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Abstract: Conventional machine learning relies on two presumptions: (1) the training and testing
datasets follow the same independent distribution, and (2) an adequate quantity of samples is
essential for achieving optimal model performance during training. Nevertheless, meeting these two
assumptions can be challenging in real-world scenarios. Domain adaptation (DA) is a subfield of
transfer learning that focuses on reducing the distribution difference between the source domain
(Ds) and target domain (Dt) and subsequently applying the knowledge gained from the Ds task
to the Dt task. The majority of current DA methods aim to achieve domain invariance by aligning
the marginal probability distributions of the Ds. and Dt. Recent studies have pointed out that
aligning marginal probability distributions alone is not sufficient and that alignment of conditional
probability distributions is equally important for knowledge migration. Nonetheless, unsupervised
DA presents a more significant difficulty in aligning the conditional probability distributions because
of the unavailability of labels for the Dt. In response to this issue, there have been several proposed
methods by researchers, including pseudo-labeling, which offer novel solutions to tackle the problem.
In this paper, we systematically analyze various pseudo-labeling algorithms and their applications in
unsupervised DA. First , we summarize the pseudo-label generation methods based on the single and
multiple classifiers and actions taken to deal with the problem of imbalanced samples. Second, we
investigate the application of pseudo-labeling in category feature alignment and improving feature
discrimination. Finally, we point out the challenges and trends of pseudo-labeling algorithms. As far
as we know, this article is the initial review of pseudo-labeling techniques for unsupervised DA.

Keywords: pseudo-labeling; unsupervised domain adaptation; feature alignment; deep learning;
transfer learning

1. Introduction

Deep learning has achieved remarkable success in diverse fields, including object
detection, speech recognition, health care, and computer vision in bygone years. Its effec-
tiveness is heavily dependent on a substantial quantity of training data, yet collecting vast
labeled data is challenging, costly, and time intensive. Meanwhile, the model’s performance
can be compromised when dealing with new domains owing to domain shifts. Hence, it is
a significant and arduous task to maximize the utilization of existing labeled data to boost
the model’s generalization capability and compensate for the sample scarcity.

To address the above issues, the research field of domain adaptation (DA) was es-
tablished. DA endeavors to migrate the knowledge acquired from labeled data in the
source domain (Ds) to the target domain (Dt), with the purpose of enhancing the model’s
performance in the Dt [1–5]. Tan et al. [1] provided a definition of deep transfer learning
and divided it into four groups: adversarial, instance-based, network, and mapping. Mei
et al. [2] present a comprehensive survey of deep DA methods and categorize them accord-
ing to their loss functions. Wilson et al. [3] discuss various DA methods in single-source DA.
Kouw et al. [4] divide DA into three categories in terms of how classifiers learn from the Ds
and generalize to the Dt: methods based on a single observation (sample-based), methods
based on the set of observations representation (feature-based) methods, and parameter
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estimator-based (inference-based) methods. Fan et al. [5] classified DA into different types
based on the label sets in the Dt and Dt, including open-set, close-set, partial, generalized,
and zero-shot DA.

The target of DA is to boost a model that can generalize well to the Dt that are related
but not identical to the Ds by leveraging the knowledge learned from the Ds [6]. The
main challenge in DA is addressing the distribution shift stemming from the disparities
in feature distributions between the Ds and Dt. DA can be classified as supervised DA,
semi-supervised DA, and unsupervised DA, derived from whether the Dt is labeled or
not [2], among which unsupervised DA is the most challenging and is currently receiving
a lot of attention from researchers. According to the theoretical analysis of DA by Ben-
david et al. [7], the generalization error on the Dt is defined by (1) the empirical error of
the Ds classifier, (2) the empirical error between the Ds and Dt, and (3) the ideal joint error.
At first, researchers mainly focused on reducing the empirical error between the Ds and
Dt, assuming that the ideal joint error is small. From a probability statistics perspective,
this involves aligning the marginal probability distribution between the Ds and Dt. Such
methods include maximum mean difference (MMD) [8], deep adversarial neural networks
(DANN) [9], and adversarial discriminative domain adaptation (ADDA) [10]. As the
research progresses, more and more researchers have started to focus on the effect of the
ideal joint error. Zhang et al. [11] argue that merely aligning the edge distribution between
two domains is not enough, and alignment without considering the class-conditional
distribution will lead to an increase in the ideal joint error, constraining the upper bound of
the model’s theoretical error. The majority of existing DA methods only consider aligning
the global features of theDs andDt but fail to ensure the alignment of class-specific features,
which may constrain the model’s performance on particular tasks. Worse still, inter-
domain category-level alignment often requires labels of both domains to achieve, which
is difficult for unsupervised DA. Recently, motivated by the pseudo-labeling techniques
in semi-supervised learning, an increasing number of researchers have made significant
improvements in model performance by assigning pseudo-labels to Dt to aid in achieving
inter-domain category-level alignment. Yet, almost no one has undertaken a systematic
organization and analysis of these works, which is the motivation for our review.

We investigated the papers in some top sessions from 2017 to 2022 and counted and
analyzed the number of DA papers on pseudo-labeling methods, as shown in Figure 1.
Overall, the number of DA-related papers grows year by year, and it is expected that more
and more research on DA will be conducted in the coming years. We use darker colors to
represent papers on DA that utilize pseudo-labeling methods, and it is evident that the
quantity of these papers has been growing steadily over the years. It is worth noting that its
share in the overall DA papers is also increasing year by year; in particular, nearly 50% of
the DA papers in the ICCV and CVPR conferences in 2022 used pseudo-labeling methods,
which indicates the successful application of pseudo-labels in DA.
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Figure 1. Relevant literature statistics of top conferences.

The primary emphasis of this review is to analyze the methods for generating pseudo-
labels and their applications in unsupervised DA. First, the generation methods are catego-
rized as either single-classifier-based or multi-classifier-based, and the measures for dealing
with sample imbalance are explored. Second, the paper examines the applications of
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pseudo-labels in unsupervised DA, which are divided into two parts: using pseudo-labels
for category feature alignment and for enhancing the feature discrimination of classifiers.

