
Citation: Altoobaji, I.; Hassan, A.;

Ali, M.; Nabavi, M.; Audet, Y.;

Lakhssassi, A. A Fully Integrated 0.6

Gbps Data Communication System

for Inductive-Based Digital Isolator

with 0.8 ns Propagation Delay and

10−15 BER. Electronics 2023, 12, 3336.

https://doi.org/10.3390/

electronics12153336

Academic Editor: Costas Psychalinos

Received: 9 July 2023

Revised: 26 July 2023

Accepted: 2 August 2023

Published: 4 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Fully Integrated 0.6 Gbps Data Communication System for
Inductive-Based Digital Isolator with 0.8 ns Propagation Delay
and 10−15 BER
Isa Altoobaji 1,* , Ahmad Hassan 1 , Mohamed Ali 1 , Morteza Nabavi 1 , Yves Audet 1 and Ahmed Lakhssassi 2

1 Electrical Engineering Department, Polytechnique Montréal, Quebec, QC H3T 1J4, Canada;
ahmad.hassan@polymtl.ca (A.H.); mohamed.ali@polymtl.ca (M.A.); morteza.nabavi@polymtl.ca (M.N.);
yves.audet@polymtl.ca (Y.A.)

2 Department of Engineering and Computer Science, Université du Québec en Outaouais,
Gatineau, QC J8X 3X7, Canada; ahmed.lakhssassi@uqo.ca

* Correspondence: isa.altoobaji@polymtl.ca

Abstract: Digital isolators are implemented to protect low-voltage electronics and ensure human
safety during high-voltage surge events. In this work, we present the design of an inductive-based
digital isolation system that can sustain up to 1 kVrms breakdown voltage. The proposed system
is designed using the pulse polarity modulation scheme and fabricated in a 0.35 µm CMOS. Two
identical dies are bounded within the IC package, with one die housing the transmitter (Tx) and
the isolation transformer, while the other die contains the receiver (Rx). Two different customized
designs between three metal layers are implemented to form the isolation element. The transformer’s
secondary coil is constructed in metal-1, while the primary coil is formed in metal-2 and metal-3 for
comparing the system functionality, isolation capability, and propagation delay. The functionality has
been verified by measurements for an operating frequency of 300 MHz with a 2.6 ns propagation
delay and an energy consumption of 8.15 × 103 pJ/bit at 1 Mbps. The chip was tested under extreme
temperatures and achieved a maximum measured common mode transient immunity (CMTI) of
500 V/µs. Jitter has been examined to ensure fast transmission at a bit error rate (BER) of 10−15 with
a total jitter (TJ) of 188.18 ps.

Keywords: breakdown voltage; digital isolator; inductive isolation; integrated transformer; industrial
applications; system-on-chip applications; gate driver; pulse polarity modulation

1. Introduction

Sensor Interfaces are key elements in industrial applications as they provide dedi-
cated power levels for various actuators, sensors, and read-back links within the system.
To ensure reliable circuit operations, power management systems require control levels
configuration for their data communication channels in terms of human safety and cir-
cuitry protection [1,2]. One main requirement to afford optimum performance is to have
an isolation system that enables digital signal transmission while eliminating dangerous
effects on low-voltage system electronics caused by the high-voltage domain. Typically, in
high-voltage applications, isolation barrier breakdown can not only cause potential hazards
to end users but also may cause damage to low-voltage control circuits affecting the system
functionality. For example, if the isolation barrier failure mode occurs in the AC motor
drive system, either the damage is limited to the die with the isolation capacitor or to the
gate driver die [3].

Digital isolation techniques are in the broad area of data communication systems for
modern sensor interfaces. They are widely used in different applications, including medical
equipment, network interfaces, and automotive industrial systems. The purpose of the
isolation barrier is to eliminate voltage spikes and unwanted ground loops that may exist

Electronics 2023, 12, 3336. https://doi.org/10.3390/electronics12153336 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153336
https://doi.org/10.3390/electronics12153336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8346-6866
https://orcid.org/0000-0002-2215-5375
https://orcid.org/0000-0002-7476-7920
https://orcid.org/0000-0001-7960-471X
https://doi.org/10.3390/electronics12153336
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153336?type=check_update&version=1


Electronics 2023, 12, 3336 2 of 15

between high-voltage and low-voltage circuit domains [4]. This is achieved by establishing
two separate ground references for the transmitter (Tx) and receiver (Rx) circuits, allowing
safe communication between different voltage levels. Additionally, it is mandatory in many
industrial applications to maintain the required protection level against multiple noise
sources, such as lightning strikes, while ensuring the correct functionality at the targeted
signal transfer speed.

