
Citation: Wu, G.; Wei, J.; Wang, S.;

Wei, G.; Li, B. A 34.7 µW Speech

Keyword Spotting IC Based on

Subband Energy Feature Extraction.

Electronics 2023, 12, 3287. https://

doi.org/10.3390/electronics12153287

Academic Editors: Spyridon

Nikolaidis and Ronald Tetzlaff

Received: 30 June 2023

Revised: 21 July 2023

Accepted: 24 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A 34.7 µW Speech Keyword Spotting IC Based on Subband
Energy Feature Extraction
Gexuan Wu, Jianlong Wei, Shuai Wang, Guangshun Wei and Bing Li *

State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University,
Shenzhen 518060, China
* Correspondence: bli@szu.edu.cn; Tel.: +86-755-26536198

Abstract: In the era of the Internet of Things (IoT), voice control has enhanced human–machine
interaction and the accuracy of keyword spotting (KWS) algorithms has reached 97%; however,
the high power consumption of KWS algorithms caused by their huge computing and storage
requirements has limited their application in Artificial Intelligence of Things (AIoT) devices. In
this study, voice features are extracted by utilizing the fast discrete cosine transform (FDCT) for
frequency-domain transformation and to shorten the process of calculating the logarithmic spectrum
and cepstrum. The designed KWS system is a two-stage wake-up system, with a sound detection
(SD) awakening KWS. The inference process of the KWS network is achieved using time-division
computation, reducing the KWS clock to an ultra-low frequency of 24 kHz.At the same time, the
implementation of a depthwise separable convolution neural network (DSCNN) greatly reduces the
parameter quantity and computation. Under the GSMC 0.11 µm technology, post-layout simulation
results show that the total synthesized area of the entire system circuit is 0.58 mm2, the power
consumption is 34.7 µW, and the F1-score of the KWS is 0.89 with 10 dB noise, which makes it suitable
as a KWS system in AIoT devices.

Keywords: deep learning; feature extraction; keyword spotting; low-power circuit

1. Introduction

In the era of the IoT, efficient interaction between humans and IoT devices has become
one of the research hotspots in recent years. Intelligent voice control, as a natural and con-
venient method of human–machine interaction, is extensively used in consumer electronic
products. In the past decade, the application of KWS in intelligent terminals has greatly
promoted research on KWS algorithms, among which the accuracy rate of KWS algorithms
based on deep learning has reached about 97% [1–3], but they are not suitable for AIoT
devices due to their large demand for computing and storage resources.

Power consumption is a significant bottleneck for AIoT devices. Battery capacity
is limited in many small IoT devices and sensors. Voice control uses a cascade control
method to wake up the control modules in stages and satisfy the power consumption
restrictions of small IoT devices and sensors. Cascade control primarily includes SD to
detect sound presence or absence and KWS to determine whether the keywords within the
speech segment match. As an entry point for voice control, the SD module must maintain
an “Always On” state to trigger subsequent voice control functionalities. Therefore, it must
satisfy the requirements of extremely low operating power consumption and ultra-low
silent power consumption in silent environments, which prolongs the device’s battery life.

Numerous researchers have explored low-power KWS circuits. Approaches like fixed-
point quantization compression of the detection algorithm and ultra-low-power design
with a low-voltage threshold have been used, among others. A KWS system circuit was
custom-designed based on a fixed-point neural network [4], which achieved a recognition
circuit for ten keywords with 200 kB network parameters at 5-bit precision, with a high

Electronics 2023, 12, 3287. https://doi.org/10.3390/electronics12153287 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153287
https://doi.org/10.3390/electronics12153287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12153287
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153287?type=check_update&version=1

Electronics 2023, 12, 3287 2 of 17

system power consumption of 3.33 mW. A fixed-point neural network was used to develop
a reconfigurable KWS circuit [5] with a large size of 730 kB SRAM; the power consumption
of the circuit in the task of recognizing 11 keywords was 172 µW. A KWS circuit was
studied based on binary-weighted convolutional networks with power consumption within
100 µW [6,7]. However, the KWS system is an “Always On” primary module, which will still
cause higher system standby power consumption in practical applications. In a 10 dB signal-
to-noise ratio (SNR) environment, although the power consumption of [7] is optimized to
15.1 µW, the recognition accuracy rate dropped by approximately 8% compared with [6].
A two-stage structure of SD and KWS was used to implement a KWS chip [8], with an area
of 2.56 mm2, using 32 kB of on-chip storage and power consumption of 10.6 µW at a voltage
of 0.6 V. However, the feature extraction (FEx) process is relatively complex. Furthermore,
a low-voltage-threshold design method was used to design an ultra-low-power KWS chip
with only 510 nW in a 28 nm process [9]. However, this chip can only recognize one to two
keywords and cannot meet the command requirements of daily life schemes. At the same
time, there have been many attempts by researchers to perform FEx in the analog domain
to achieve low power consumption. However, due to less information being contained
in the features captured in the analog domain, many schemes only achieve voice activity
detection; that is, only they identify speech or non-speech, but cannot realize KWS [10–12].
A KWS circuit using a ring-oscillator-based time-domain processing technique for its analog
FEx was proposed with an area of 2.03 mm2 and power consumption of 23 µW, including
analog FEx and digital neural network classifier [13]. The system successfully realizes
the low-power implementation of KWS by using the features extracted from the analog
domain, but the lack of an SD module to judge the presence of sound may lead to the waste
of power consumption in a silent environment.

Some of these studies used Mel-frequency cepstrum coefficient (MFCC) features as
voice features, which required complex calculations such as fast Fourier transform (FFT),
Mel filtering, logarithmic spectrum calculation, and cepstrum, which consumed significant
logic resources and power during feature extraction. Traditional FEx algorithms use FFT to
convert time-domain audio signals to frequency-domain representation. The sound signal
is a real signal, and the conjugative symmetry of FFT results in half of the data redundancy
when using FFT for time-frequency conversion, and the butterfly operation of FFT requires
complex multiplication. The complex multiplier faces severe challenges in low-power
hardware logic implementation.

