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Abstract: To comply with the trend of ubiquitous intelligence in 6G, native AI wireless networks
are proposed to orchestrate and control communication, computing, data, and AI model resources
according to network status, and efficiently provide users with quality-guaranteed AI services. In
addition to the quality of communication services, the quality of AI services (QoAISs) includes
multiple dimensions, such as AI model accuracy, overhead, and data privacy. This paper proposes a
QoAIS optimization method for AI training services in 6G native AI wireless networks. To improve
the accuracy and reduce the delay of AI services, we formulate an integer programming problem to
obtain proper task scheduling and resource allocation decisions. To quickly obtain decisions that meet
the requirements of each dimension of QoAIS, we further transform the single-objective optimization
problem into a multi-objective format to facilitate the QoAIS configuration of network protocols.
Considering the computational complexity, we propose G-TSRA and NSG-TSRA heuristic algorithms
to solve the proposed problems. Finally, the feasibility and performance of QoAIS optimization are
verified by simulation.

Keywords: native AI wireless networks; quality of AI service; task scheduling; resource allocation

1. Introduction

After decades of research and development, communication networks have become
critical information infrastructures for economic growth and social progress in today’s
world [1–3]. In recent years, along with the rapid advancement of artificial intelligence
(AI) technology in new communication networks, intelligent applications of the Internet of
Everything have been integrated into our lives and continue to drive and deepen a series of
application scenarios, such as intelligent vehicle networking, smart industrial networking,
smart cities, and smart healthcare [4–7]. The development of intelligent applications brings
a great demand for network connection, computing, sharing data, and AI capability, and
intelligence permeates every corner of the network, from the end user to the network edge
and the remote cloud. However, computing, business data, and AI model resources in
5G are usually in mobile edge computing and cloud computing infrastructure [8–10]. It
is difficult for the network to perceive and control the resources of the cloud AI platform
in real-time to provide high-quality AI services with strict delay limitations according
to changes in the wireless environment and user attributes. Therefore, the 6G network
must consider deep integration with AI in the architecture design stage to natively provide
AI capabilities.

The native AI design of 6G needs to consider two aspects of requirements: (1) AI
can support high-level autonomy of the network. AI can improve the efficiency of data
measurements and decision optimization in the network, then realize fast automated
operation, maintenance, detection, and network self-healing [11]. (2) AI can support
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intelligent applications in vertical industries. The 6G network should directly provide
vertical industry users with quality-guaranteed AI services to create new market value.
According to the above requirements, the 6G native AI wireless network is a unified
architecture that deeply integrates communication and AI. It should have the ability to
process the AI service logic, manage the full life cycle of the AI service, and provide AI
services to the network itself as well as vertical industries [12]. In addition, native AI
wireless networks should orchestrate and control the communication, computing, data,
and AI model resources in the network, including the core network, radio access network
(RAN), and terminals. In collaboration with edge and remote clouds, the native AI wireless
networks can quickly adapt to the customization needs of diverse scenarios [13]. Hence, the
6G network will become the fundamental infrastructure for realizing ubiquitous intelligence
to support various AI applications, such as real-time AI inference, distributed learning, and
intelligent group collaboration.

One essential advantage of natively providing AI services in 6G networks is that
resources can be controlled flexibly and on demand to ensure the quality of AI services
(QoAISs) [14]. Current networks can already guarantee the quality of service (QoS) for
communications. Moreover, 3GPP defines QoS-related standards and sets the communi-
cation index dimensions corresponding to the QoS, such as bandwidth, delay, jitter, and
bit error rate. RAN protocols (such as service data adaptation protocol) will provide users
with differentiated network quality assurance services according to preset QoS parameters.
However, the 6G native AI wireless network introduces intelligent capabilities, so in ad-
dition to the communication performance, the AI service delay, model performance, data
redundancy, overhead, privacy, and other aspects need to be considered [11].

Various studies have investigated how native AI wireless networks can optimize
the network itself or provide AI services to third parties [15,16]. For these AI services,
the accuracy of AI model training is a critical indicator of the QoAIS. Using high-quality
data for training can significantly improve the accuracy of the AI model [11,17]. However,
wireless and computing resources are limited, and more data will lead to more transmission
and computing delays. Therefore, the QoAIS needs to include at least two indicators: the
accuracy of the AI model and the delay of the AI service. To provide better QoAIS services, a
reasonable task scheduling and resource allocation scheme should be designed to optimize
the QoAIS. One way is to weigh the above two indicators and propose a single-objective
optimization problem. However, when the network protocol configures the QoAIS, each
of its indicators may have a threshold value. However, the weights in the single-objective
optimization problem are fixed in advance, so it is challenging to select the optimization
scheme precisely according to the QoAIS.