The coupling methods to perform the digital isolation are based mainly on three
types: optocouplers, capacitors, and transformers. Digital isolators based on optocouplers
were the very first conventional way in data communication systems that exploit light to
transfer data in the near-infrared band. The main advantages of optocouplers are a high
isolation breakdown and immunity to electromagnetic interference (EMI). On the other
hand, they suffer from high power consumption (30 mA at 40 Mbps) [5], which causes
lifetime degradation. Moreover, optocouplers are not compatible with the CMOS process
since they are fabricated in gallium arsenide (GaAs), and discrete chips are required for
multiple isolation channels [6,7].

Capacitive isolators are implemented in silicon dioxide (SiO2) technology which has a
dielectric strength of up to 500 V/µm [8,9]. As a result, an isolation voltage of 1.5 kVrms
can be achieved within a 3 µm SiO2 thickness between metal-1 and metal-6 in a 0.18 µm
CMOS process [10]. Compared to optocouplers, capacitive isolators can be integrated with
the CMOS process and have lower power consumption [11–13]. In addition, capacitive
techniques are well-suited for high-speed data transfer due to their higher EMI. However,
because of the fast ground shift (in hundreds of kV/µs) between the two circuit domains,
capacitive techniques have lower common mode transient immunity (CMTI) [14–16]. This
common mode current, which is proportional to the capacitor size, may corrupt data
transfer and increase the bit error rate (BER).

To achieve higher data rates, more isolation voltage, and improve the CMTI, the
inductive-based isolation method is adopted. Inductive methods use polyimide, with
a field strength of 250 V/µm before breakdown, as the insulation material between
coils to transfer data and power through magnetic coupling. Polyimide outperforms
SiO2 by having a lower parasitic capacitance of the isolation barrier at the expense of
added fabrication cost [17–24]. This method supports high data rates of 0.5 Gbps [25],
provides an excellent CMTI (650 kV/µs) [26], and offers a great isolation voltage of
7.5 kVrms [27]. In addition to data transmission [28,29], isolated DC-DC converters use
transformers for power transfer because of their high-quality factor compared to capacitive
coupling, which usually requires off-chip elements to construct subharmonic resonant peak
efficiency [30–33].

Figure 1 shows the typical block diagram of an inductive-based digital isolation system for
industrial sensor interfaces. Transceiver blocks are implemented on the low-voltage and high-
voltage sides, each with their respective supply and ground rails: VDDL/VDDH/VDD1/VDD2/
VDD3 and GNDL/GND1/GND2/GND3. Two differential signals are transmitted from the
microcontroller logic unit (MLU) on the low-voltage side to the gate driver on the high-
voltage side, while the read-back signal is transmitted from the off-chip load through
the analog-to-digital converter (ADC) on the high-voltage side to MLU. To ensure a fully
isolated environment, the system incorporates an isolated DC-DC converter that takes the
input voltage source from the low-voltage side and generates required voltage levels in the
high-voltage domain. A fully integrated digital isolation system attempts to combine the
communication links into a single compact die to further minimize power consumption
and reduce fabrication costs.

This design utilizes edge-based modulation [34] due to its lower power consumption
compared to on-off-keying (OOK) architecture [35,36], which uses a single chip area at the
cost of higher power consumption during the logic high state of the signal modulation
process. A set/reset architecture with a dual transformer is an example of edge-based
communication with a high isolation rating. It, however, occupies twice the transformer
area compared to single transformer architectures. Another example is the pulse count
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method [19,20], where the chip area and the power consumption stand in an acceptable
range. When compared to the single-pulse method, the power is 1.5 times higher, the
propagation delay is longer, and it operates at lower data rates since it requires more time
to evaluate the pulse count.
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Figure 1. Inductive-based digital isolation system for industrial sensor interfaces.