This study proposes the use of the FDCT for frequency-domain transformation and to
reduce the process of calculating the logarithmic spectrum and cepstrum to extract voice
features. All multiplication operations are real-number operations, reducing hardware
costs. Based on the extracted voice features, KWS is implemented using a 4-bit fixed-
point DSCNN and reduces the clock frequency of the neural network module to 24 kHz
through time-sharing calculations, reducing the computing memory of the neural network
computation unit from 10.7 kB to 2.75 kB.

The rest of the paper is organized as follows: Section 2 introduces the proposed voice
control algorithm, including SD, FEx, and KWS. Hardware implementation is discussed
in Section 3. The behavioral simulations of the algorithm are presented in Section 4. Post-
layout simulation results and the performance comparison are presented in Section 5.
Finally, the paper is concluded in Section 6.

2. Algorithm
2.1. Sound Detection

As the “Always On” component of the system, the SD module must be designed with
minimal computational requirements and extremely low power consumption. The SD
module is algorithmically simple, using the short-term average amplitude feature, which
requires minimal computation, to achieve ultra-low power consumption in a silent environ-
ment. The accumulated sum is processed through averaging, as depicted in Equation (1),
to avoid excessively large values. Given the 32 ms frame length and 16 ms frame shift,

Electronics 2023, 12, 3287 3 of 17

coupled with rectangular window framing, extracting the short-term average amplitude
feature requires only 512 addition operations and a single division operation.

M̄n =

(
511

∑
m=0
|xn(m)|

)
/512 (1)

Because the divisor 512 is equivalent to 29, the division logic can be implemented by
shifting nine places to the right. Because the frameshift is precisely half the frame length,
the hardware implementation can reduce the computational load of the SD module by half
by reusing the calculation results from the frameshift section, ensuring ultra-low power
consumption. Finally, the calculated feature value M̄n is compared with a preset threshold
Mth, if M̄n > Mth, the FEx module is activated; otherwise, it remains idle.

2.2. Feature Extraction

In the FEx module, the frame length is 32 ms, and the frameshift is 16 ms. The typical
computation of MFCC requires several complex calculations, such as FFT, Mel filtering,
logarithm computation, and discrete cosine transform (DCT) transformation. Hence, this
study proposes a sub-band energy feature based on the DCT transform calculations and
a Mel-filterbank. DCT transformation is a real-number operation. If we use the fast
butterfly algorithm, as depicted in Figure 1, the multiplication computational complexity is
(Nlog2N)/2, which is consistent with the computational complexity of FFT [14]. However,
FFT transformation is a complex-number operation, and complex multipliers are unfriendly
in hardware implementation. Typically, one complex multiplier requires four real-number
multipliers to implement, as depicted in Equation (2).

z = (a + jb)× (c + jd) = (ac− bd) + j(ad + bc) (2)

 -1

2cos(7 /16)

2cos(5 /16)

2cos(3 /16)

2cos(/16)

2cos(3 /8)

2cos(/8)

2cos(3 /8)

2cos(/8)

cos(/4)

0.5

cos(/4)

cos(/4)

0.5

cos(/4)

0.5

x0

x1

x2

x3

x4

x5

x6

x7

 -1

 -1

 -1

 -1

 -1

 -1

 -1

-1

 -1

 -1

 -1

X0

X1

X2

X3

X4

X5

X6

X7

-1

 -1

 -1

 -1

 -1

-1

 -1

2cos(7 /16)

2cos(5 /16)

2cos(3 /16)

2cos(/16)

2cos(3 /8)

2cos(/8)

2cos(3 /8)

2cos(/8)

cos(/4)

0.5

cos(/4)

cos(/4)

0.5

cos(/4)

0.5

x0

x1

x2

x3

x4

x5

x6

x7

 -1

 -1

 -1

 -1

 -1

 -1

 -1

-1

 -1

 -1

 -1

X0

X1

X2

X3

X4

X5

X6

X7

-1

 -1

 -1

 -1

 -1

-1

Figure 1. Schematic of 8-point DCT fast butterfly algorithm.

After the DCT transformation, the time-domain audio signal is transformed into a
frequency-domain signal. Then, the Mel-filterbank will filter the transformed frequency-
domain signal. In the calculation stage of the Mel-filterbank, only the high 4-bit of the
transformed spectrum is used in conjunction with the Mel-filterbank coefficient weights
to reduce the computational power consumption of this module. Figure 2 illustrates the
Mel-filterbank coefficients. The computational expression for the Mel-filterbank portion is
depicted in Equation (3).

m(l) =
N−1

∑
k=0

melparal(k)•|X(k)|, l = 0, 1, . . . , 31 (3)

where l represents the channel number of the filterbank, N is the number of sequences
used by the DCT transformation, 512, k is the frequency point after the transformation,

Electronics 2023, 12, 3287 4 of 17

melparal(k) is the coefficient weight of the Mel-filterbank channel, X(k) is the frequency-
domain value after the DCT, and m(l) is the speech feature data used by the KWS. Each
frame of speech, after feature extraction, results in 32 feature values. Figure 3 is a feature
spectrum consisting of sub-band energy feature values of 32 frames of speech.

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ilt
e

r
w

e
ig

h
t

Figure 2. Mel-filterbank coefficients.

Frame

C
h

a
n

n
e

l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

10

5

20

15

30

25

Figure 3. Speech feature spectrum.

Table 1 compares the computational quantity of sub-band energy features under
512 sample points and 32 Mel-filterbanks with the computational quantity of MFCC pa-
rameters. Based on the preceding analysis and Table 1, the MFCC parameter computation
requires at least 10,324 (1108 + 9216) real-number multiplication operations and 257 loga-
rithm computations, significantly more than the computational quantity required for FEx
in this study.