The structural framework of this paper is shown in Figure 2.
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As far as we know, there are no existing review papers on DA methods based on
pseudo-labeling. Specifically, this paper’s primary contributions are:

1. We review in detail the background knowledge related to DA and pseudo-labeling
methods and sort out the connections and differences between them.

2. We have organized and analyzed the paper in detail in terms of both the pseudo-
labeling generation method and the application of pseudo-labeling in unsupervised
DA. To the best of our knowledge, it is the first attempt to summarize pseudo labels
used in the community of domain adaptation.

3. We conducted a comprehensive review of various pseudo-labeling methods within
each category through experimental evaluations. This analysis enables readers to
grasp the nuances of each technique and make informed decisions.

4. We point out possible challenges and future directions for pseudo-labeling methods
in DA applications.

2. Background
2.1. Unsupervised Domain Adaptation

In this section, we give a formal definition of unsupervised DA. We denote the Ds input
data and labels as xs = {xi}ns

i and ys = {yi}ns
i , and theDt input data as xt = {xi}nt

i , where ns
and nt represent the number of samples in theDs andDt, respectively, so that the sample spaces
of theDs andDt can be denoted asDs =

{(
xs

i , ys
i
)}ns

i andDt =
{

xt
i
}nt

i , respectively. The feature
space and label space of both the Ds and Dt are assumed to be identical, Xs = Xt, Ys = Yt,
while the joint probability distributions are different, Ps(x, y) 6= Pt(x, y). The objective of
unsupervised DA is to learn a mapping function using the aforementioned data, f : xt 7→ yt,
to make predictions on the labels in yt ∈ Yt for the Dt. Interventionary studies involving
animals or humans, and other studies that require ethical approval, must list the authority that
provided approval and the corresponding ethical approval code.

2.2. Pseudo-Labeling

Lee et al. [12] first proposed the method of pseudo-labeling, which uses the token
with the highest prediction probability as a pseudo-label, ŷ = argmax

x
fθ(x), for unlabeled

data, and then assigns a weight, w, to the unlabeled data and slowly increases it during
the training process to perform the training. In contrast to the consistent regularization
approach, the pseudo-labeling approach does not rely on region-specific data enhancement
and is easier to implement [13]. We categorized the current pseudo-labeling methods
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into two types: divergence-based methods and self-training methods. Divergence-based
methods utilize multiple networks to perform a task and leverage the divergence of different
networks, fθ1(·) and fθ2(·), to boost the quality of pseudo-labels, thereby improving the
overall model’s performance [14]. Self-training methods, on the other hand, use the
model’s own confident predictions to predict the pseudo-label for Dt unlabeled data,
thereby augmenting the training data [13].

3. Pseudo-Labeling Generation Methods

Pseudo-labeling generation methods are methods dedicated to improving the accuracy
of model-generated Dt pseudo-labels and to further facilitating domain alignment. We clas-
sify the pseudo-labeling generation methods into three categories: single-classifier-based
generation methods, multi-classifier-based generation methods, and category-balancing
methods for difficult samples. Single-classifier-based generation methods refer to obtaining
pseudo-labels of the Dt by one classifier and completing the DA task by self-training.
The multi-classifier-based generation method refers to obtaining more accurate pseudo-
labels by the difference of more than two classifiers and then completing the DA task by
self-training. The category-balancing method for difficult samples refers to further con-
sidering the pseudo-labels category-balancing problem based on the quality of generated
pseudo-labels, as a way to obtain higher-quality pseudo-labels.

3.1. Single-Classifier-Based Generation Method

The basic assumption of the single-classifier-based generation approach is that the
model’s own highly confident predictions are correct [15]. The single-classifier-based
approach generates pseudo-labels by using the model’s own confident predictions for
unlabeled data. In semi-supervised classification tasks, it can predict unlabeled data by
using a limited quantity of available labeled data, filtering according to some criterion,
and finally training the model together with true labels and pseudo-labels [12,16]. In
contrast, in unsupervised DA problems, using a model trained from labeled Ds data and
pseudo-labeling the unlabeledDt data can be of great help in promoting domain alignment,
especially category-level alignment.

In Wang et al. [17], a structured prediction-based selective pseudo-labeling approach
was proposed. This method utilizes the structural information of the Dt data through
clustering and labels the Dt samples collectively based on the clusters they belong to. The
distance from theDt sample to the cluster center is used as the criterion for pseudo-labeling,
with samples closer to the center being more prone to be chosen for pseudo-labeling and
for participating in the next round of iterative training. Deng et al. [18] employed a
teacher–student-model structure with pseudo-labeling provided by the teacher model.
The discriminative learning and category-level alignment goals are achieved through
discriminative clustering loss and clustering-based alignment loss.

To address the issue of sparse pseudo-labels generated by single-classifier models,
Shin et al. [19] proposed a two-phase pseudo-label densification framework that uses a
bootstrapping mechanism in the self-training loss function to boost the model’s generaliza-
tion ability. Wang et al. [20] introduced a binary soft-constrained information entropy to
improve the credibility of the mined class prototypes and class anchors, particularly for
samples at the decision boundary. This method increased the accuracy of the model in
estimating pseudo-labels for the Dt. Zhang et al. [21] proposed AuxSelf-Training for the
auxiliary model from the perspective of training samples, in which the sample selection
is founded on reducing the proportion of Ds data and increasing the proportion of the Dt
data proportion to construct the intermediate domain and gradually overcome the distance
bias across the domain.

3.2. Multi-Classifier-Based Generation Methods

Multi-classifier-based generation methods are extensively used in semi-supervised
learning, including the classical approaches proposed by Qin et al. [22] and Zhou et al. [23].
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Unlike the single-classifier-based approach, the multi-classifier-based approach usually
trains two or three different networks and uses the divergence between different networks
to allocate high-quality pseudo-labels to unlabeled samples. These pseudo-labeled samples
are then used in training together with the labeled samples, leading to effective DA results.

Inspired by [22,23], Saito et al. [24] proposed asymmetric tri-training for unsupervised
domain adaptation (ATDA) for unsupervised DA, as shown in Figure 3.
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The approach involves utilizing a shared feature extractor and three classifiers. To
enable and to classify from different perspectives, ATDA adds as a regularization term to
the cross-entropy loss, as shown in the following Equation (1).