Although the currently available maximum achievable data rate is sufficient for the
current applications, future demands are expected to require higher data rates, lower
latency, and lower BER. To the best of our knowledge, the maximum speed achieved with
the minimum propagation delay for fully integrated inductive digital isolators in a 0.18 µm
CMOS is 0.5 Gbps and 3.6 ns, respectively. Moreover, to operate at higher speeds, two
transformers are utilized, which increases the fabrication cost [25]. This work proposes
high data rates, reduced delay, and a low BER fully integrated inductive digital isolation
system based on the pulse polarity modulation scheme in a high-voltage 0.35 µm CMOS
process. The rest of this paper is organized as follows: design and implementation of the
inductive-based digital isolation system are given in Section 2. Measurement results are
presented in Section 3. Discussion and comparison with prior state-of-the-art are illustrated
in Section 4, and final conclusions are drawn in Section 5.

2. Inductive-Based Digital Isolation System

The transceiver circuit of the implemented system utilizes the pulse polarity modula-
tion scheme, which has the advantages of a compact circuit area, low power consumption,
and high data rates. The presented scheme generates short pulses (in GHz sub-band) from
the input digital signal for logic state transmission. The basic principle of GHz sub-band
generation is demonstrated by the resulting CMOS inverter’s harmonic overtones. When
a sinusoidal input signal with a frequency of half the bandwidth of the CMOS process is
applied under a VDD/2 bias condition, the output waveform is enhanced to a square shape
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with a fast slew rate. The Tx can then modulate these overtones and transmit them to the
Rx using a small on-chip isolation transformer area.

2.1. Tx Design

Figure 2 shows the circuit diagram, including the operation waveforms of the Tx side
of the digital isolator system supporting single channel one direction (half duplex) data
communication. The MLU input digital signal is processed through the Tx subcircuit stages
and transmitted to the Rx side through inductive coupling. The Tx circuit consists of two
differential parts: a negative pulse generator and a positive pulse generator, for shaping
the negative pulses and positive impulses, respectively. Each of these branches consists of
a pulse detector, cascaded inverters, a current limiter, and driver transistors.
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The pulse detector is the first circuit of the Tx chain, and it is responsible for detecting
the positive and negative edges of the input digital signal “IN.” The sizing of the transistors
is designed so that it generates a 2 ns pulse width signal, negative edge (NE) or positive
edge (PE), to accommodate the desired system bandwidth. The current limiting inverter
controls the current passing through the large-sized driving transistors (M5, M6, M7, and
M8) by shaping the generated pulse from the edge detector to have a sharp rise and a
lower falling slope. This is achieved by increasing the current of M1/M3 and decreasing
the current of M2/M4, i.e., the high change of the current with respect to time, the sharper
the edge of the signal and vice versa. During the high-to-low transition of IN, the G6 signal
is determined and activates the driver transistor M6. Then, the cascade-connected inverters
output (G5) at the upper circuit branch triggers the driving transistor M5. This operation is
repeated for the transmission of IN from low to high, which corresponds to the lower part
of the Tx.

2.2. Transformer Design

We performed two case studies to investigate the isolation capability of the technology
at different separation distances between the coils. The voltage at the secondary side of the
transformer is formed by differentiating the current I1 generated in the primary coil at the
Tx side and can be controlled by proper magnetic coupling between the two coils. Since
the design kit does not include inductor or transformer models, we customized the coils on
two different metal layers separated by the inter-metal dielectric material. Among other
configurations, such as tapped or interleaved, we chose the stacked structure due to its
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highest self-inductance and coupling efficiency. Figure 3a illustrates the lateral parameters
of the square spiral coil with a number of turns n = 3 and a number of sides N = 4. The
coil width is denoted by w, while s is the spacing between the adjacent turns, and inner
and outer diameters are din and dout, respectively. Square spirals are chosen among other
alternative geometries due to their layout simplicity. Also, they have the smallest effective
area compared to hexagonal, circular, and octagonal shapes. Figure 3b shows the two
versions of the on-chip transformer implemented on the three metal layers of a CMOS
process. Higher isolation can be achieved between metal-1 and metal-3 due to the larger
insulation material thickness. Our objective is to examine the effect of changing the isolation
distance on the performance of the data communication link for the isolation system.
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The isolation transformer is modeled by a non-ideal equivalent circuit consisting of
an inductance, parasitic resistance, substrate resistance, and parasitic capacitances. The
equivalent circuit of the non-ideal transformer formed by two π models for the primary
and secondary coils is shown in Figure 4. The series inductances, resistances, and parallel
capacitances are defined by [37]