Electronics 2023, 12, 3287 5 of 17

Table 1. Comparison of feature computation.

This Study MFCC

Real-number multiplication 3328 1108
Complex-number multiplication 0 2304 *

Logarithm computation 0 257

* equal to 9216 real-number multiplication operations.

2.3. Keyword Spotting

The KWS module uses a DSCNN, an advanced variant of the traditional convolutional
neural network (CNN). This DSCNN demonstrates substantial reductions in parameter
volume and computational load compared with standard CNNs, deep neural networks
(DNNs), and long short-term memory (LSTM) networks, with these reductions becoming
particularly noticeable as more attributes are extracted. These reductions in computa-
tional and parameter demands can contribute to minimized memory usage and power
consumption during the implementation stage in logic circuits.

The structure of the neural network used in the KWS module is illustrated in Figure 4.
The initial layer is a conventional convolution layer, succeeded by three depthwise separable
convolution (DSC) layers, culminating in a fully connected output layer. The convolution
kernel of the first layer is 4 × 4 × 1, with a stride of 2 and 32 convolution kernels. Each of
the three intermediate DSC convolution layers uses a 3 × 3 × 32 depthwise convolution
kernel, a 1 × 1 × 32 pointwise convolution kernel, and a stride of 2. The Rectified Linear
Unit (ReLU) function serves as the activation function.

2 2

32

32

1
CONV

32

15

15

DSC1 DSC2 DSC3 FC

1

32

32
32 11

7

7 3

3
1

1

1

4

1 depthwise

kernel

32

1
1

3

3

32

+

4

32 regular convolution

kernels

4

1
32

13

3 1

32

+

32

1
1

3

3

32

+

22

32 pointwise

kernels
+

kernel kernels

1 depthwise + 32 pointwise 1 depthwise

kernel
+ 32 pointwise

kernels

Figure 4. KWS neural network, different colored boxes represent different stages of the operation.

Figure 5 visually represents the computation process of the first DSC layer within
the KWS neural network. As depicted, the DSC layer comprises a depthwise convolution
layer and a pointwise convolution layer, featuring a collective total of 1345 parameters.
A regular convolution layer of the same scale as in Figure 5 is depicted in Figure 6, with a
parameter count of 9248. A comparison of these figures reveals that the DSC convolution
layer possesses a significantly lower parameter count than a standard convolution layer.

Electronics 2023, 12, 3287 6 of 17

2
2

3
3

32

15

15

32

7

7

32

1 depthwise
kernel

7

7

32

Depthwise

convolution

Pointwise

convolution

3

32

1
1

2
2

32 pointwise
kernels

Figure 5. DSC convolution layer calculation diagram, different colored boxes represent different
stages of the operation.

3
3

32

15

15

32

7

7

32

32 regular convolution

kernels

CONV

3
3

32

15

15

32

7

7

32

32 regular convolution

kernels

CONV

Figure 6. Conventional convolution layer calculation diagram.

All network parameters are set at 4-bit width, with all inputs and features of the
intermediate layer maintained at 8-bit width, to reduce power usage during the KWS
network’s inference phase. The fixed-point quantization method mainly refers to the
open-source code Qkeras on GitHub [15]. Table 2 compares DSCNN and CNN resources
under this study’s design scale constraints. The data demonstrate that the DSCNN’s total
parameter count amounts to 5035, with a total computational volume of 142,560. The overall
parameter count in a CNN of an identical network scale is 28,651, with a computational
volume of 608,896. Concerning a standard CNN, the DSCNN achieves an 82.43% reduction
in parameter volume and a 76.59% decrease in computational multiplication volume.
Consequently, using DSCNN instead of CNN can enable substantial savings in terms
of SRAM resources and computation volume per inference, thus optimizing the power
consumption of the KWS inference segment at a system algorithm level.

Table 2. Comparison of DSCNN and CNN resources.

Parameter Quantity Multiplication Operation

CNN 28,651 608,896
DSCNN 5035 142,560

Electronics 2023, 12, 3287 7 of 17

3. Implementation Consideration
3.1. Top-Level System Architecture

Figure 7 displays the top-level framework of the system circuit. When the SD module
does not detect any sound, meaning the sound signal is not flipped, the downstream
modules are all in a waiting-to-be-triggered state. The trigger signal pulse is generated by
the enable signal control module and is then sent to each submodule to trigger its operation.
The done signal from all function modules is sent to the enable signal control module to
generate the trigger signal for the next level module.

For a low-power implementation of the system circuit, we have divided the entire
system circuit into three clock domains based on the computational complexity of each
algorithm. The SD module operates under a 16 kHz clock, the voice FEx module operates
under a 275 kHz clock, and the KWS neural network and neural network computing unit
operate under a 24 kHz clock.

Synchronous

reset module

APB SLAVE

module

I2S module

I2C module

SD module

Enable signal control unit

Speech feature

extraction module

KWS neural

network module

Neural network

computing unit

APB bus

lrclk

bclk

i2s_sda

i2c_sda

i2c_scl

rst_n

sys_clka

sys_clkb

soundFEx_trFEx_done kws_done kws_tr

enable

irq

Synchronous

reset module

APB SLAVE

module

I2S module

I2C module

SD module

Enable signal control unit

Speech feature

extraction module

KWS neural

network module

Neural network

computing unit

APB bus

lrclk

bclk

i2s_sda

i2c_sda

i2c_scl

rst_n

sys_clka

sys_clkb

soundFEx_trFEx_done kws_done kws_tr

enable

irq

Figure 7. System top-level architecture.

3.2. Sound Detection

Figure 8 is the circuit schematic of the SD module, which only has two adders, two
20-bit registers, three 2-to-1 multiplexers, and a 1-to-2 demultiplexer. The operations
involve only abs, addition, selection, bit shifting, and comparison logic.