On the other hand, the AI models required by AI services are specific. For example, tar-
get recognition services for autonomous driving requires models such as the region-based
convolutional neural network (R-CNN) and you only look once (YOLO). The operation
of these models is based on the corresponding AI development framework (e.g., PyTorch,
TensorFlow) and will be equipped with related dedicated AI acceleration hardware [18].
Before the AI service is provided, the corresponding environment and hardware need to
be pre-configured and installed in the network. Limited by space and cost, it is difficult
for a single network node to be equipped with the AI models required by all AI services.
Therefore, when designing the task scheduling and resource allocation scheme for AI
service, it is necessary to consider the collaboration between network nodes.

To this end, this paper considers a task scheduling and resource allocation scheme for
AI training services in 6G native AI wireless networks to optimize the QoAIS, including
the accuracy of training AI models and the delay of AI services. According to the wireless
channel conditions of the network, the computing resources, and the type of AI model
stored by each node, an effective mechanism is needed to select the appropriate data quality,
bandwidth allocation, and node to complete the task of the AI service. Because of the
conflict between the two indicators of the QoAIS, a single-objective integer programming
problem is proposed to optimize the QoAIS. Further, considering the QoAIS configura-
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tion of network protocols, we transform this problem into a multi-objective optimization
problem. Considering the computational complexity, we use the genetic task scheduling
and resource allocation (G-TSRA) algorithm and the non-dominated sorting genetic task
scheduling and resource allocation (NSG-TSRA) algorithm to solve the proposed problems.
The main contributions of this paper are as follows.

• We propose a 6G native AI wireless network architecture for AI training services,
which can reasonably utilize unevenly distributed wireless, computing, and AI model
resources to provide AI services. Based on this architecture, the task scheduling and
resource allocation schemes of AI training services are studied.

• We formulate the QoAIS optimization problem as a single objective integer program-
ming optimization problem to jointly optimize accuracy and delay. Then a heuristic
G-TSRA algorithm is proposed to solve the problem.

• We further propose a multi-objective QoAIS optimization problem to facilitate the
QoAIS configuration of network protocols. The NSG-TSRA algorithm is designed to
obtain the approximate Pareto-optimal set of AI task scheduling and resource allocation.

• The performance of our proposed G-TSRA and NSG-TSRA is evaluated through
extensive simulations. Numerical results validate the effectiveness and superiority of
our proposal compared with the benchmark schemes in terms of AI model accuracy
and AI service delay.

The remainder of this paper is organized as follows. We first present the related work
in Section 2. Then, we describe the model of the native AI wireless network for AI training
services in Section 3. The single objective QoAIS optimization problem and G-TSRA are
proposed to solve it in Section 4. Further, we present the multi-objective optimization
problem and develop the NSG-TSRA in Section 5. Finally, we demonstrate the numerical
results in Section 6 and conclude this paper in Section 7.

2. Related Work

Building native AI capabilities in a 6G network can improve operation efficiency,
reduce maintenance costs, and enhance user experience. On the other hand, 6G networks
can utilize native AI to provide ubiquitous and easily accessible AI services for various
industries and users. Driven by such benefits, native AI has recently attracted significant
attention from the industry and academia. In [15], Wu et al. proposed the AI-native network
slicing architecture, through the synergy of artificial intelligence and network slicing,
to promote intelligent network management and support AI services in 6G networks.
In [19], Hoydis et al. presented a 6G AI-native air interface designed in part by AI to
enable optimized communication schemes for any hardware, radio environments, and
applications. In [20], Soldati et al. identified two critical factors for the effective integration
and systematization of AI in the future RAN system: the design of AI algorithms must
aim to promote the entire RAN environment, and the RAN system must be equipped
with an advanced and scalable learning architecture. Due to the current network slicing
architecture not being native AI, the heterogeneity of the slicing arrangement is difficult to
adapt to the machine learning paradigm. Therefore, Moreira et al. in [21] proposed and
evaluated a distributed AI-native slice orchestration architecture that can provide machine
learning capabilities in all life cycles of network slices. In [12], the 6G Alliance of Network
AI (6GANA) offers the essential technical features needed for the native AI architecture of
the 6G network, including the self-generation of use cases, QoAIS, task-oriented scheme,
etc. A unified architecture is expected to provide quality-guaranteed AI services for the
network and third-party users.