Ls =
2µn2davg

π

[
ln
(

2.067
ρ

)
+ 0.178ρ + 0.125ρ2

]
, (1)

Rs =
ρl

δw
(

1 − e−
t
δ

) , (2)

and
Cox = Cov = 0.5

εox

tox
lw, (3)

respectively. The magnetic permeability is denoted by µ, din is the average diameter of
turns, ρ is the fill ratio, δ refers to the skin depth, and t represents the thickness of the metal.
εox is the oxide permittivity, tox is the oxide thickness, and the coil length is represented by
l. The substrate coupling elements, Rsi and Csi, can be ignored by considering the pattern
ground shield effect. Finally, the mutual inductance is related to the coupling coefficient k
and the primary/secondary inductances Lsp/Lss as [37]

M = k
√

Lsp Lss . (4)

The typical range of mutual inductance for the stacked spiral configuration is between
0.3 and 0.9, with the highest coupling coefficient being used in this design to ensure the
correct functionality of the digital isolator system. In addition, the proper matching of the
transformer’s inductance value should be considered to avoid distortion of the detected
voltage pulse at the secondary side. The detected voltage pulse has been simulated at
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different inductance values, where a typical value of 10 nH has been selected based on the
desired amplitude and pulse width at the Rx. Then, on-chip spiral coils of the transformer
parameters are designed from the obtained inductance value.
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2.3. Rx Design

The Rx circuit consists of a high pass filter (HPF), peak/bottom levels hold, a differen-
tial amplifier, and a hysteresis comparator. Figure 5 presents the schematic of the Rx with
its operation waveforms. The isolation transformer’s secondary side is connected to the Rx
front side using two bond wires between the corresponding pads.
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The received signal (V_pulse) with a frequency of 3–5 GHz is first filtered from low-
frequency noise components caused by common mode transients (CMT) using the HPF.
The diode circuit is formed by implementing two series diode connected BJTs adopted to
detect positive and negative impulses according to the Vbias threshold applied between its
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terminals through resistances Ra and Rb. The capacitor Cb helps widen the detected pulses
to a 10 MHz frequency so that they can be handled by the differential amplifier.

The single-stage amplifier design compares both inputs, V_pk and V_bot, with the
reference voltage Vc [38,39], as shown in Figure 6. The reference current of the differential
amplifier is settled by a Cascode current mirror, where the latter is referenced by the
Vpm-biased external current source. This amplification stage is designed to further reject
the magnitude of the slow swing pulses that exceed the threshold voltage of the diodes.
The purpose of capacitive coupling elements (Rc and Cc) at the amplifier output VO is to
establish the DC level of the comparator input V_com at Vpm2.
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The last block of the Rx is the hysteresis comparator, which consists of three stages:
a differential input pair, a decision stage, and an output buffer [40]. Figure 7 shows
the circuit of the hysteresis comparator. The cross-coupled differential stage transistors
provide positive feedback to the decision stage inputs and control the switching point of
the comparator. The tail current of the differential stage is adjusted by the current mirror
biased at Vpm. Thus, if the comparator’s differential input signal exceeds/falls down this
threshold level (i.e., positive/negative peak voltage), the output signal OUT switches to
logic 1/0.
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2.4. Common Mode Noise Analysis