Because the I2S audio data are in binary complement format, with positive and nega-
tive values, the absolute value must be taken before calculating the short-term amplitude.
The frameshift designed in this study is 16 ms, which is precisely half of the frame length
of 32 ms, so, for each half frame, 256 samples can be accumulated and stored in the register.
Accordingly, calculating the short-term average amplitude for each frame can reuse the
accumulated result of the frameshift part, reducing the total number of samples added up
by the computation from 512 to 256, saving 50% of the computation cost. Dividing by 512
can be achieved by shifting right by 9 bits, avoiding the need for complex division logic.
Finally, the short-term average amplitude M̄n obtained after the shift is compared with
the preset threshold Mth. If M̄n > Mth, it is deduced that there is a sound activity in the
current environment, and the generated sound signal is sent to the enable control unit and
APB SLAVE for the next level of processing.

Electronics 2023, 12, 3287 8 of 17

I2S
12b

REG

REG

|x|

0

0

lrclk

bclk
i2s_sda

> Eth

sound
>>9I2S

12b

REG

REG

|x|

0

0

lrclk

bclk
i2s_sda

> Eth

sound
>>9

Figure 8. SD circuit schematic.

3.3. Feature Extraction

The structure of the FEx module is depicted in Figure 9. This module principally com-
prises the FDCT unit, DCT memory, Mel-filterbank unit, and feature memory. The FDCT
component performs the computation for the DCT, facilitating the conversion of time-
domain audio signals into the frequency domain. The Mel-filterbank unit executes Mel
filtering calculations to extract the final audio features. The DCT memory stores the FDCT’s
intermediate data, whereas the feature memory stores the final feature values, i.e., the
results from the Mel-filterbank calculations.

I2S
12b

lrclk
bclk

i2s_sda

DCT Memory0

512X16b

dpsram

DCT Memory1

FDCT

Cos_coef Memory

Mel Filter

Mel Weight Memory

0

Feature Memory

Audio Buffer 0

256X12b

dpsram

Audio Buffer 1

Audio Buffer 2

Audio Buffer 0

256X12b

dpsram

Audio Buffer 1

Audio Buffer 2

x2

x1

I2C

i2c_scl

i2c_sda

A

B

I2S
12b

lrclk
bclk

i2s_sda

DCT Memory0

512X16b

dpsram

DCT Memory1

FDCT

Cos_coef Memory

Mel Filter

Mel Weight Memory

0

Feature Memory

Audio Buffer 0

256X12b

dpsram

Audio Buffer 1

Audio Buffer 2

x2

x1

I2C

i2c_scl

i2c_sda

A

B

Figure 9. Schematic of FEx module.

3.3.1. Implementation of FDCT

In each cycle, the FDCT retrieves two pieces of data necessary for butterfly compu-
tations from either the Audio Buffer or DCT memory, and then writes them back to DCT
memory post computation. As the FDCT module performs transformations on datasets
with a length of 512 in each instance, a total of 16 computational layers are needed for the
entire transformation according to the optimized rapid algorithm discussed in this study,
with butterfly operations constituting the first nine layers.

The circuit for the butterfly operation unit is demonstrated in Figure 10. Both x1
and x2 are 12-bit numbers, and cos_coef is an 8-bit number. The results of the butterfly
computations must undergo left-shift and right-shift operations to maintain consistency
in the data formats for y1 and y2. As each layer’s y_values are written into the DCT
memory, the maximum y_value (y_max) for the current layer must be stored in the register.
The y_max value guides the saturation or truncation processing before the following layer
retrieves values from the memory for computation. This ensures the input operands for the
butterfly operation unit consistently maintain a 12-bit width, preventing data distortion
and overflow that could occur following multiple stages of computation.

Electronics 2023, 12, 3287 9 of 17

<<<

>>>

12b

12b

8b

x1

x2

cos coef

16

16

y1

y2

<<<

>>>

12b

12b

8b

x1

x2

cos coef

16

16

y1

y2

Figure 10. Circuit of the butterfly operation unit.

3.3.2. Implementation of Mel-Filterbank

Post-DCT, the frequency-domain points derived from time-domain audio data must
undergo filtration processing via the Mel-filterbank. This study uses triangular Mel filters,
with a group of 32 such filters forming the Mel-filterbank, as depicted by the coefficient
curve in Figure 2. Some overlap of non-zero coefficients occurs between two neighboring
filters, but no overlap is observed between the k − 1-th and k + 1-th filters adjacent to
the k-th filter. Based on these non-zero coefficient features of the Mel-filterbank, this
study proposes an optimized storage method for the entire coefficient matrix, as depicted
in Figure 11. The storage matrix measures 512 × 10 bits, with each address precisely
corresponding to a frequency point post-DCT transformation.

In this case, Wk,m denotes the m-th non-zero coefficient of the k-th filter. A 1-bit flag
precedes each coefficient to differentiate between various filter channels in the storage ma-
trix. The upper 5 bits of data represent the coefficients and their corresponding flags of the
even-numbered filters, while the lower 5 bits represent the coefficients and corresponding
flags of the odd-numbered filters. Taking the upper 5 bits of the coefficient storage matrix
as an example, W0,m is the first non-zero coefficient of the first filter, numbered 0. When the
flag preceding W0,m switches from 0 to 1, it signifies that the filter coefficient corresponding
to flag 1 is from the second filter, numbered 2. When 1 switches back to 0, the corresponding
coefficient then belongs to the fourth filter, numbered 4. Before optimization, the storage
space needed for the coefficient matrix was 8 kB. However, in storing the coefficient matrix
according to the format illustrated in Figure 11, the storage requirement is reduced to
512 × 10 bits, namely 640 B, which reduces the storage space by about 92% compared with
before optimization. Furthermore, the flag for the filter number in this study only requires
2 bits, a 60% reduction compared with Giraldo’s 5-bit [8]. Furthermore, this method of
coefficient storage significantly facilitates the design of the Mel-filterbank computation
circuit, reducing the expenditure of logic resources in the circuitry.