Compared with cloud AI providers, AI services provided by 6G native AI wireless
networks have the advantage of guaranteed service quality. In 5G networks, 5QI (5G QoS
identifier) is a parameter used to identify different service quality requirements [22]. The
value range of 5QI is 1–255, and each value corresponds to a set of preset performance
values, including default priority level, packet delay budget, packet error rate, etc. Network
operators configure QoS according to user requirements and network resource conditions.



Electronics 2023, 12, 3306 4 of 17

According to the combination of different performance values represented by 5QI, the
wireless network protocol provides communication services of different qualities, such
as low-latency services, high-reliability services, and high-speed broadband services. For
AI services provided by 6G networks, the service quality dimensions will be further
expanded, such as the delay of AI services, the accuracy of AI models, communication
overhead, computing overhead, data privacy, etc. Therefore, studying the available QoAIS
optimization methods for wireless network protocols is necessary.

There have been some studies focusing on the training accuracy of AI models. In [23],
Liu et al. proposed an improved particle swarm optimization algorithm (LK-PSO), aimed
at the scheduling problem of AI data-intensive computing tasks in the Internet of Things,
to effectively improve the scheduling performance of AI data-intensive computing tasks
in the edge environment From the perspective of edge intelligence systems, Wang et al.
in [24] proposed a deep neural network (DNN) layer-partitioning-based fine-grained cloud–
edge collaborative dynamic task scheduling mechanism to greatly reduce the average
task response time and deploy more complex DNN models in cloud–edge systems with
limited resources.

Based on the above discussion, although there are currently some studies on AI task
scheduling, most focus on optimizing model training in resource-constrained networks and
only consider AI task delay. Therefore, this work, driven by native AI, proposes an efficient
task scheduling and resource allocation scheme for AI training services. Considering the
dynamic changes of wireless networks, heterogeneous resources, and data distribution,
this work optimizes the accuracy and completion delay of AI training simultaneously and
provides QoAIS multi-dimensional indicators that 6G wireless network protocols can use.

3. System Description

The architecture of native AI includes the import of user requirements, the analysis
of requirements to QoAISs, the full life cycle management and scheduling of the multiple
resources of AI tasks, and the final delivery results. In this paper, we focus on scheduling
the multiple resources of AI. In this section, we describe the native AI wireless network
model for AI training services, including the communication model, the computation
model, and the AI training model.

3.1. System Model

As shown in Figure 1, we consider a 6G native AI wireless network to provide various
AI training services. A set of APs (access points) is distributed in an interested area. The
APs are connected through wireless channels. Each AP can cover multiple areas, such as
roads, parks, factories, etc. Users in these areas will have different service requirements for
AI model training, such as pedestrian detection and fire monitoring. Due to limited local
resources, users expect the AP to provide AI training services.

Each AP is equipped with hardware to provide communication, computing, data,
and AI model resources for AI training tasks, including antennas, computing servers, and
AI model caches. After the AP receives the task request, it can obtain the data required
for AI training from the user. For each type of AI training, multiple data quality levels
can be selected. As the performances of AI training results, such as DNNs, are closely
related to the quality of data used for training, APs can request the highest quality data
possible according to the remaining resources to obtain better training results. On the other
hand, the type of AI training task corresponds to the type of AI model. Due to the resource
capacity limitations, the AI model required for an AI task may only be stored in a few
APs. When the AP stores the required AI model resources, the AI model training will be
completed locally. When an AP does not store the AI model that matches the task, the AP
will transmit the data through its antenna to another qualified AP for processing.
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Figure 1. Native AI wireless network architecture for AI training services.

In order to obtain global information and output better decisions, a software-defined
network (SDN)-enabled controller is installed at a base station (BS) to centrally make the
task scheduling and resource allocation decisions over its coverage area. At each time slot,
the AP receives AI service requests containing type information and reports them to the
BS along with channel conditions. The BS makes task scheduling and resource allocation
decisions based on the collected information, and sends the decisions to the corresponding
AP. The AP selects the data quality of users’ AI tasks and sends them to the corresponding
AP for execution based on the decision.

Denote the set of APs as N = {1, 2, . . . , N}. To clearly describe the connection
relationship between different APs, we choose i and j as the indices of different APs,
i, j ∈ N . In time slot t, AP i obtains M kinds of AI training tasks. According to the storage
of AI model resources, tasks can be processed locally or in the corresponding AP j. For
each AP, the task is denoted byM = {1, 2, . . . , M}. The set of AI models stored by AP j is
denoted by πj. To ensure the successful execution of the task, AP j must store the AI model
required by task m, which is fi,m ∈ πj, where fi,m is the type of task m.

xi,m,j ∈ {0, 1} is a binary decision variable that denotes whether the task m of AP i is
transmitted to AP j. Each task can only choose one AP to be processed at time slot t, given
by ∑j∈N xi,m,j(t) = 1.