E
(
θF, θF1 , θF2

)
=

1
n ∑n

i=1

[
Ly(F1 ◦ F(xi), yi) + Ly(F2 ◦ F(xi), yi)

]
+ λ

∣∣∣WT
1 W2

∣∣∣ (1)

where Ly is the cross-entropy loss, and θF1 and θF2 are hyper-parameters. ATDA screens
out the Dt samples with the consistent sum output of F1 and F2 confidence greater than a
certain value to be pseudo-labeled for training. Inspired by ATDA to allocate pseudo-labels
to unlabeled Dt samples and Mixup [25], Li et al. [26] put forward a three-branch CNN
model based on an electrocardiogram (ECG), which demonstrated superior performance on
the task of classifying heartbeats in the presence of domain shift. Similar to ATDA, Venkat
et al. [27] proposed a multi-source DA method that employs pseudo-labels generated by
multiple classifiers ground on the consistency of their predictions. This approach achieved
promising results in their experiments.

To further mitigate the undesirable consequences of incorrect pseudo-labeling on
training, Zheng et al. [28] used uncertainty to mitigate the undesirable consequences of
incorrect pseudo-labeling on DA. Unlike the fixed threshold used by Saito et al. [24] and
Zou et al. [29], Zheng et al. [28] used a dynamic thresholding approach, as shown in
Figure 4.
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The method models the uncertainty of pseudo-labeling by accessing networks with
different depths of primary and secondary classifiers to obtain different perspectives and
prediction variance. The prediction variance and the classification loss on pseudo-labeling
are defined as follows in Equations (2) and (3).

Dkl = E

F
(

xj
t

∣∣∣θt

)
log

 F
(

xj
t

∣∣∣θt

)
Faux

(
xj

t

∣∣∣θt

)
 (2)

Lce = E[− p̂j
tlogF(xj

t

∣∣∣θt)] (3)

where F is the main classifier and Faux is the secondary classifier. The modified pseudo-label
loss function is expressed by Equation (4).

Lrect = E[exp{−Dkl}Lce + Dkl ] (4)

When the prediction results of the main classifier and the subclassifier are very
different, the value of Dkl will be larger, indicating that the pseudo-labels may be inaccu-
rate. Du et al. [30] enhanced the performance of the dual-classifier adversarial training
network construction put forward by Saito et al. [31] by introducing additional losses.
Specifically, they added a self-supervised loss on the Dt and a gradient difference loss
on both domains on top of the classification loss on the Ds. The self-supervised loss
on the Dt improved the discriminability of the Dt distribution, which is beneficial
for subsequent category-level alignment. In terms of pseudo-label generation, Du
et al. [30] used the softmax outputs of two classifiers to weight the samples to obtain
the k class prime ck and finally pseudo-labeled the Dt data with the nearest prime
strategy. Li et al. [32] put forward a method for obtaining accurate pseudo-labels for
Dt data using the prediction consistency of multiple classifiers. The method explicitly
adapts the multi-order classifier from the Ds to the Dt, ensuring that the pseudo-labels
are both accurate and diverse. Ge et al. [33] proposed a simultaneous training symmet-
ric network to achieve mutual supervision under collaborative training, thus avoiding
the formation of overfitting to the network’s own output error, which leads to the
amplification of pseudo-labeling noise. Qin et al. [22] added a pseudo-labels training
set to the training model of MCD [31] to participate in the training, enhancing the
efficacy of this network.

3.3. Category-Balancing Methods for Difficult Samples

In the DA problem, the complexity of various DA tasks varies because of domain
differences. Similarly, within the same DA task, the alignment difficulty may vary across
different classes. Samples in the Ds that the classifier finds difficult to label can be referred
to as difficult samples. For difficult samples, several of its categories may mostly be mis-
classified into other classes or sieved out because of low confidence in the classifier output,
leading to severe category-balance bias in the selected samples and further negatively
impacting DA. Methods for alleviating the class-balance problem for difficult samples are
relatively novel and have achieved promising results.

Chen et al. [34] used the easy-to-hard transfer strategy (ETHS) to select reliable pseudo-
label samples and then used adaptive prototype alignment (APA) to achieve cross-domain
category alignment, as shown in Figure 5.
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where Lc is the standard cross-entropy loss, and λ and γ are the weights controlling the
interaction between source categorization loss, domain confusion loss Ld, and APA loss.
Zou et al. [29] mainly address the DA problem in semantic segmentation. To alleviate the
issue of imbalanced classes caused by fixed thresholds, the paper sets a threshold Kc for
each class and gradually performs DA through self-step learning [35]. Zhang et al. [11]
delved into the negative impact of inter-class imbalance ofDt samples on DA and proposed
adaptive prediction calibration (APC) to mitigate the problem of hard classes by boosting
hard classes, keeping common classes, and eliminating easy classes and introduced TE and
SE (temporal fusion and self-fusion, respectively) to improve the reliability of prediction,
as shown in Figure 6.

Recently, Liu et al. [36] suggested utilizing cyclic self-training as a replacement for
standard self-training to tackle the issue of distribution bias in DA, as shown in Figure 7.

The network structure is the same as MCD [31] and contains a feature extractor and
two classifiers. The difference is that the training alternates between two steps, the inner
loop and the outer loop. In the inner loop, the Dt pseudo-labels are used to train the target
classifier; in the outer loop, the shared representation is updated to boost the capability
of the target classifier on the Ds. To address the issue of noise amplification caused
by high pseudo-label confidence, this study introduces an uncertainty metric derived
from the information-theoretic Tsallis entropy. This metric can automatically minimize
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the pseudo-label uncertainty without requiring any manual adjustment or setting of the
confidence threshold.
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4. Application of Pseudo-Labeling in Domain Adaptation

Unlike pseudo-labeling generation methods, the application of pseudo-labeling in DA
refers to the application of pseudo-labeling in traditional DA methods (e.g., adversarial-
based, difference-based, and reconstruction-based methods, etc.). We classify them into two
major categories: the application of pseudo-labeling in improving classifier discrimination
and the application of pseudo-labeling in category feature alignment. The first category
refers to methods that obtain classifiers with high generalization ability through supervised
learning in the Ds and weakly supervised learning in the Dt that is labeled with high-
quality pseudo-labels. The second category refers to methods that use pseudo-labeling to
facilitate category feature alignment in the Ds and Dt.