W0,0

W0,1

W0,2

W0,3

W2,0

W2,1

W2,n

W2,n+1

W4,0

W4,1

0

W1,0

W1,1

W1,2

W1,n

W1,n+1

W3,0

W3,1

W3,n

W3,n+1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

W0,0

W0,1

W0,2

W0,3

W2,0

W2,1

W2,n

W2,n+1

W4,0

W4,1

0

W1,0

W1,1

W1,2

W1,n

W1,n+1

W3,0

W3,1

W3,n

W3,n+1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

W0,0

W0,1

W0,2

W0,3

W2,0

W2,1

W2,n

W2,n+1

W4,0

W4,1

0

W1,0

W1,1

W1,2

W1,n

W1,n+1

W3,0

W3,1

W3,n

W3,n+1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

Figure 11. Format for storing Mel-filterbank coefficients.

Figure 12 illustrates the Mel-filterbank computation unit circuit. The 1-bit flag in
Figure 11 controls the start and termination of accumulation and resets the accumulation
register. After data accumulation for each channel, the flag writes the accumulated value
(the feature value) into the feature memory.

Electronics 2023, 12, 3287 10 of 17

REG

REG

Mel Weight Memory

[3:0]

[8:5]

Feature Memory

Edge

Detection

Edge

Detection

clear

clear

[4]

[9]

DCT Memory

REG

REG

Mel Weight Memory

[3:0]

[8:5]

Feature Memory

Edge

Detection

Edge

Detection

clear

clear

[4]

[9]

DCT Memory

Figure 12. Circuit of the Mel-filterbank computation unit.

3.4. Neural Network Engine

The KWS chip proposed in this study encompasses three neural network frameworks:
conventional convolution layers, DSC layers, and fully-connected layers. The DSC layer
comprises a depthwise convolution layer, and a pointwise convolution layer. The neural
network engine is divided into a network control module and a neural network computa-
tion unit. The network control module generates the data addresses and control signals
during the neural network computation. It fetches the corresponding data from memory
according to the address signals and sends them to the neural network computation unit
for inference calculation. As depicted in Figure 13, the neural network computation unit
primarily consists of 32 multiply–accumulate (MAC) logic units, a ReLU activation function
logic, a quantization function logic, and compute memory. The compute memory comprises
256-bit-width SRAM, where one address can store 32 8-bit data pieces. The neural network
computation unit can calculate up to 32 data groups simultaneously, with network param-
eters being 4 bits and feature values 8 bits. The 32 MAC computation units significantly
accelerate neural network computation while maintaining an ultra-low clock frequency
of 24 kHz. Post MAC, the multi-path design endows the Neural Network Computational
Unit with considerable flexibility, enabling it to expedite the computations of three neural
network frameworks.

KWS neural network

module

NN Para

Memory

Compute

Memory

Feature Memory

[3:0]

[7:4]

[7:0]

[15:8]

[123:120]

[247:240]

[127:124]

[255:248]

Output

Buffer

A
d

d
e

r T
re

e

MAC0

MAC1

MAC30

MAC31

ctrl_signal

ReLU

Input

Buffer

ReLU

Quantization

ReLU

Quantization

KWS neural network

module

NN Para

Memory

Compute

Memory

Feature Memory

[3:0]

[7:4]

[7:0]

[15:8]

[123:120]

[247:240]

[127:124]

[255:248]

Output

Buffer

A
d

d
e

r T
re

e

MAC0

MAC1

MAC30

MAC31

ctrl_signal

ReLU

Input

Buffer

ReLU

Quantization

ReLU

Quantization

ReLU

Quantization

ReLU

Quantization

ReLU

Quantization

ReLU

Quantization

ReLU

Quantization

Figure 13. Neural network computation unit.

Electronics 2023, 12, 3287 11 of 17

Figure 14 illustrates the calculation of the first conventional convolution layer in the
KWS neural network, while Figure 15 illustrates the calculation of the DSC layer in the
KWS neural network. The KWS neural network adopts time-division computation to
lower the clock frequency of the convolution neural network computation unit and reduce
the computation memory. Given the ordered mapping between the neuron data of the
previous and following layers in the DSCNN network structure, and the real-time collection
characteristic of audio data, each convolution layer is assigned a computation window,
the height of which corresponds to the convolution kernel height.

Calculation window

CONV

32

32

1

32

15

15

32 ordinary

convolution kernels

4

4

1

4

1

4

4

1

4

4

1

x11

w11

weight

In
p
u

t B
u
ffe

r

w11 w11 w11

Multiply-

add array

ReLU

array

x11

x11

x11

x12

x12

x12

w12 w12 w12

kernel1 kernel2 kernel32

Compute

Memory

Calculation window

CONV

32

32

1

32

15

15

32 ordinary

convolution kernels

4

4

1

x11

w11

weight

In
p
u

t B
u
ffe

r

w11 w11 w11

Multiply-

add array

ReLU

array

x11

x11

x11

x12

x12

x12

w12 w12 w12

kernel1 kernel2 kernel32

Compute

Memory

4

Figure 14. Schematic of KWS conventional convolution layer computation.

3

3

32

3

3

32

Calculation window

15

15

32

Calculation window

15

15

32

Calculation window

7

7

32

Calculation window

7

7

32

1 depthwise kernel

7

7

32

Depthwise

convolution
Pointwise

convolution

32

1

1

32

1

1

32

1

1

weight

Multiply-add

array
Quantization

array
Compute

Memory

weight

Multiply-add

array
Quantization

array
Compute

Memory

weight

Multiply-add

array
ReLU

Output

Buffer

weight

Multiply-add

array
ReLU

Output

Buffer

32 pointwise Kernels

Compute

Memory

kernel1

kernel2

3

3

32

Calculation window

15

15

32

Calculation window

7

7

32

1 depthwise kernel

7

7

32

Depthwise

convolution
Pointwise

convolution

32

1

1

weight

Multiply-add

array
Quantization

array
Compute

Memory

weight

Multiply-add

array
ReLU

Output

Buffer

32 pointwise Kernels

Compute

Memory

kernel1

kernel2

1

3

Figure 15. Schematic of KWS DSC layer computation.