3.2. Communication Model

The task scheduling between AP i and j is facilitated through wireless communications.
According to [25], the data transmission rate between AP i and j can be calculated as

Ri,m,j(t) = Wi,m log2
(
1 + SNRi,j(t)

)
(1)

where Wi,m is the bandwidth of AP i allocated to task m. SNRi,j(t) is the signal-to-noise
ratio (SNR) between the two APs.

SNRi,j(t) =
pihi,j(t)

σ2 (2)

where pi is the transmission power of each link, hi,j(t)is the channel gain, and σ2 is the
noise power.

Each type of task has different qualities b, denoted by B = {1, 2, . . . , B}. The data size
of task m in AP i is Zi,m(t) = a fi,m

bi,m(t), where a fi,m
is the amount of data per unit level

related to the task type. Hence, the transmission time is given by
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Tc
i,m,j(t) =

Zi,m(t)
Ri,m,j(t)

(3)

3.3. Computation Model

After receiving tasks from other APs, AP j will allocate computing resources to each
task according to their requested CPU cycle Ci,m(t):

Ci,m(t) = c fi,m
Zi,m(t)τi,m(t) (4)

where c fi,m
is the CPU cycle for each bit of the data, and τi,m(t) denotes the number of

training iterations determined by AP i at time slot t.
The total computing resource of each AP j is Φj. Hence, the computing resource

Φj,i,m(t) allocated to task m of AP i is given by

Φj,i,m(t) =
ΦjCi,m(t)

∑i,m Ci,m(t)xn, f ,j(t)
(5)

Consequently, the computing delay is calculated as

Tp
i,m,j(t) =

Ci,m(t)
Φj,i,m(t)

=
∑i,m Ci,m(t)xn, f ,j(t)

Φj
(6)

3.4. AI Training Model

After allocating computing resources, the AP will use task data for AI training, and
output the trained AI model. The training of an AI model is the training of a large number
of data samples. In typical AI training, for a data sample {xn, yn} with a multi-dimensional
input feature xn, the goal is to find a model parameter vector ω that represents the labeled
output yn with a loss function lossn(ω). The loss function of a local dataset with a number
of D data samples can be defined as

Loss(ω) =
1
D ∑

n∈D
lossn(ω) + ξg(ω) (7)

where g(·) is a regularizer function and can be given as g(·) = 1
2‖·‖

2; ∀ξ ∈ [0, 1].
Denote ω∗i as the optimal model parameter for AP i. AP i trains its local AI model in

an iterative manner [26]:

ω∗i = arg minωLossi(ω|ωi,OLossi(ω)) (8)

The performance of an AI model can be evaluated using the accuracy of the model,
denoted by ϕ ∈ [0, 1]. The accuracy of AI models is related to the allocated computing
resources, the quality/size of data, the number of training iterations, the learning rate, the
algorithm used for training, and so on. Similar to [11], the accuracy of AI model m of AP i
processed by AP j satisfies

ϕi,m,j(t) = 1− exp
(
−ςlcΦj,i,m(t)(Zi,m(t)τi,m(t)α)v

)
(9)

where ςlc and v are weight factors. Φj,i,m(t) is the allocated computing resource to each
task. α is the learning factor that reflects the marginal revenue of iterations and depends on
the selected learning algorithm.

To assess the quality of the solution, the local ϕ accuracy satisfies

‖Loss(ω∗)‖ ≤ (1− ϕ)‖Loss(0)‖. (10)
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Here, the implementation of ϕ = 1 needs to find the exact maximum, while ϕ = 0
means that no improvement is achieved in AP.

4. Single Objective QoAIS Optimization
4.1. Problem Formulation

We formulate the AI task scheduling and wireless resource allocation problem in the
6G native AI wireless network. The objective is to optimize the quality of AI training
services, including delay and accuracy. The BS maintains resource information for all APs,
including the available bandwidth, computing power, and the types of AI models. At each
time slot, the BS makes task scheduling and resource allocation decisions and sends the
decisions to APs.

To maximize the total accuracy of the trained AI models and minimize the total delay
of AI training tasks simultaneously, the optimization problem can be transformed into a
single-objective problem by assigning different weights to each objective.

