 0.07%

2
L

nsw

i
L

r
I = =  (43)

The value calculated using (43) is shown in Figure 14 This percentage appears for 
harmonics (2β − 1) and (2β + 1), while for harmonics (2β − 2) and (2β + 2), it is slightly 
higher than the proposed value. Figure 15 shows the grid voltage at a frequency of 60 Hz 
and the voltage ripple on the DC bus at a frequency of 120 Hz. It is observed that the ripple 
is 29 V, which corresponds to a percentage ripple of %Δrvdc = 13.7%. The proposed value 
was 15%, so the error was 8.6%.  

Figure 13. Simulation results: current (upper trace), voltage (middle trace), and instantaneous power
injected into the main grid (lower trace).

To obtain the percentage of the magnitude in the harmonic nsw shown in Figure 14,
Equation (16) must be divided by 2 since this equation expresses the percentage of ripple.
However, in the FFT shown in Figure 13, the percentage is a function of the fundamental
peak magnitude. The current ripple percentage in the L-filter was proposed to be 0.14%,
so when substituting this value in (43), we obtain a percentage of 0.07%, which is what is
shown in the FFT.

%ILnsw =
%riL

2
= 0.07% (43)

The value calculated using (43) is shown in Figure 14 This percentage appears for
harmonics (2β − 1) and (2β + 1), while for harmonics (2β − 2) and (2β + 2), it is slightly
higher than the proposed value. Figure 15 shows the grid voltage at a frequency of 60 Hz
and the voltage ripple on the DC bus at a frequency of 120 Hz. It is observed that the ripple
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is 29 V, which corresponds to a percentage ripple of %∆rvdc = 13.7%. The proposed value
was 15%, so the error was 8.6%.
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An analysis was performed for a power of 1 kW, obtaining an L-filter of 25 mH and a
peak current in the L-filter of 5.55 A. As a result, an average power of 985.1 W was obtained,
and the proposed value was 1000 W with an error percentage of 1.5%, corresponding to an
efficiency of 98%. This is shown in Figure 16.
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6. Experimental Results

A prototype is implemented experimentally to validate the design methodology and
calculations performed. The values obtained from Tables 2–5 were used. The devices
used are shown in Table 7. Figure 17 shows the voltage on the grid and the ripple voltage
on the link capacitor. The grid voltage is the magenta signal. The grid voltage presents
a maximum voltage of 176 V measured, and the theoretical value is 180 V, which gives
an error of 2.27%. The ripple voltage on the link capacitor is the navy-blue signal with a
peak-to-peak value of 29 Vpp measured, and the proposed theoretical value in percent
was 15%, or 31.35 Vpp. This gives a percentage error of 8.1%. The protype is shown in
Figures 18 and 19.

Table 7. Devices used in the prototype.

Device Description Model

PWM controller PWM controller of the DC–DC converter UC3823

Power diode Diode of the DC–DC converter U15A60

Power MOSFET DC–DC converter power MOSFET CMF20120

Power transistors Full-bridge power inverter IRAM10UP60A
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Figure 18 shows the grid voltage (purple color signal), the instantaneous power (red
color signal), with an average measured value of 56.4 W, and the proposed theoretical value of
60 W, which gives an error of 6.3%. The current injected into the grid (green color signal) had
a measured value of 640 mA, and the proposed theoretical value was 663 mA, which gives an
error of 3.59%. Dividing the measured output power by the theoretical value results in 0.94.
Therefore, the efficiency of the DC–DC and DC–AC converters is 94%.

Figure 19 shows the isolated Cuk converter used. The components are framed in red
rectangles. Figure 20 shows the complete bridge inverter module occupied.
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7. Discussion

Table 8 shows two comparisons. The first is between the measured voltage ripple
values and the proposed voltage ripple percentage values. The link capacitor is calculated
using Equation (42). With this equation, an error of less than 10% is achieved. The second
comparison is made with respect to Equation (44) published in several articles [9,20,44],
and without using a control loop for DC bus voltage. In (44), the energy returned by the
inverter output filters is not considered.

Clink =
Pavg

ωVdc∆Vdc

(44)

Table 8. Comparison between Equations (42) and (44).

Calculated Values with (42) and Measured Values Calculated Values with (44) and Measured Values

%∆rvdc Measured Value (∆Vdc) Clink % Error Measured Value (∆Vdc) Clink % Error

0.5% 1.008 V 0.97 mF ±0.5% 1.20 V 0.79 mF ±16.3%

1% 2.1 V 4.8 µF ±4.5% 2.41 V 3.96 µF ±16.9%

5% 9.52 V 97.22 µF ±5.2% 11.64 V 79.26 µF ±13.9%

10% 18.97 V 48.61 µF ±5.6% 23.84 V 39.63 µF ±15.9%

8. Conclusions

In this work, a mathematical analysis of the energy returned by an L-filter and sent
to the link capacitor in single-phase photovoltaic systems connected to the grid has been
presented. A new equation has been proposed for the calculation of the link capacitor
as a function of the energy returned by an L-filter, which presents an error of less than
6%, with a total system efficiency of 94%. A new design method has been proposed for
an L-filter as well as for the DC bus as a function of the percentage of ripple current
injected into the grid without the use of Bode diagrams. The proposed method presents
an error of less than 4% compared to the proposed current value. These are the article’
main contributions. Everything presented in this article can be applied to the design of
microinverters for photovoltaic applications that are interconnected to the grid through
an L-filter. The limitation of this work is that it only applies to a specific type of filter, the
L-filter, and only for single-phase systems connected to the grid; it cannot be used for a
three-phase system.
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