Because both conventional and depthwise convolutions have a stride of 2, the com-
putation window must only shift down by two units after each calculation. Therefore,
after the first and second frames, the first convolution layer must compute every two
frames, the second and third convolution layers compute every four frames, the fourth and
fifth convolution layers compute every eight frames, the sixth and seventh convolution

Electronics 2023, 12, 3287 12 of 17

layers compute every 16 frames, and the output layer only computes once. Accordingly,
the computation load of the KWS neural network is dispersed throughout 32 frames,
reducing the working clock of the neural network module to an ultra-low frequency of
24 kHz and ensuring the low-power logic implementation of the module. Based on the
characteristic of time-division computation, the compute memory must only store the data
volume corresponding to the computation window. Thus, the capacity of the compute
memory of the neural network computation unit only requires 2.75 kB, a reduction of 74.3%
of the storage resource expenditure compared with the 10.7 kB of memory required for
regular convolution computation.

4. Behavioral Simulation Results of the Proposed Algorithm

The training dataset for KWS consists of commonly used command words in the IoT
from the Google Speech Command Dataset (GSCD) and other non-keywords that were
randomly selected [16]. The ten classes of command keywords are sequentially numbered
from 0–9, with an average of 1500 audio files per command keyword class and 4000 audio
files for non-keywords. A real-world environment was simulated by subjecting selected
audio files to noise0addition processing at a standard SNR of 10 dB, overlaying three
different noise types. The noise data came from the DEMAND dataset [17]. During the
KWS neural network training, the audio data were randomly split into test and training
sets at a ratio of 3:7.

The KWS algorithm trained in this study is a 10-keyword detection neural network.
These 10 keywords are “down”, “up”, “stop”, “go”, “left”, “right”, “no”, “yes”, “on”,
and “off”, each having a decimal encoding in hardware implementation from “0” to “9”.
Moreover, there is an output for non-keywords, encoded as “10”. The neural network can
be trained on any set of keywords and the trained parameters are used in the inference of
the neural network, hence the system can be configured to recognize any set of keywords.
This study conducts joint debugging of all modules and chooses an audio test stimulus
composed of “down”, “stop”, and “Marvin” that lasts for 3 s for testing and verification to
intuitively demonstrate whether the function of the entire system is correct, as depicted in
Figure 16. The first two words, “down” and “stop”, are speech under 10 dB of white noise,
while “Marvin” is speech under 0 dB of white noise. The red box in Figure 16 represents
the detection results of the SD algorithm. The bar within the box indicates the part where
the audio exceeds the threshold, where SD determines there is sound. SD in Figure 16 has
one frame of data below the threshold at “1” and noise misjudgment at “2” and “3”. At
this time, the SD threshold register data are configured to 0x4A.

Figure 17 is the simulation waveform of the system circuit after inputting the same
audio stimulus. As shown in the simulation waveform in Figure 17, KWS started three
times, corresponding to the three keywords in the audio. The encoding of “down” is “0”,
“stop” is “2”, and “Marvin” is not one of the preset keywords, with a decimal encoding
of “10”. The “kwd num” of the detection system is the detection result. The encoding of
the keyword determined the first time is “0”, the second time is “2”, and the third time is
“a”, which is the hexadecimal representation of “10”, which is consistent with the encoding
“0”, “2”, “10” of the three keywords in the audio test stimulus. Based on this analysis,
the function of the keyword spotting system circuit in this study can correctly identify
different keywords and non-keywords.

Table 3 presents the test results of the KWS algorithm under different types of noise
at a 10 dB SNR. The fixed-point KWS algorithm performs optimally on the audio dataset
overlaid with 10 dB of office noise, with an average precision of keyword spotting of
91%, a recall rate of 87%, and an F1 score of 0.89. In a 10 dB SNR environment, the KWS
algorithm’s accuracy is consistently around 86%.

Electronics 2023, 12, 3287 13 of 17

Figure 16. Test audio waveform.

Figure 17. Simulation waveform of system circuit.

Table 3. Test results of the KWS algorithm.

10 dB White Noise 10 dB Metro Noise 10 dB Office Noise

Accuracy 0.86 0.85 0.88
Macro Precision 0.89 0.88 0.91

Macro Recall 0.85 0.84 0.87
Macro F1 0.87 0.86 0.89

5. Circuit Implementation and Performance Comparison
5.1. Circuit Implementation

The proposed algorithm was implemented in GSMC 0.11 µm CMOS technology using
a 1.2 V supply voltage for digital logic circuit unit and a 1.5 V supply voltage for SRAM.
The layout of the implemented chip, as depicted in Figure 18, has an overall area of
0.58 mm2, with SRAM occupying approximately 80% of that area. Figure 19 depicts the
distribution of the SRAM in the designed circuit, which altogether requires around 10.2 kB
of SRAM resources.

Electronics 2023, 12, 3287 14 of 17

Figure 18. Layout of proposed KWS system.

5%
6%

29%

11%

20%

2%

27%

Cos_coef Mem Mel Weight Mem NN Para Mem Audio Buffer

Dct Mem Feature Mem Compute Mem

Figure 19. Distribution of SRAM.

5.2. Power Performance

We simulated the power consumption under three process, voltage, and temperature
(PVT) conditions. The PVT information and power consumption simulation data are
presented in Tables 4 and 5, where the PVT 2 condition is a typical value. Based on Table 5,
the lowest average system power consumption in SD mode occurs under typical PVT
conditions, with a value of just 1.65 µW, where dynamic power consumption is the main
component, accounting for 91% of the total power consumption.

Table 4. PVT information.