4.1. Application of Pseudo-Labeling in Improving Classifier Discrimination

Zhao et al. [37] integrated a DANN with a teacher–student network model [38] to learn
feature representations with target differentiation using a consistency-forcing approach. It
used prediction averaging and label sharpening to generate pseudo-labels for unlabeled Dt
and introduced interpolation consistency into the unsupervised DA task to enhance the
clarity of the decision boundaries. Zhang et al. [39] divided a CNN feature extractor into
several blocks, each block being a set of CNN layers, as shown in Figure 8.
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The figure illustrates that each block for feature extraction includes a series of CNN
layers. The domain classifier comprises several FC layers that serve to differentiate the
domain to which each sample belongs. As the samples are propagated forward from the
lower to the higher layers, the learned feature distribution changes smoothly from domain-
relevant information to domain-independent information. Notably, the authors proposed
an extension of the CAN method called incremental CAN (iCAN), i.e., incorporating the
idea of self-training by leveraging the image classifier and the domain classifier from
the previous training period, and iteratively choose a set of Dt samples with pseudo-
labels. A dynamic thresholding method is employed to add these samples to the training
set, achieving better results. The dynamic-thresholding-related settings are as follows in
Equations (7)–(9).

TC =
1

1 + e−ρ∗A (7)

A =
1

Ns
∑Ns

i=1 I
(

ys
i , argmax

c
pc(xs

i )

)
(8)

I(a, b) =
{

1, i f a = b
0, otherwise

(9)

where TC denotes the threshold value, in which ρ was set to a fixed value of 3, pc
(

xt
i
)

denotes the possibility of the i th sample, and xt
i pertains to class c. Xie et al. [40] put for-

ward a method to evaluate the contribution of edge distributions (global) and conditional
distributions (local) to the target task in the DA problem. Specifically, they learned the
semantic representation of unlabeled Dt samples by aligning the labeled Ds examples and
pseudo-labeled Dt examples. To alleviate the adverse effect of incorrect pseudo-labels,
instead of aligning these newly acquired primes directly in each iteration, MSTN aligns ex-
ponentially moving average primes. Wang et al. [41] suggested a method called confidence-
aware pseudo-labeling selection (CAPLS), which employs an iterative learning approach
to gradually achieve domain alignment. Based on MMD, Kang et al. [42] introduced a
difference measure called contrast domain difference (CDD) to explicitly model intra-class
domain differences and inter-class domain differences. Recently, Chen et al. [43] further
improved migration performance by using higher-order statistics for domain matching
and using pseudo-labeled samples from the Dt to learn domain-invariant representations.
Dong et al. [44] designed a confidence-anchor-induced pseudo-labels generator to mine the
confidence pseudo-labels of the Dt by building confidence anchor groups and capturing
consistent cross-domains by class-relationship-aware consistency loss inter-class relation-
ships. Li et al. [45] defined an attention-aware transmission distance to measure domain
differences using predictive feedback from an iterative learning classifier.
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Yang et al. [46] proposed a bidirectional generation cross-domain generation frame-
work by adding MMD loss and consistency loss to the loss function and pseudo-labeling
the Dt data using the Ds classifier obtained from pretraining to implement a bidirectional
cross-domain generation method. Hu et al. [47] preserved the category structure of the Dt
by a duplex discriminator that also included classification tasks while aligning the overall
features of the domain, as shown in Figure 9.
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It consists of four parts: encoder E, generator D, duplex discriminators Ds and Dt, and
classifier C. The role of E is to compress the image pixel-level features into z. Under the
Ds and Dt constraint, the domain alignment is achieved by transforming the two-domain
sample styles, while the Ds and Dt simultaneously classify the real image to preserve the
class information of z. The Dt pseudo-labels missing during training are provided by
Russo et al. [48], using GANS to introduce a symmetric mapping between the two domains
and adding a class-consistency loss to enhance the structural stability and image quality of
the reconstructed samples.

4.2. Application of Pseudo-Labeling in Category Feature Alignment

In recent years, the generative adversarial network (GAN) proposed by Goodfel-
low et al. [49] has been extensively employed in unsupervised learning. The GAN
network primarily includes a generator and a discriminator. The generator in the GAN
network generates synthetic samples using random noise, while the discriminator is
responsible for distinguishing between real and synthetic samples. The GAN is trained
by the strategy of maximum–minimum alternating optimization, and the ability of the
discriminator to discriminate the authenticity is used as the “yardstick”, thus generating
samples that bear closer resemblance to the true samples. The GAN has been described
in detail in [49–51], and interested researchers can refer to the above literature. The true
and fake samples in the GAN can correspond to the Ds and Dt in DA, respectively, and
the generator corresponds to the feature extractor, while the discriminator is an implicit
alignment scale. Due to the clear logic of GAN and its natural structural adaptation to
the DA task, it has become a popular method in DA for learning transferable features
that are domain invariant between the Ds and Dt.

The domain adversarial neural network (DANN) [9] is comprised of a feature extractor,
a classifier, and a domain discriminator. It maximizes the domain confusion loss by using
a gradient reversal layer (GRL) while minimizing the label prediction loss on the Ds
data to achieve feature alignment between the Ds and Dt. Unlike DANN, adversarial
discriminative domain adaptation (ADDA) [10] uses separate feature extractors for each
domain to capture more domain-specific information, aligns the Dt features toward the
Ds through a pretraining, fine-tuning training model, and finally tests the Dt samples
using the Dt exclusive feature extractor and the Ds classifier. The above two simple and
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effective adversarial DA methods have become the basic architectures of many current DA
methods [52–54]. Nonetheless, these two techniques only take into account the alignment
of the marginal distribution between the Ds and Dt and do not consider the alignment of
the conditional distribution (class-level alignment), so even if domain confusion is achieved,
the classifier may perform poorly on the target task. As an analogy, by adversarial training,
even with perfectly aligned marginal distributions, the feature space can still blend the
characteristics of apples in the Ds with those of oranges in the Dt [55].