Minimize: ∑
i∈N

∑
m∈M

∑
j∈N

(α ∗ (Tc
i,m,j + Tp

i,m,j) + 1− ϕi,m,j) (11)

Subject to: xi,m,j ∈ {0, 1} (12)

∑
j∈N

xi,m,j(t) = 1, ∀i ∈ N , m ∈ M (13)

∑
m∈M

Wi,m 6 Wi, ∀i ∈ N (14)

1 6 bi,m 6 B (15)

fi,mxi,m,j ∈ πj (16)

where α is a weight parameter to balance the trade-off between the delay and accuracy.
Constraint (13) indicates that one task can only be transmitted to one AP; (14) is the
bandwidth constraint, and (15) is the data quality constraint. Moreover, (16) indicates that
the AP must cache the corresponding AI model when processing tasks.

4.2. Genetic Task Scheduling and Resource Allocation Algorithm

A genetic algorithm [27] is a heuristic algorithm based on natural selection and natural
genetics that can find an optimal solution in a limited time. Therefore, we propose the
genetic task scheduling and resource allocation algorithm (G-TSRA) to solve the single
objective QoAIS optimization problem.

In the proposed problem, each solution is encoded as an individual, including AP
index, data quality, and bandwidth allocation for each task. The individual is given by

o = (xi,m,j, bi,m, Wi,m), ∀i, j ∈ N , m ∈ M (17)

The quality of each individual is evaluated by the function (11), which represents the
degree of fitness to the environment. Multiple individuals form a population and evolve
according to the principle of “survival of the fittest”.

During evolution, the size of the population remains constant. Individuals are selected
according to their quality, then crossover and mutation operations are performed to form a
new population. Through continuous iterations, the optimized solution is finally obtained.

5. Multi-Objective QoAIS Optimization
5.1. Problem Formulation

In the 6G native AI wireless network, to guarantee the QoAIS, each type of indicator
needs to meet its requirements. However, in the single objective QoAIS optimization prob-
lem, the weight value is pre-configured, and it can only be judged whether each indicator
meets the requirements after the algorithm is executed. Multiple tunings will be required,
and the above operations must be repeated when the optimization requirements change.
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To solve this challenge, using a multi-objective evolutionary algorithm to obtain the
Pareto-optimal solution set is an effective method. When receiving QoAIS requirements, it
can directly select a solution that meets the requirements according to the Pareto-optimal
solution set. Even when QoAIS requirements change, the system does not need to re-run
the algorithm.

In the following, we formulate the task scheduling and resource allocation problem as
a multi-objective integer programming problem.

Maximize: ∑
i∈N

∑
m∈M

∑
j∈N

ϕi,m,j (18)

Minimize: ∑
i∈N

∑
m∈M

∑
j∈N

(Tc
i,m,j + Tp

i,m,j) (19)

Subject to:(12)− (16) (20)

5.2. Non-Dominated Sorting Genetic Task Scheduling and Resource Allocation Algorithm

To solve the proposed multi-objective optimization problem of the 6G native AI
wireless network with relatively low computational complexity, we designed an NSG-TSRA
algorithm based on the idea of the non-dominated sorting genetic algorithm II (NSGA-
II) [28]. Before presenting the details of the NSG-TSRA algorithm, we first introduce two key
approaches: a fast non-dominated sorting approach and a crowding-comparison approach.

5.2.1. Pareto-Optimal Solution

Suppose a multi-objective optimization problem is as follows: maxx( f1(x), f2(x), · · · ,
fK(x)) where K is the number of objective functions.

Definition 1. (Pareto dominance): Solution x1. The Pareto dominates solution x2, i.e., x1 � x2,
if and only if fk(x1) ≤ fk(x2) for ∀k ∈ {1, . . . , K} and ∃q ∈ {1, . . . , K}, satisfying fq(x1) <
fq(x2).

Definition 2. (Pareto-optimal Set): The Pareto-optimal set can be defined as
P∗ = {x∗ ∈ Ω | ∃x ∈ Ω, x ≺ x∗}, where x∗ is Pareto optimality.

Multiple optimization goals are often in conflict with each other. Therefore, a multi-
objective optimization algorithm will involve a collection of optimal solutions. Hence,
without additional conditions, there is no significant difference between the solutions in
the set.