Std Cell
Voltage (V)

SRAM
Voltage (V) Temperature (°C) Process

PVT 1 1.08 1.35 125 slow
PVT 2 1.2 1.5 25 typical
PVT 3 1.32 1.65 −40 fast

Figure 20 illustrates the system power consumption distribution under PVT2 condi-
tions in SD + KWS mode. From this, the FEx module has the highest power consumption in
the system, contributing to 85% of the total power consumption. Following this, the KWS
classifier part accounts for 8%, with the remaining modules contributing approximately
7% to the total power consumption. This power consumption distribution is reasonable
because the FEx module operates at the highest clock frequency and has the greatest com-
putational load, necessitating frequent memory read and write operations, leading to the
highest average power consumption for this module. Even though the computation load
of the KWS part is also substantial, its total computation time is 32 frames. Averaging
this over each frame shows that its computational load is much less than that of feature
extraction. Furthermore, the working clock frequency of the neural network module is only

Electronics 2023, 12, 3287 15 of 17

one-tenth that of the FEx module, thus confirming that the power consumption distribution
of the entire system circuit is reasonable.

Table 5. The results of power consumption simulation.

System Power
Consumption (µW) SD Mode SD + KWS Mode

PVT 1
Static power consumption 3.07 3.12

Dynamic power consumption 1.2 28
Total power consumption 4.27 31.12

PVT 2
Static power consumption 0.15 0.18

Dynamic power consumption 1.5 34.52
Total power consumption 1.65 34.7

PVT 3
Static power consumption 0.1 0.13

Dynamic power consumption 1.8 42.67
Total power consumption 1.9 42.8

 !"#"$%&$#'
(!()"$%&$('

 *!)#$%&$+"'

 !,-$%&$+'

./0. 12 3.4 5&1

Figure 20. System power consumption distribution.

5.3. Performance Comparison

Table 6 compares the KWS performance of this circuit with other works. The data used
in the analysis and comparison below are the power consumption data under the typical
PVT 2 condition. However, all the data in this study are post-layout-simulated, and the
data in other comparison articles are chip-measured.

Table 6. Performance comparison with other KWS systems.

This Study ISSCC JSSC JSSC TCAS-I JSSC
2017 [5] 2020 [8] 2021 [18] 2020 [7] 2022 [13]

Technology (nm) 110 65 65 65 22 65
Area (mm2) 0.58 13.17 2.56 4.13 0.6 2.03
Voltage (V) 1.2/1.5 0.6 0.6 1 0.6 0.5/0.75

On-chip
SRAM (kB) 10.2 730 32 38 11 27

Dataset GSCD WSJ GSCD GSCD GSCD GSCD
Classifier DSCNN DNN + HMM LSTM RAM CNN RNN

Number of
keywords 10 11 12 7 10 10

Recognition
accuracy 0.88@10 dB 0.96@N/A 0.90@N/A 0.90@N/A 0.84@10 dB 0.86@N/A

Latency 16 ms 10 ms 16 ms 40 µs 16 ms 12.4 ms
Frequency 275 kHz/24 kHz 3 MHz 250 kHz 1.9 MHz 250 kHz 250 kHz

Power (µW) 34.7 172 10.6 N/A 15.1 23

The 275 kHz and 24 kHz in Table 6 are the clock frequencies of the FEx module
and the neural network part. The supply voltages of the digital logic circuit unit and

Electronics 2023, 12, 3287 16 of 17

SRAM are 1.2 and 1.5 V, which are outdated and higher than other research. However,
because of the characteristics of DSCNN’s fewer parameters and smaller computation
amount, it still has a significant advantage in power consumption and area compared
with the literature [5]. Studies [7,8] use 22 nm and 65 nm technology, which are better
in terms of power consumption than this circuit. Under the same circuit performance,
the more advanced the process, the smaller the voltage, current, and corresponding power
consumption. The power consumption of a digital circuit is directly proportional to the
square of the working voltage, and the supply voltage of the process used in this study
is about twice that in the reference literature. Thus, the influence of voltage on power
consumption is four times higher. Although the power consumption in the literature [7]
is lower, it uses a binary weight convolutional network, so there is a significant loss in
KWS recognition performance, which is only 84%. This study uses a 4-bit fixed-point
DSCNN network with a smaller loss in recognition performance, with an accuracy of 88%
under a 10 dB SNR. The DSCNN network has significantly reduced parameter quantity
and computational load compared with DNN, LSTM, and CNN networks, so the on-chip
SRAM resources it uses are also smaller than in other studies.

6. Conclusions

In this study, we designed a low-power KWS chip based on deep learning. First,
optimization was performed on the system algorithm level for the KWS circuit, and a low-
precision fixed-point quantization FEx and detection algorithm was proposed. In feature
extraction, to avoid the complex multiplication operation of FFT, this study uses the
DCT for frequency-domain transformation and reduces the process of calculating the
logarithmic spectrum and cepstrum. The extracted audio features are further captured
and classified by the neural network. Optimization was performed at the system structure
level, and a two-level triggering system structure based on SD-KWS was proposed to
reduce the system’s average power consumption. In circuit implementation, the time-
sharing calculation method of the KWS neural network reduces the clock frequency of the
entire neural network module to 24 kHz and the compute memory of the neural network
computation unit from 10.7 kB to 2.75 kB.

Under the GSMC 0.11 µm technology, the total synthesized area of the entire system
circuit is 0.58 mm2, the power consumption under the system’s low-power work mode is
only 1.65 µW, and the average power consumption during keyword spotting is 34.7 µW.
Under an SNR of 10 dB, the F1-score of KWS is 0.89.