One important characteristic of digital isolators is the system’s ability to reject CMT
pulses while maintaining error-free transmission at the desired data rate. The common
mode voltage refers to the voltage difference between the Tx ground and the Rx ground.
The common mode voltage is related to the rapid switching of the integrated gate bipolar
transistor (IGBT) at the high voltage side, which propagates through the overlapping
capacitance of transformer coils (Cov) and affects the Rx-detected signal level. Consequently,
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the Rx signal V_pulse will follow similar rise/fall transitions of the common mode pulse in
the range of hundreds of kV/µs range. The unwanted slew rate added to V_pulse can lead
to false detection at the Rx side and hence miss-determining the correct logic level at the
final system output. Since the common mode component of V_pulse is with a frequency less
than the actual modulation frequency ( fcm < fmod), the amount of this noise can be further
reduced by the HPF, the first element of the Rx circuit. The differential architecture of the
Rx helps further improve the common mode rejection of the overall implemented system.
Figure 8 illustrates the block diagram of the digital isolator under CMTI simulation. A
high voltage pulse Vcmti = 550 V with a rising/falling time of 2.5 ns which corresponds to a
CMTI of 220 kV/µs is being injected between the Tx ground (GNDTx) and the Rx ground
(GNDRx).
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The system’s response to the CMT pulse is demonstrated in Figure 9. The input
digital signal at the Tx with a frequency of 10 MHz is modulated and transmitted to the Rx
input through the isolation transformer. The second waveform is the 42 MHz high-voltage
pulse between the Tx and Rx grounds (Vcmti = 220 kV/µs). In typical scenarios, the high-
voltage pulse combinations are applied at multiple IN rising/falling edges, i.e., during
different surge events: rising, high amplitude, falling, and low amplitude. Although the
applied surge added additional top/bottom peaks on the comparator input V_com, the
final Rx output OUT is successfully recovered. This is because the unwanted peaks fall
above/below the threshold level of the comparator within a small duration. The total
system propagation delay from the Tx input to the Rx output during the surge event is
28 ns.
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Figure 9. System functionality simulation showing the digital isolator’s signal flow in the presence of
a common mode transients (CMT) pulse.
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3. Measurement Results

The experimental test bench setup for the fabricated inductive-based digital isolator
system is shown in Figure 10a. One power supply is used for supplying the printed circuit
board (PCB) domain A_1/domain A_2 and domain B (Figure 10b), while the other power
supply is employed to generate reference voltages for the Rx circuit. The continuous input
digital signal is supplied to the system’s Tx input using a 0.4/0.68 Gbps pulse/pattern
generator which is then recovered at the Rx output analyzed on an Agilent 13 GHz In-
finiium digital signal analyzer through the 12 GHz active probes adopted for their noise
immunity performance. The input and output signals are simultaneously displayed on the
oscilloscope for the propagation delay measurement. The 1:1 isolation transformer is used
to assign a floating ground to the Tx side’s equipment. The bottom layer of our custom
PCB prototype is divided into three isolated domains, each one assigned to separate supply
rail terminals. Pairs of surface-mounted ceramic capacitors (0.1 µm and 10 µm) are placed
close to package pins to filter out power supply noise. The zoomed view of the two-layer
PCB with 80 mm × 70 mm dimensions is also shown in Figure 10b. The HALFCUBE
temperature chamber is used to measure the system functionality over a wide range of
temperature variations (Figure 10c).
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Figure 10. Experimental measurements: (a) testbench setup with the equipment to measure the
performance of the fabricated digital isolator chip; (b) front and bottom view of PCB prototype;
(c) temperature chamber.

The implemented inductive-based digital isolator system is fabricated in a 5 V 0.35 µm
CMOS process. The total area for each die is 2 mm2, and the two dies are assembled and
bounded inside an 84-pins PGA package (Figure 11). Die A, which houses the Tx and the
on-chip transformer, is powered from the domain A supply, while die B (which contains
the Rx circuit) is driven from the domain B supply rails. The Tx and isolation transformers
occupy a silicon area of 142 µm × 126 µm and 224 µm × 224 µm, respectively, while the
Rx block consumes an active area of 7.3 × 104 µm2. The coil width of the transformer is
6 µm, and the spacing is 2 µm. Two bonding arrangements were implemented to test the
system functionality according to two customized coil designs for the isolation transformer:
Figure 11a metal-1 to metal-3, and Figure 11b metal-1 to metal-2.