To alleviate the above problems, more and more adversarial-based DA methods have
started to consider category-level alignment, where the combination of adversarial training
and pseudo-labeling methods is notable. Based on DANN, Zhang et al. [52] introduced
center loss to achieve conditional distribution alignment. They proposed a method to deal
with unlabeled samples in the Dt. They used the predictions of the Ds classifier to allocate
pseudo-labels to each sample and defined the loss function as shown in Equation (10).

min
θE

Lct = ∑xi∈Φ(Xt)
‖E(xi)− cŷi‖

2
2 (10)

where ŷi is the label of xi predicted by the classifier, and cŷi denotes the center of the
i class. To alleviate the negative impact of incorrect pseudo-labeling during training,
Zhang et al. [52] filtered a subset of Dt samples for training by means of a card-fixed
threshold, and the filtering function is as follows in Equation (11).

Φ(Xt) = {xi|xi ∈ Xt and max(p(xi)) ≥ T} (11)

where p(xi) is a K-dimensional vector, dimension i corresponds to the predicted probability
of class i, max(p(xi)) is the possibility that sample xi pertains to the predicted class, and
T is a fixed threshold. In [56], the selection of training samples is implicitly guided by
pseudo-labels from the perspective of class-conditional domain alignment, focusing on the
problem of intra-domain class imbalance and inter-domain class distribution shift.

Yu et al. [57] proposed transfer learning with a dynamic adversarial adaptation net-
work (DAAN), which consists of three main components: labeled classifier, global domain
discriminator, and local subdomain discriminator. The overall loss function is as follows in
Equation (12).

L
(

θ f , θy,θd, θc
d|

C
c=1

)
= Ly − λ

(
(1−ω)Lg + ωLl

)
(12)

where λ is a constant value, while ω is a dynamic factor measuring the importance of Lg and
Ll . Ly, Lg, and Ll denote classification loss, global loss, and local loss, respectively, where
the pseudo-label of the Dt is also used in the calculation of Ll . Wang et al. [58] proposed an
entropy-based adaptive reweighting adversarial DA method from the perspective of the
conditional distribution, as shown in Figure 10.
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To promote positive migration and curb negative migration, the method uses an
entropy criterion to reveal the degree of sample transferability, which is then reweighted
and fed back into the discriminative network to force the underlying distribution closer.
In this paper, the loss function of domain adversarial training incorporates a conditional
entropy term, and the weights assigned to different samples in the adversarial training are
determined by the following Equations (13) and (14).

Ladv

(
θ f , θd

)
= − 1

ns + nt
∑xi∈(Ds∪Dt)

(
1 + Hp

)
(Ld(Gd( f (xi))), di) (13)

where Hp = − 1
C ∑C

c=1 pclog(pc) (14)

In addition to this, the authors use triplet loss to facilitate category-level alignment.
Samples are randomly selected on the basis of the sampling approach. The pseudo-labels
for the Dt are obtained by maximizing the posterior probability of the Ds cross-entropy,
which is gradually optimized as the model is trained. In addition, based on the intuitive
consideration that images with high prediction scores are more likely to be correctly
classified, only Dt samples with prediction scores above a certain threshold, T, are chosen
for training in this paper, and the threshold is set as a constant in this paper. To avoid
mislabeled target instances from propagating errors to the next iteration to disrupt the
subspace learning process, Tanwani et al. [55] employ a network trained on Ds data in
the initial stages of training to predict pseudo-labels for unlabeled Dt and, then, retain
only the most confident pseudo-labels for each category, resulting in a balanced mini-batch
consisting of equal numbers of Ds and Dt data for replacement sampling during training.

The construction of the graph convolutional adversarial network (GCAN) is proposed
in Xinhong et al. [59]. The GCAN approach includes three alignment mechanisms: structure-
aware, class-mass, and domain alignment. In class-mass alignment, class-mass alignment
loss is computed using pseudo-labeled Dt features and labeled Ds features to ensure that
samples belonging to the same class from different domains are embedded closely. In
order to develop the module for aligning the class centers of mass, the method uses a
target classifier to assign pseudo-tags and obtains pseudo-tagged Dt. Both labeled and
pseudo-labeled samples are utilized to calculate the center of mass for each class. The
DART (domain-against-residual transfer) network proposed by Fang et al. [60] comprises a
deep feature extractor, a deep label classifier, and a domain classifier in its architecture. The
entropy minimization method is used in computing the Dt label prediction loss by setting
its loss function to Equation (15):

LH = − 1
Nt

∑Nt
i=1 ∑c

j=1 p(yt
i = j|xt

i )logp(yt
i = j|xt

i ) (15)

where c represents the total number of classes, and p(yt
i = j

∣∣xt
i ) can be obtained by

p(yt
i

∣∣∣xt
i ) = Gt

(
G f
(

xt
i
))

. Through minimizing the entropy penalty, the target classifier
Gt will self-adjust to expand the likelihood difference between predictions and predict
more indicative labels accordingly. The alignment of the conditional distributions between
the Ds and Dt is accomplished in Cicek et al. [61] by incorporating an extra joint predictor.
This predictor learns the distributions on the domain and class labels. The encoder is
trained to deceive this predictor in the same class of samples for each domain. In [53], the
confusion matrix is computed using a domain discriminator based on DANN as a way to
correct the noise in the pseudo-labels. In [6], discriminator D discriminates the domain
distribution along with the class distribution. Given that there exist some transferable
regions between the Ds and Dt images, we propose an attention module embedded in
the GAN. In this way, we can remove as much background information as possible and
further minimize the domain shift between the Ds andDt. The corresponding experimental
results can support our conclusion. To fully utilize the label information in the Dt, we
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present a straightforward yet effective approach to pseudo-label the unlabeled Dt samples.
This idea can enhance the performance of classifier C while mitigating negative migration.
Gu et al. [62] introduced an adversarial DA approach based on a spherical feature space
and employed a Gaussian mixture model in the spherical space to obtain more robust
pseudo-labels.