Author Contributions: Conceptualization, G.W. (Gexuan Wu); Software, G.W. (Gexuan Wu) and J.W.;
Formal analysis, S.W.; Data curation, G.W. (Guangshun Wei); Writing – original draft, J.W.; Writing –
review and editing, G.W. (Guangshun Wei) and B.L.; Visualization, S.W.; Project administration, B.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Shenzhen Science and Technology Development Funds under
Grant (JCYJ20190808115001775, ZDSYS20220527171402005) and the Guangdong Natural Science
Foundation of China (2023A1515011275).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, G.; Parada, C.; Heigold, G. Small-footprint keyword spotting using deep neural networks. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 4087–4091.
2. Shan, C.; Zhang, J.; Wang, Y.; Xie, L. Attention-based end-to-end models for small-footprint keyword spotting. In Proceedings of

the Interspeech 2018, Hyderabad, India, 2–6 September 2018.
3. Mittermaier, S.; Kurzinger, L.; Waschneck, B.; Rigoll, G. Small-footprint keyword spotting on raw audio data with Sinc-

Convolutions. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 7454–7458.

Electronics 2023, 12, 3287 17 of 17

4. Shah, M.; Wang, J.; Blaauw, D.; Sylvester, D.; Kim, H.-S.; Chakrabarti, C. A fixed-point neural network for keyword detection on
resource constrained hardware. IEEE Signal Process. Syst. 2015, 90, 727–741. [CrossRef]

5. Price, M.; Glass, J.; Chandrakasan, A. 14.4 A scalable speech recognizer with deep-neural-network acoustic models and voice-
activated power gating. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA,
USA, 5–9 February 2017; pp. 244–245.

6. Liu, B.; Wang, Z.; Fan, H.; Yang, J.; Liu, B.; Zhu, W.; Huang, L.; Gong, Y.; Ge, W.; Shi, L. EERA-KWS: A 163 TOPS/W always-on
keyword spotting accelerator in 28 nm CMOS using binary weight network and precision self-adaptive approximate computing.
IEEE Access 2019, 7, 82453–82465 . [CrossRef]

7. Liu, B.; Cai, H.; Wang, Z.; Sun, Y.; Shen, Z.; Zhu, W.; Li, Y.; Gong, Y.; Ge, W.; Yang, J.; et al. A 22 nm, 10.8 µW/15.1 µW dual
computing modes high power-performance-area efficiency domained background noise aware keyword-spotting processor. IEEE
Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4733–4746. [CrossRef]

8. Giraldo, J.; Lauwereins, S.; Badami, K.; Verhelst, M. Vocell: A 65-nm speech-triggered wake-up SoC for 10-µW keyword spotting
and speaker verification. IEEE J. Solid-State Circuits 2020, 55, 868–878. [CrossRef]

9. Shan, W.; Yang, M.; Xu, J.; Lu, Y.; Zhang, S.; Wang, T.; Yang, J.; Shi, L.; Seok, M. 14.1 A 510 nW 0.41 V low-memory low-computation
keyword-spotting chip using serial FFT-based MFCC and binarized depthwise separable convolutional neural network in 28 nm
CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 16–20 February
2020; pp. 230–232.

10. Faghani, M.; Rezaee-Dehsorkh, H.; Ravanshad, N.; Aminzadeh, H. Ultra-Low-Power Voice Activity Detection System Using
Level-Crossing Sampling. Electronics 2023, 12, 795. [CrossRef]

11. Gutierrez, E.; Perez, C.; Hernandez, F.; Hernandez, L. Time-Encoding-Based Ultra-Low Power Features Extraction Circuit for
Speech Recognition Tasks. Electronics 2020, 9, 418. [CrossRef]

12. Yang, M.; Yeh, C.; Zhou, Y.; Cerqueira, J.; Lazar, A.; Seok, M. A 1 µW Voice Activity Detector Using Analog Feature Extraction
and Digital Deep Neural Network. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San
Francisco, CA, USA, 11–15 February 2018; pp. 346–348.

13. Kim, K.; Gao, C.; Grac̨a, R.; Kiselev, I.; Yoo, H.-J.; Delbruck, T.; Liu, S.-C. A 23-µW Keyword Spotting IC with Ring-Oscillator-Based
Time-Domain Feature Extraction. IEEE J. Solid-State Circuits 2022, 57, 3298–3311. [CrossRef]

14. Wang, Z. Fast algorithms for the discrete W transform and for the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal
Process. 2003, 32, 803–816. [CrossRef]

15. A Quantization Deep Learning Library for Tensorflow Keras. Available online: https://github.com/google/qkeras (accessed on
18 July 2023).

16. Warden, P. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv 2018, arXiv:1804.03209.
17. Thiemann, J.; Ito, N.; Vincent, E. The diverse environments multi-channel acoustic noise database (DEMAND): A database of

multichannel environmental noise recordings. J. Acoust. Soc. Am. 2013, 133, 3591. [CrossRef]
18. Dbouk, H.; Gonugondla, S.; Sakr, C.; Shanbhag, N.R. A 0.44-µJ/dec, 39.9-µs/dec, recurrent attention in-memory processor for

keyword spotting. IEEE J. Solid-State Circuits 2021, 56, 2234–2244. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11265-016-1202-x
http://dx.doi.org/10.1109/ACCESS.2019.2924340
http://dx.doi.org/10.1109/TCSI.2020.2997913
http://dx.doi.org/10.1109/JSSC.2020.2968800
http://dx.doi.org/10.3390/electronics12040795
http://dx.doi.org/10.3390/electronics9030418
http://dx.doi.org/10.1109/JSSC.2022.3195610
http://dx.doi.org/10.1109/TASSP.1984.1164399
https://github.com/google/qkeras
http://dx.doi.org/10.1121/1.4806631
http://dx.doi.org/10.1109/JSSC.2020.3029586

	Introduction
	Algorithm
	Sound Detection
	Feature Extraction
	Keyword Spotting

	Implementation Consideration
	Top-Level System Architecture
	Sound Detection
	Feature Extraction
	Implementation of FDCT
	Implementation of Mel-Filterbank

	Neural Network Engine

	Behavioral Simulation Results of the Proposed Algorithm
	Circuit Implementation and Performance Comparison
	Circuit Implementation
	Power Performance
	Performance Comparison

	Conclusions
	References