3.1. System Functionality

Isolated solutions for protocols such as USB3 and HMDI require data rates in the
range of Gbps. Moreover, isolated high-speed clocks and data links for industrial sensor
interfaces operate at the same range. For this purpose, we have performed the system
measurements at high frequencies. Figure 12 demonstrates the input-output waveforms
of the fabricated inductive-based digital isolation system at (a) 250 MHz and (b) 300 MHz
frequencies. We have compared the input with outputs from both systems based on
the two fabricated customized transformers. OUT1 is related to the system using the
metal1-metal2 transformer, while the system’s output denoted by OUT2 utilizing the
metal1-metal3 transformer is denoted by OUT2. The measured typical propagation delay
from the generated Tx input IN and the recovered Rx output OUT1 is 800 ps at both
rising and falling edges for 250 MHz, as shown in Figure 12a. Compared to OUT1, the
propagation delay is increased to 3.25 times, and the amplitude is reduced by 59% for
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OUT2 at 250 MHz. This is because the separation between the coils maximizes the isolation
voltage at the cost of reducing the energy of the detected signal at the Rx input. Figure 12b
shows the measured outputs at 300 MHz, where the propagation delay for OUT1 and
OUT2 is increased from 2.6 ns to 4.8 ns, respectively. Despite the increased propagation
delay, the achieved results support fast transmission for high data rate applications.
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Figure 11. (a) Chip micrograph of the integrated digital isolation system in a high-voltage 0.35
µm CMOS process: (1) transmitter, (2) metal1-metal3 transformer, (3) metal1-metal2 transformer,
(4) receiver; (b) Another implementation of the digital isolation system.
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Figure 12. (a) Experimental measurement of the digital isolation system input-output functionality at
250 MHz; (b) Measured input-output waveforms at 300 MHz.

3.2. Temperature Variations

To ensure the system functionality at extreme conditions, we performed the mea-
surement under different temperatures. Figure 13 demonstrates the effect of temperature
variations on the system functionality at −27 ◦C (Figure 13a) and 68 ◦C (Figure 13b). The
digital isolator system is tested under the operational frequency of 250 MHz. The PCB is
placed inside the chamber, and the temperature is gradually varied to monitor the wave-
form on the oscilloscope. The variation rate of the propagation delay from its typical value
of 800 ps at room temperature is 9.7 ps/◦C, for temperature variations from 27 ◦C and
68 ◦C, as shown in Figure 13b. Therefore, the propagation delay is insensitive to tempera-
ture variations.

3.3. Common Mode Rejection

Figure 14 shows the digital isolation system output in the presence of CMT noise.
The high-voltage pulser is equipped with a 1:1000 divider to monitor the generated pulse
on the oscilloscope. The system’s output response to the rising CMT surge is shown in
Figure 14a, where a slew rate of 500 V/µs is observed at an amplitude of 28 V during a
100 ns duration. The output glitch of 500 mV at the start of the surge is observed. The
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system’s output during the falling CMT surge demonstrated in Figure 14b shows only a
200 mV shift due to the slower transient slope of 80 ns. The difference in slope measurement
between the rising and falling CMT noise is due to the accuracy of the high-voltage pulser
device. Although the simulation results demonstrate a CMTI of 220 kV/µs, higher CMTI
could not be achieved due to the slow rise/fall times of the high-voltage pulser device
(25 ns), which is limited to 125 V/µs at the falling CMT surge.
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Figure 13. (a) Measured continuous oscilloscope waveforms of the overall digital isolation system
input-output functionality at 250 MHz and −27 ◦C; (b) Measured waveforms at 250 MHz and 68 ◦C.
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Figure 14. (a) Measured system output signal in the presence of CMT pulse at the rising edge surge
(500 V/µs); (b) system output at the falling CMT surge (125 V/µs).

3.4. Jitter Analysis

Jitter is a critical parameter characterizing high-speed data communication systems,
as it can cause errors in transmitting bits, leading to incorrect estimation at the receiving
end and increasing BER. Jitter can be caused by a system, data transmission, or random
noise. Figure 15a shows the real-time eye diagram of the system output OUT at the Rx
end captured at a 0.5 Gbps input digital signal. The Eye width indicates a clear opening of
1.9 ns mean-value. The measured total jitter (TJ) value at both edges of the eye is 100 ps,
composed of the early/late transition deviations from the ideal time location. The BER
bathtub curve of the eye diagram is shown in Figure 15b. Each symmetrical Gaussian tail
is made of two segments: the measured section (in blue) and the extrapolated section (in
gray). The digital isolator system achieved the lowest BER of 10−15, which is computed
by intersecting the effective eye width with the bathtub curve. The accumulated jitter is
the main cause of bit errors that occurs below the threshold line. TJ of the system is the
difference between the unit interval (UI) and the eye width, which is 188.18 ps.