5.2.2. Fast Non-Dominated Sorting Approach

In the NSG-TSRA algorithm, fast non-dominated sorting involves dividing the popu-
lation O = {1, 2, . . . , o} into several layers according to the dominance relationship. The
function of this approach is to guide the search toward the Pareto-optimal solution set.
Each individual o is a solution, which consists of an AP index, data quality, and bandwidth
allocation for each task.

o = (xi,m,j, bi,m, Wi,m), ∀i, j ∈ N , m ∈ M (21)

To facilitate uniform optimization, the objective of maximizing model accuracy needs to
be translated into minimizing the relative model performance. Since 0 6 ϕi,m,j 6 1, we have

Obj1 = ∑
i∈N

∑
m∈M

∑
j∈N

(1− ϕi,m,j) (22)

Obj2 = ∑
i∈N

∑
m∈M

∑
j∈N

(Tc
i,m,j + Tp

i,m,j) (23)
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When an individual does not satisfy the constraints, a penalty value can be added to the
objective function. The first layer is the set of non-dominated individuals in the population;
the second layer is the set of non-dominated individuals obtained after removing individuals
in the first layer, and so on. As shown in Figure 2, 12 individuals will be assigned to the
corresponding fronts and individuals with the same color are at the same front. The details
are shown in Algorithm 1. Each individual has two kinds of parameters: domination count
κo and domination set So. κo represents the number of individuals that dominate individual
o, and So represents the individual set dominated by individual o. First, the algorithm
calculates κo and So for each individual according to the dominance relationship and obtains
the first non-dominated front F1. Specifically, if o dominates l, l will be added to the set of
solutions dominated by o. Otherwise, the domination counter of o increases and o belongs
to the first front. Then, for each individual in F1, the domination counters of its dominant
solutions are subtracted by one. If the domination counter is 0, this domination will be added
to F2. After multiple iterations, the individuals in So are iteratively divided into different
layers according to their rank. Eventually, sorted layers (F1, F2, ...) are obtained. The total
complexity of finding all members of the different non-dominated levels in the population
is O(K(2O)2), where K is the number of objectives. Hence, the worst-case complexity of
fast non-dominated sorting is O(K(2O)2).

Algorithm 1 Fast non-dominated sorting algorithm.
Input: Population O

1: for each o in O do
2: Set So = φ
3: Set κo = 0
4: for each l in O do
5: if o dominates l then
6: So = So ∪ {l}
7: else if l dominates o then
8: κo = κo + 1
9: end if

10: end for
11: if κo = 0 then
12: ranko = 1
13: F1 = F1 ∪ {o}
14: end if
15: end for
16: Set s = 1
17: while Fs 6= ∅ do
18: Q = φ
19: for each o in Fs do
20: for each l in So do
21: κl = κl − 1
22: if κl = 0 then
23: rankl = s + 1
24: Q = Q ∪ {l}
25: end if
26: end for
27: end for
28: s = s + 1, Fs = Q
29: end while
Output: Sorted layers (F1, F2, ...)



Electronics 2023, 12, 3306 10 of 17

Figure 2. Fast non-dominated sorting approach.

5.2.3. Crowding-Comparison Approach

In the NSG-TSRA algorithm, the crowding-comparison approach is adopted to main-
tain the diversity of the population, which can reduce the time complexity compared to the
sharing function approach in NSGA. This approach consists of the density estimation and
the crowding-comparison operator.

Density estimation: The crowding distance estimates the density of an individual
surrounded by others in the population. First, the non-dominated individuals of each layer
are arranged according to the value of each objective function in ascending order. Then, the
crowding degree of individual o can be quantified as the difference value of two adjacent
individuals, Obj (i.e., o + 1 and o− 1), in the same layer. The crowding distance I of each
individual is the sum of the crowding degrees under each objective function. Moreover,
the distance values need to be normalized before summing. Objmax

k and Objmin
k are the

maximum and minimum function values in this population.

Ik(o) =
Objk(o + 1)−Objk(o− 1)

Objmax
k −Objmin

k
, k = 1, 2. (24)

Crowded-comparison operator: After completing the fast non-dominated sorting and
density estimation, we obtain the non-dominated rank ranko and the crowding distance
I(o). To achieve a wider distribution of the Pareto-optimal set, the crowding-comparison
operator is used to select individuals according to two conditions, as follows. Let≺∗ denote
an order of comparison. The details of the crowding-comparison approach are shown in
Algorithm 2.

Condition 1: A smaller rank means that the individual is closer to the Pareto front.
Therefore, individuals with lower ranks will be selected.

o ≺∗ l, if (ranko < rankl). (25)
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Condition 2: When two individuals have the same rank, a larger crowding distance
means that the individual is more dispersed from other individuals. Therefore, individuals
with larger crowding distances will be selected.

o ≺∗ l, if ((ranko = rankl) and (I(o) > I(l))). (26)

The worst-case complexity of the crowding-distance assignment is O(K(2O) log(2O)).