One of the most popular approaches in deep DA is to minimize the distributional
discrepancy of domain features to achieve domain alignment, which employs deep neural
networks to extract informative feature representations for the Ds and Dt samples. Among
them, two broad categories of domain distribution disparity metrics are commonly used:
explicit and implicit. The explicit metrics are generally MMD distance, form-center distance,
class-prototype distance, etc. In addition, implicit metrics are adversarial-based methods,
popular learning, optimal transmission methods, etc. Fortunately, the pseudo-labeling
approach can still be applied in a flexible manner in the aforementioned methods and lead
to improved performance.

To achieve alignment of the conditional distributions of the Ds and Dt, Long et al. [63]
modified the MMD to estimate the distance between the class-conditional distributions
Qs(xs|ys = c) and Qt(xt|yt = c) . The inter-class MMD distance is defined as follows in
Equation (16).

‖ 1
ns(c)

∑xi∈Ds(c)
ATxi −

1
nt(c)

∑xj∈Dt(c)
ATxj‖2 (16)

where the norm represents the L2 norm, which is defined as the square root of the sum
of the squared elements of a vector, A is the orthogonal transformation matrix, D(c)

s is the
set of samples of class c in the Ds, and ns

(c)=
∣∣∣D(c)

s

∣∣∣. The same is true for the Dt. Since the

D(c)
t has no label, the authors incorporated the prediction of the Dt classifier directly as its

pseudo-label in the computation.
Chadha et al. [54] enhanced the performance of ADDA by referring to the framework

of semi-supervised GAN and exploiting the MMD loss. To fully leverage the discriminative
information present in the distribution of labels, Luo et al. [64] put forward a method
in which the features from the Ds and Dt are mapped into a regenerated Hilbert kernel
space, and the conditional distribution of the domains is represented by the conditional
covariance operator in the kernel space. Then, the conditional kernel Bures (CKB) metric
put forward in the paper is estimated and optimized based on the variance feedback.
For each class, the semantic difference of that class between two domains is modeled
using a multivariate Gaussian distribution that utilizes the inter-domain feature mean
difference and the intra-class feature covariance on the Dt, and then the Ds features are
augmented by randomly sampling semantic enhancement directions from the constructed
distribution [65]. As a result of the absence of labels for the data in the Dt, its pseudo-
label is defined as y′tj = argmaxcPc

tj, where Pc
tj is the softmax output of the Dt sample xtj.

Tanwisuth et al. [66] provides a framework for extracting class prototypes and aligning Dt
features with them. Liang et al. [67], based on a nearest form-centered classifier, project
the form centers of the Ds and Dt features into an invariant subspace, where the pseudo-
labels are computed using the feature transformation matrix and the maximum likelihood
estimate of the Ds expectation. Zhao et al. [68] defined a symmetric mirror loss based
on Kullback–Leibler scatter to enhance the degree of domain alignment and followed an
unsupervised discriminative clustering approach [69] to introduce auxiliary distributions
as soft pseudo-labels. Li et al. [70] introduced a two-layer optimization strategy using
pseudo-labels generated by the optimal classifier. With the purpose of boosting the accuracy
of the pseudo-labels, Liang et al. [71] reduced the classifier bias by introducing auxiliary
classifiers only for theDt and incorporated the maximum prediction probability as a weight
to the standard cross-entropy loss in Equations (17) and (18):

ŷi = argmax
k

pi,k, i = 1, 2, . . . , Nt (17)
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Lours
pl = − λ

Ntu

Ntu

∑
i=1

pi,ŷi logpi,ŷi (18)

Sharma et al. [72] added a link to feature processing based on Gani et al. [9], as shown
in Figure 11.
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As in [9], the network includes an encoder, a classifier, and a discriminator. The
encoder G is shared between the Ds and Dt and used to reduce the dimensionality of the
data. After dimensionality reduction of the Ds data by encoder G, the classifier C is used to
generate a softmax predictive distribution of the categories, and then, supervised training
is performed on the Ds labeled data using standard cross-entropy loss. To achieve global
feature alignment between the two domains, the authors train the domain discriminator D
using LD to classify the Ds and Dt features and train G using Ladv to generate features for
the confusion discriminator. In this way, domain-invariant features are extracted through a
min-max training process between LD and Ladv.

The classification loss and the adversarial loss are defined as follows in Equations (19)–(21).

Lsup = E(x,y)∼Ds

[
−log[C(G(x))]y

]
(19)

Ladv = Ex∼Dt [−logD(G(x))] (20)

LD = −Ex∼Ds [logD(G(x))]− Ex∼Dt [log(1− D(G(x)))] (21)

Notably, The authors adopt the K-nearest neighbor (KNN) method to allocate pseudo-
labels to the Dt samples ground on their similarity to nearby labeled Ds samples. To avoid
some Dt samples being assigned incorrect pseudo-labels because some Dt samples may not
have corresponding trueDs samples, the authors use a class-balanced small-batch sampling
method to alleviate this problem. Finally, the correlation matrix is constructed based on
similarity, and multiple-sample contrast loss is used to achieve class-level alignment of the
Ds and Dt features.

Xu et al. [73] proposed a weighted optimal transfer strategy that uses spatial prototype
information and intra-domain structure to reduce the negative transfer from samples
near the decision boundary in the Dt. Luo et al. [74] proposed a Riemannian manifold
embedding and alignment framework that projects Ds and Dt features into manifold space
and uses a manifold metric to measure domain differences while taking into account both
category-level alignment and global alignment.

In addition to the aforementioned mainstream methods, there are some DA methods
using pseudo-labeling that have also achieved better results.

Hou et al. [75] proposed a source-free domain image translation (SFIT) method in
which the model is split into two branches, one branch inputting Dt images and one
branch using cycle-GAN as a generator to generate Ds-style images guided by the Ds and
Dt models.
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The reconstruction-based approach data reconstruction refers to the addition of a data
reconstruction task, typically using an autoencoder or generative adversarial network to
ensure feature invariance during migration. Zhu et al. [76] proposed a new low-dimensional
visual attribute (LDVA) coding method based on an autoencoder that can train end-to-end
models for tasks such as DA, few-sample learning, and zero-sample learning.