Typically, TJ is composed of deterministic jitter (DJ) and random jitter (RJ). DJ is further
categorized into data-dependent jitter (DDJ) and periodic jitter (PJ). RJ is related to thermal
noise, shot noise, and pink noise. Figure 16a shows DDJ versus bit, where the first two bits
of the generated stream are zoomed. The negative jitter value at the falling edge of the
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first bit (−10.9 ps) indicates that the transition arrived earlier than it should have, while
for the second bit, the transition arrived later, resulting in increased transmission errors
in the system. Figure 16b illustrates the extracted composite jitter histogram, showing the
distribution of three types of jitters present in the system: TJ, RJ/PJ, and DDJ. The amount
of RJ/PJ is evaluated by subtracting DDJ from TJ, which is 166.38 ps or 83.19 ps at each
peak. By computing the peak frequencies of inter-symbol-interference (ISI) and duty cycle
distortion (DCD) using a digital signal analyzer time interval error (TIE) algorithm, DDJ
can be eliminated.
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4. Discussion

A performance summary and comparison of this work with other fabricated state-
of-the-art from the literature are given in Table 1. In this comparison table, we have
included both capacitive and inductive-based isolation systems. Yun et al. [27] achieved
the highest isolation voltage rating of 7.5 kVrms within 30 µm thick polyimide using an
on-chip transformer implemented in a 5 V 0.18 µm CMOS, however, at the cost of higher
energy consumption. The capacitive isolator implemented in a 1.8 V 0.5 µm process
has the lowest energy of 99 pJ/b [12]. The work of Kaeriyama et al. [23] stands out
among the others, with the smallest effective area using the pulse polarity scheme. Within
the works presented in Table 1, our design achieved the maximum speed of 0.6 Gbps
and a 0.8 ns minimum propagation delay for metal1-meta2 transformer implementation
utilizing pulse polarity modulation implemented in a high-voltage 5 V 0.35 µm CMOS
process. The presented results show the effect of increasing the separation distance between
coils, where it increases the isolation voltage from 0.5 kVrms to 1 kVrms. However, this
comes with a trade-off of reduced speed and increased propagation delay to 0.5 Gbps and
2.6 ns, respectively.
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Table 1. Performance comparison and summary with other prior works.

Ref. Process
(µm) Iso. Element Area

(×104 µm2) Scheme Max. VDD
(V)

Iso. Rating
(kVrms)

Max.
CMTI

(kV/µs)

Max.
Speed
(Gbps)

Delay
(ns)

Energy
@ 1 Mbps

(pJ/b)

[9] 0.35 Cap. - Pulse 5 2.28 (b) - 0.5 2 1200
[12] 0.5 Cap. 60 (a) Pulse 1.8 - - 0.26 15 99
[13] 0.4 Cap. 37.5 Pulse 3.3 2.3 - 0.1 10 363 (d)

[23] 0.5 Ind. 11.98 Pulse 5 2.5 35 0.25 5.5 8000
[25] 0.18 Ind. 12.26 Pulse 5 1 130 (c) 0.5 3.2 5800
[26] 0.25 Ind. 71.25 (a) OOK 5 3.34 650 0.08 15.5 9500
[27] 0.18 Ind. - OOK 5 7.5 200 0.2 11 14,000

This work
@ M1-M2 coils 0.35 Ind. 75.36 Pulse 5 0.5 (b)

0.5
0.6 0.8

8150
This work

@ M1-M3 coils 1 (b) 0.5 2.6

(a) estimated from chip micrograph, (b) calculation, (c) simulation, (d) at 50 Mbps.

5. Conclusions

An inductive-based digital isolator implementation was discussed in this paper. The
system is suitable for the on-chip integration of multiple high-speed clocks and data
links between MLU and the gate driver in industrial sensor interfaces. The utilized pulse
polarity modulation scheme, as well as the metal1-metal2 transformer structure, allows
the design to achieve a higher speed and a minimum propagation delay of 0.6 Gbps and
800 ps, respectively. Moreover, the designed system using the metal1-metal3 transformer
has a maximum isolation voltage of 1 kVrms at the expense of a slight reduction in the
transmission speed and an approximately three-fold increase in the propagation delay.
The tested chip can operate at temperature variations between −27 ◦C and 68 ◦C. Correct
system functionality under the presence of CMT of 500 V/µs was verified by measurement.
The system has a minimum BER of 10−15 with a TJ of 188.18 ps.
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