Algorithm 2 Non-dominated sorting genetic task scheduling and resource allocation algorithm.
Input: Task m of each AP, model storage πj, channel gain hi,j, computing resource Φj

1: Initialize the parameters
2: Generate an initial population by random means
3: Obtain R(t) = O(t) ∪Q(t)
4: Rank the population R(t) by the fast non-dominated sorting approach
5: O(t + 1) = ∅ and s = 1
6: while |O(t + 1)|+ |Fs| < O do
7: *******Crowding Distance Assignment******
8: Set Num = |Fs|
9: for each o ∈ Fs do

10: Set I(o) = 0
11: end for
12: for each k do
13: Sort Fs = sort(Fs, k)
14: Set I(1) = I(Num) = ∞
15: for i = 2 to Num− 1 do
16: I(i) = I(i) + Ik(i)
17: end for
18: end for
19: O(t + 1) = O(t + 1) ∪ Fs
20: s = s + 1
21: end while
22: Sort(Fs ≺∗)
23: Set O(t + 1) = O(t + 1) ∪ Fs[1 : (O− |O(t + 1)|)]
24: Obtain Q(t + 1) = make new pop(O(t + 1))
25: Set t = t + 1
Output: Pareto-optimal set

5.2.4. Algorithm Design

The NSG-TSRA algorithm adopts the ideas of elitism and tournament selection. The
detailed procedure of the NSG-TSRA algorithm is shown in Algorithm 2.

When the algorithm is executed, the initial population O(t)t=0 is randomly generated
and sorted by the fast non-dominated sorting approach. The elitism strategy involves
retaining the best individuals in the current population to the next generation population
without additional genetic operations. To implement this strategy, an offspring population
Q(t)t=0 is created by selection, crossover, mutation, and other operations. Then, O(t) and
Q(t) are combined to generate the expanded population, R(t). R(t) is sorted by the fast
non-dominated sorting approach shown in Algorithm 1 and the divided layers (F1, F2, ...)
are obtained.

After the division, individuals will be sequentially selected, starting from the first layer
F1 until the entire population O(t + 1) is filled. However, the size of R(t) is 2 times that
of O(t + 1). Assume that it is not possible to put all the individuals of the vth layer Fv
into O(t + 1) during the filling process. The crowding-comparison approach is used to sort
Fv. Individuals will be sequentially added to the next population O(t + 1) according to the
crowding distance until the number of individuals in the population reaches O. The remaining
solutions are deleted. The worst-case complexity of sorting on ≺∗ is O(2O log(2O)).
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Finally, for O(t + 1), the tournament selection and crossover and mutation operations
are used to create the new population, Q(t + 1). Here, the tournament selection operation
is according to the crowded-comparison operator. Through continuous iteration, the
algorithm finally outputs the approximate solution of the Pareto-optimal set. Considering
the time complexity of fast non-dominated sorting, crowding comparison, and sorting on
≺∗, the overall complexity of the NSG-TSRA algorithm is O(E · K(2O)2), where E is the
number of iterations. After the approximate set is obtained, the solution can be flexibly
selected according to the need.

6. Numerical Results and Discussion

In this section, we simulate the performance of the proposed single and multi-objective
QoAIS optimization scheme for AI training services in the 6G native AI wireless network.
Specifically, the number of APs is 5, and each AP can accept 2 different types of AI tasks.
There are three quality data levels, and the corresponding data size is [1, 2, 3] Gbit. The
computing capacity of each AP is randomly distributed in [0.5, 3] Gcycle/s. Each AP cache
has two or three types of AI models, and the set of AI models in all AP caches meets the
needs of all tasks. The SNR between two APs is randomly distributed in [20, 40] dB. The
bandwidth of each AP is 200 MHz and the number of sub-channels is 4.

For the parameter settings of the G-TSRA and NSG-TSRA algorithms, the population
size is 100. The number of iterations is 1000 for G-TSRA and 200 for NSG-TSRA. The
number of genes in each individual and the value range of each gene are set according to
the above network parameters. The crossover probability parameter is 2. The probability
of mutation is 0.1 for G-TSRA and 0.08 for NSG-TSRA.