In a data-enhancement-based approach, adversarial domain adaptation with domain
mixup (DM-ADA), Xu et al. [77] proposes a mixup alignment. The features are gradually
aligned by constructing some synthetic data, which serves as a bridge between the Ds and
Dt. To realize domain alignment at the category level and ensure that features pertaining to
the same category in both domains are mapped closely to the same latent space, the authors
introduce classification loss to ensure category consistency between the decoded image
and the input and mitigate the detrimental effects of mislabeling by filtering out samples
with classification confidence below a certain threshold. Zhong et al. [78] introduced a
general approach named E-MixNet, which improves the model performance by applying
an enhanced mixup technique on labeled Ds samples and pseudo-labeled Dt samples to
curb the combinatorial risk in the target risk.

In a heterogeneous-based approach, Paolo et al. [79] propose a novel heterogeneous-
distributed unsupervised DA method that focuses on the challenging setting of positive-
unlabeled (PU) learning, where only positive and unlabeled examples are available. The
method aims to enhance predictive models for a target domain by leveraging knowledge
from a related source domain, even when the two domains are described with different
feature spaces. The proposed method not only handles heterogeneous feature spaces but
also efficiently distributes the workload to manage large volumes of data.

Existing unsupervised DA methods for time-series data have mainly centered on
aligning the marginal distribution between the source and target domains. However, they
tend to overlook the conditional distribution discrepancy, which can lead to misclassifi-
cation in the target domain. He et al. [80] propose a novel method called ARADA-TK
(attentive recurrent adversarial domain adaptation with top-k time-series pseudo-labeling)
for unsupervised domain adaptation in time-series data. It focuses on learning domain-
invariant representations by capturing temporal dependencies and reducing conditional
distribution discrepancies.

5. Experience Evaluation

Given that image classification is a crucial task in various computer vision applications,
the majority of the aforementioned algorithms were initially developed to address this
issue. Therefore, in this section, we compare the current leading pseudo-labeling methods
in unsupervised DA on the Office-31 classification dataset, showing how much benefit this
method can bring to image classification.

The Office-31 dataset is widely used as a benchmark in visual DA, and it consists of
4652 images belonging to 31 object categories commonly found in office environments,
such as laptops, filing cabinets, keyboards, etc. [81]. These images were primarily sourced
from three different domains: Amazon (product images from online e-commerce websites),
webcam (low-resolution images captured by webcams), and DSLR (high-resolution images
captured by digital SLR cameras). There are 2817 images in the Amazon dataset, with an
average of 90 images and one image background per category, 795 images in the webcam
dataset, where the images show obvious noise, color, and white balance artifacts, and 498
images in the DSLR dataset. There are five objects in each category, and each object is
pictured, on average, three times from different viewpoints.

Images are collected from online retailers (e.g., Amazon) and webcams (e.g., webcam)
under various office-related categories. For the DSLR domain, images are taken using a high-
quality DSLR camera. The collected images are resized and standardized to a fixed size, such
as 224× 224 pixels, to ensure uniformity and facilitate data processing. Then, they are divided
into three domains: Amazon (A), webcam (W), and DSLR (D). Each image is associated with
a domain label to indicate its source. To perform domain adaptation experiments, the dataset
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is split into training and test sets. The training set contains images from the source domain
(e.g., Amazon), along with their corresponding labels. The test sets are composed of images
from the target domains (webcam and DSLR) without any labeled data.

Due to the variations in the parameters, experimental protocols, and tuning strategies
used in different studies apart from pseudo-labeling, it is challenging to conduct a direct
and fair comparison of all the methods. Therefore, we present comparison between the
proposed method using pseudo-labels and an unsupervised DA method using only deep
networks. In particular, we modularize these methods according to Sections 3 and 4 from
the pseudo-label generation method and the application of pseudo-label adaptation in
unsupervised domains to reflect the effectiveness of different modules. It is important to
mention that all approaches are uniformly set to unsupervised DA of isomorphic closed
sets with Resnet-50 as the framework, and we report the highest performance reported
in the respective papers. The tables present the accuracy results of the unsupervised DA
model (JAN) using only deep networks as a baseline, as shown in Tables 1 and 2.

Table 1. Classification Accuracy (%) Comparison for Different Pseudo-label Generation Methods on
the Office-31 Dataset (ResNet-50).

Generation
Methods

Method
(Ds →Dt)

A→W D→W W→ D A→ D D→ A W→ A Avg

Baselines JAN [82] 85.4 ± 0.4 96.7 ± 0.3 99.7 ± 0.1 85.1 ± 0.4 69.2 ± 0.4 70.7 ± 0.5 84.6

SPL [17] 92.7 98.7 99.8 93.0 76.4 76.8 89.6
Single-

classifier CAT [18] 94.4 ± 0.1 98.0 ± 0.2 100.0 ± 0.0 90.8 ± 1.8 72.2 ± 0.6 70.2 ± 0.1 87.6

PLUE-
SFRDA

[20]
92.5 98.3 100.0 96.4 74.5 72.2 89.0

SImpAI [27] 97.9 ± 0.2 97.9 ± 0.2 99.4 ± 0.2 99.4 ± 0.2 71.2 ± 0.4 71.2 ± 0.4 89.5 ± 0.3
Multi-

classifier MCS [67] 97.2 97.2 99.4 99.4 61.3 61.3 86.0

CAiDA [44] 98.9 98.9 99.8 99.8 75.8 75.8 91.6

Difficult
samples HCRPL [11] 95.9 ± 0.2 98.7 ± 0.1 100.0 ± 0.0 94.3 ± 0.2 75.0 ± 0.4 75.4 ± 0.4 89.9

Table 2. Classification Accuracy (%) Comparison for Different Pseudo-label Application Scenario on
the Office-31 Dataset (ResNet-50).

Application
Scenario Method (Ds →Dt) A→W D→W W→ D A→ D D→ A W→ A Avg

Baselines JAN [80] 85.4 ± 0.4 96.7 ± 0.3 99.7 ± 0.1 85.1 ± 0.4 69.2 ± 0.4 70.7 ± 0.5 84.6

DIAL [52] 91.7 ± 0.4 97.1 ± 0.3 99.8 ± 0.0 89.3 ± 0.4 71.7 ± 0.7 71.4 ± 0.2 86.8
MDD + Alignment

[56] 90.3 ± 0.2 98.7 ± 0.1 99.8 ± 0.0 92.1 ± 0.5 75.3 ± 0.2 74.9 ± 0.3 88.8

SRADA [58] 95.2 98.6 100.0 91.7 74.5 73.7 89.0
DART [60] 87.3 ± 0.1 98.4 ± 0.1 99.9 ± 0.1 91.6 ± 0.1 70.3 ± 0.1 69.7 ± 0.1 86.2
ALDA [53] 95.6 ± 0.5 97.7 ± 0.1 100.0 94.0. ± 0.4 72.2 ± 0.4 72.5 ± 0.2 88.7
GAACN [6] 90.2 98.4 100.0 90.4 67.4 67.7 85.6

RSDA-MSTN [62] 96.1 ± 0.2 99.3 ± 0.2 100.0 ± 0 95.8 ± 0.3 77.4 ± 0.8 78.9 ± 0.3 91.1
TSA [65] 94.8 99.1 100.0 92.6 74.9 74.4 89.3

Classifier dis-
crimination PCT [66] 94.6 ± 0.5 98.7 ± 0.4 99.9 ± 0.1 93.8 ± 1.8 77.2 ± 0.5 76.0 ± 0.9 90.0

MCS [67] 97.2 97.2 99.4 99.4 61.3 61.3 86.0
Mirror [68] 98.5 ± 0.3 99.3 ± 0.1 100.0 ± 0.0 96.2 ± 0.1 77.0 ± 0.1 78.9 ± 0.1 91.7
i-CDD [70] 95.4 ± 0.4 98.5 ± 0.2 100.0 ± 0.0 96.3 ± 0.3 77.2 ± 0.3 78.3 ± 0.2 90.9

ATDOC [71] 94.6 98.1 99.7 95.4 77.5 77.0 86.1
ILA-DA [72] 95.7 99.2 100.0 93.3 72.1 75.4 89.3
RWOT [73] 95.1 ± 0.2 94.5 ± 0.2 99.5 ± 0.2 100.0 ± 0.0 77.5 ± 0.1 77.9 ± 0.3 90.8

Fine-tuning [75] 91.8 98.7 99.9 89.9 73.9 72.0 87.7
E-MixNet [78] 93.0 ± 0.3 99.0 ± 0.1 100.0 ± 0.0 95.6 ± 0.2 78.9 ± 0.5 74.7 ± 0.7 90.2
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Table 2. Cont.

Application
Scenario Method (Ds →Dt) A→W D→W W→ D A→ D D→ A W→ A Avg

iCAN [39] 92.5 98.8 100.0 90.1 72.1 69.9 87.2
CAPLS [41] 90.6 98.6 99.6 88.6 75.4 76.3 88.2
CAN [42] 94.5 ± 0.3 99.1 ± 0.2 99.8 ± 0.2 95.0 ± 0.3 78.0 ± 0.3 77.0 ± 0.3 90.6

Category
feature

alignment
HoMM [43] 91.7 ± 0.3 98.8 ± 0.0 100.0 ± 0.0 89.1 ± 0.3 71.2 ± 0.2 70.6 ± 0.3 86.9

CAiDA [44] 98.9 98.9 99.8 99.8 75.8 75.8 91.6
ETD [45] 92.1 100.0 100.0 88.0 71.0 67.8 86.2
BDG [46] 93.6 ± 0.4 99.0 ± 0.1 100.0 ± 0. 93.6 ± 0.3 73.2 ± 0.2 72.0 ± 0.1 88.5

6. Challenges and Future Directions

Although pseudo-labeling methods have a large number of applications in deep DA
with good results, there are still some problems, and we present them and indicate potential
areas for future research.

(1) There is a lack of a common, universal indicator to evaluate the quality of pseudo-labels.

In DA with pseudo-labeling methods, the quality of pseudo-labels can directly affect
the effectiveness of DA. Through literature research, we found that only a few researchers
have analyzed the quality of pseudo-labels: Zhang et al. [11] portrayed the variation
of pseudo-label accuracy with training cycles in the ablation experiment section, while
Liu et al. [36] plotted ROC curves and used the AUC metric to quantify pseudo-label
effectiveness. We believe that a generalized metric for evaluating the quality of pseudo-
labels would be useful for the development of DA methods that use pseudo-labels.

(2) Cross-domain issues affect the quality of pseudo-labels.

Unlike semi-supervised learning where the training and test sets obey the same
distribution, DA faces the challenge of cross-domain distribution shift. Liu et al. [36]
experimentally confirmed that in the cross-domain case (where the pseudo labels of the
Dt are generated by the Ds model), the quality of the obtained pseudo-labels is lower than
when the Ds and Dt obey the same distribution. Moreover, the difficulty (inter-domain
distance) of different migration tasks is different, and finding a pseudo-labeling method
that is applicable to different difficulty DA problems is a worthwhile research direction.

(3) The dataset is more homogeneous, while the real scenario is more complex.

At present, the public datasets used for DA are generally Digits, Office-31, VisDA-2017,
etc. It is fair to compare with public datasets for theoretical studies, which is beneficial to the
theoretical development in this direction. However, it is possible that the proposed method
performs better only on the mentioned datasets. Further expansion of more complex public
datasets in the future will facilitate the application of DA methods in real scenarios.

(4) Research has mainly focused on classification problems, and there is a lack of research
on other DA problems.

The current application of the pseudo-labeling method for DA mainly solves the
classification problem, and its application in semantic segmentation DA, weakly supervised
DA, and domain generalization can be further tried in the future.

7. Conclusions

Deep DA is a research area with important real-world applications. The successful
application of pseudo-labeling methods in deep DA has further contributed to its rapid
development. This review classifies DA methods using pseudo-labeling into self-training-
based methods, divergence-based methods, adversarial-based methods, difference-based
methods, and other methods. Finally, we discuss the challenges faced by pseudo-labeling
in DA applications and some directions that deserve further research in the future.
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