Figure 3 shows the performance of G-TSRA as the α weight changes. α is randomly
distributed in [0.01, 1]. The algorithm converges around 250 iterations, and the delay and
accuracy performances are obtained. The delay gradually increases as the weights decrease
while the relative model performance decreases. This is because the weight belongs to the
delay, so the weight reduction means that the delay’s importance is gradually reduced
compared to the relative model performance. The algorithm will tend to optimize the
relative model performance. The figure shows that the performance changes drastically
when the weight value drops from 0.08 to 0.07, while the change between 1 and 0.6 is
relatively stable. Therefore, the performance does not change continuously and smoothly
with the weight value, so it is impossible to determine the required QoAIS by presetting
the weight value before the algorithm is executed.

1 0.6 0.08 0.07 0.06 0.04 0.01

Weight of Delay

0

10

20

30

40

50

60

70

80

90

D
e
la

y
(s

)

0

0.5

1

1.5

2

2.5

3

3.5

R
e
la

ti
v
e
 m

o
d
e
l 
p
e
rf

o
rm

a
n
c
e

Figure 3. Impact of the weight on the G-TSRA performance.
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Figure 4 shows the convergence of the proposed NSG-TSRA algorithm. Since the
proposed optimization problem is multi-objective, the output of each iteration is a set of
solutions. Thus, the convergence trend is shown by calculating the average delay and
the average relative model performance of the population, but each value is the sum of
the delay and relative model performance of the 10 tasks. At the initial population, both
latency and relative model performance are high. As the number of iterations increases,
the performances of the two optimization objectives gradually decrease in the fluctuations.
Due to exploration, the latency is minimized at 110 iterations at the cost of training accuracy.
Finally, the performance reaches convergence at 190 iterations.
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Figure 4. The convergence performances of different objectives.

In Figure 5, we investigate the performances of G-TSRA, NSG-TSRA, the multi-
objective evolutionary algorithm based on decomposition (MOEA/D) [29], and the greedy-
based scheme. The greedy-based scheme selects the training node for the AI task based
on the product of the computing performance of the node and the channel conditions
from this node to all other nodes. Moreover, the maximum selection numbers are set for
each training node, which can prevent a decline in performance due to the large number
of tasks selected for the same node. Figure 5 shows that the performance of the Pareto
solution of the NSG-TSRA-based scheme is better than that of the greedy-based scheme.
The performances of G-TSRA and MOEA/D are slightly worse compared to NSG-TSRA.

In Figure 6, we investigate the performances under different data sizes, which are
[0.5, 2.5], [1, 3], and [1.5, 3.5] Gbit. The delay in task completion increases with the data size,
but the accuracy of the trained model also increases. Since the value ranges of the data
sizes partially overlap, the data sizes are similar under some specific data quality selections.
Therefore, the different curves will partially overlap.
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Figure 5. The performances of different algorithms.
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Figure 6. The performances under different data sizes.

In Figure 7, we investigate the performances under different bandwidths, which are
150, 200, and 300 MHz. With the same relative model performance, the task completion
time decreases as the bandwidth of the AP increases. Since the bandwidth mainly affects
the transmission rate, even if the transmission delay has an impact on the selection of
APs, the impact on the performance of the final relative model is still limited. Under the
parameter settings of different bandwidths, there is no overlapping part of the Pareto
solution sets.
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In Figure 8, we investigate the performances under different numbers of APs, which
are 4, 5, and 6. The computing resources and channel conditions of APs are generated
randomly, with the average AP computing resources and channel gain gradually decreasing.
With the same relative model performance, the task completion time increases with the
number of APs. The analysis is as follows: as the number of APs increases, the resources in
the network increase. However, the number of requests also increases, and the decline in
average resources caused by random generation in the simulation leads to a decrease in
overall performance.
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Figure 8. The performances under different AP numbers.

Based on the above analysis, the multi-objective QoAIS optimization scheme performs
better than the single-objective optimization scheme. It can output an unbiased solution set
that is more suitable for the QoAIS guarantee in 6G native AI wireless networks.
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7. Conclusions

This paper proposes a QoAIS optimization method for AI training services in 6G
native AI wireless networks. To improve the accuracy of AI models and reduce task latency,
we formulated a single-objective integer programming problem to obtain reasonable task
scheduling and resource allocation decisions. Further, to better meet the requirements
of various indicators of the QoAIS, we transformed the problem into a multi-objective
format, facilitating the configuration of network protocols. We proposed G-TSRA and
NSG-TSRA heuristic algorithms to solve the above problems, and performed simulations
to demonstrate the feasibility of multi-dimensional QoAIS optimization.

In the future, we will consider more QoAIS dimensions, such as the privacy and
security of AI services, to achieve comprehensive QoAIS optimization. In addition, the
overhead of AI model scheduling and decision-making are key factors affecting system
performance and will be considered in future work.
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