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Abstract: Rotated object detection is a challenging task due to the difficulties of locating the
rotated objects and separating them effectively from the background. For rotated object prediction,
researchers have explored numerous regression-based and classification-based approaches to
predict a rotation angle. However, both paradigms are constrained by some flaws that make it
difficult to accurately predict angles, such as multi-solution and boundary issues, which limits the
performance upper bound of detectors. To address these issues, we propose a circular Gaussian
distribution (CGD)-based method for angular prediction. We convert the labeled angle into a
discrete circular Gaussian distribution spanning a single minimal positive period, and let the
model predict the distribution parameters instead of directly regressing or classifying the angle. To
improve the overall efficiency of the detection model, we also design a rotated object detector based
on CenterNet. Experimental results on various public datasets demonstrated the effectiveness and
superior performances of our method. In particular, our approach achieves better results than
state-of-the-art competitors, with improvements of 1.92% and 1.04% in terms of AP points on the
HRSC2016 and DOTA datasets, respectively.

Keywords: rotated object detection; circular Gaussian; CenterNet; CGD

1. Introduction

Rotated object detection has emerged as a fundamental component for visual analysis
across various types of images, including aerial images [1,2], panoramic images [3–5]
and scene text [6]. It is a more general approach compared to traditional horizontal
object detection [7,8]. As conventional Horizontal Bounding Boxes (HBBs) can not tightly
enclose oriented objects, Rotated Bounding Boxes (RBBs) have been introduced in recent
works [9,10]. For rotated object detection, the rotation angle is a sensitive parameter, and
even a small deviation in angle can lead to a significant drop of Intersection over Union
(IoU) between predicted boxes and ground truth. This effect is especially pronounced when
the aspect ratio of an object is large. Therefore, accurate angular prediction is crucial to
improve the performance of oriented object detectors.

The rotation angle is a numerical attribute with intrinsic periodicity, which gives rise
to the multi-solution issue and the boundary issue [11], as illustrated in Figure 1a. Accurate
prediction of this attribute is challenging. A rotated bounding box (RBB) is produced by
rotating a horizontal bounding box (HBB) around its center, and the period of its rotation
angle is 180◦ (long-edge representation). The RBBs rotated with the angles offset by several
periods (e.g., 1◦ and 181◦) are exactly identical. This means that there exists multi-solution
in angular space, which increases the uncertainty of the model optimization. When only
considering a single period, the RBBs rotated with the larger angle and the smaller angle
(e.g., 88◦ and −88◦) are actually similar in the pose. This may cause the model to take long
detours during the optimization, as noted in the analysis of GWD [12].
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Figure 1. (a) The angular space is a 1−D periodic space with multi-solution issue (marks of the same
shapes on the different rings represent equivalent angles) and boundary issue (adjacent marks of
different shapes on the same ring are far away in this space). Regression paradigms directly predict
angles across multiple periods, while classification paradigms predict the equivalence classes to
which angles belong. (b) Our proposed circular Gaussian distribution (CGD)-based method for
angular prediction.

Researchers have explored numerous regression-based [3–5,12–14] and classification-
based [15,16] approaches to predict rotation angle. The naive regression predicts a continu-
ous value and measures the numerical deviation of the angle directly. It fails to handle either
multi-solution issues or boundary issues by itself. To remedy the natural imperfections,
some periodic methods, such as trigonometric functions and modulus operators, have been
introduced into the loss calculation. However, the angular values output by the model can
still lie in any period, and these methods only decorate angular predictions by projecting
them into a single period. Other integrated methods, such as GWD [12], ingeniously trans-
form the OBB into a continuous Gaussian distribution, but it is essentially equivalent to
applying trigonometric functions to optimization in some sophisticated way, which never
completely avoids the previous shortcoming. Another appealing approach, classification,
predicts a category of fine-grained angular ranges that can naturally aggregate angular
values across periods into their equivalence classes to fix the multi-solution issue. However,
it still suffers from boundary issues, as a result of indiscrimination treatment for different
angle ranges, where the near-far relation between angle ranges/categories is completely
ignored. Some improved versions, such as CSL [15] and VGL [16], utilize window functions
to smooth category labels, but they do not completely eliminate the defects of classification.
In a word, it is difficult to accurately predict angles through the above paradigms due to
various issues, which limits the performance upper bound of detectors.

To address the above issues, we propose a circular Gaussian distribution (CGD)-
based method for angular prediction, as shown in Figure 1b. Specifically, we convert the
labeled angle into a discrete circular Gaussian distribution spanning a single minimal
positive period as new ground truth, and let the model predict the distribution parameters
instead of directly regressing or classifying the angle. Then, we calculate the loss in the
way to measure the Kullback–Leibler divergence between the predicted distribution and
the ground-truth distribution. Here, the Gaussian distribution can reasonably reflect the
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adjacency between the angles, and each angle is assigned a certain probability based on its
offset from the actual angle of the object. In this way, the angular distribution as a whole
effectively overcomes the disadvantage of classifying each angular bin in isolation. The
circularization of Gaussians solves the boundary issue, and discretization avoids the multi-
solution issue. Additionally, we design a rotated object detector based on CenterNet [17,18]
to improve the overall efficiency of detection.

In summary, the main contributions of this paper are as follows:

1. We propose a new paradigm for angular prediction, namely CGD. It effectively avoids
the shortcomings of previous approaches.

2. We design a rotated object detector, based on CenterNet, which can improve the
overall efficiency of the detection model.

3. We conduct extensive experiments on various public datasets to verify the effective-
ness and superior performances of our approaches.

2. Related Work

In this section, we introduce related works, including horizontal object detection,
rotated object detection, and loss function for rotated object detection.

2.1. Horizontal Object Detection Method

Due to the development of CNNs, significant progress has been made in the past few
years in horizontal box-based object detection. Currently, object detectors can generally be
classified into two paradigms: two-stage detectors and one-stage detectors.

The RCNN [19] was the first two-stage detector method, where the first stage is used
to generate candidate boxes through a selective search algorithm, and the second stage uses
CNNs to extract features from the candidate boxes. Fast-RCNN [20] improved on RCNN
by extracting region-of-interest (RoI) from feature maps, saving the computational cost of
sharing backbone networks in RCNN. Faster-RCNN [7] introduced the region proposal
network (RPN) for candidate boxes generation. Therefore, the entire network is trained
end-to-end. To detect objects of different scales, the feature pyramid network (FPN) [21]
was proposed to establish a pyramid hierarchical structure, which can effectively improve
the performance of the detector.

One-stage detectors remove the ROI extraction process in two-stage detectors and
directly perform the bounding box regression and classification. Early representative
one-stage detectors include SSD and YOLOv1. SSD densely places anchor boxes on input
images, while YOLOv1 divides input images into grids of different sizes. To address class
imbalance issues, Focal loss is designed in RetinaNet [8] to dynamically adjust the weight
of each anchor box. FCOS further improves RetinaNet by removing predefined anchor
boxes and directly regressing and classifying reference points. CenterNet [17] proposes
to regress the width and height of bounding boxes from the center of objects. During
inference, CenterNet does not use the NMS algorithm, thus improving the inference speed
of the detector.

2.2. Rotated Object Detection Method

Rotational object detection is a new task in the current field of object detection, which
has been well applied in aerial image object detection and panoramic image object detection.
Unlike horizontal object detectors, rotational detectors generally use rotated rectangles as
bounding boxes because rotated boxes can better enclose objects. To solve the problem
of mismatch in densely packed object scenarios, ROI Transformer [1] proposes spatial
transformation on ROI. Oriented RCNN [22] designs an oriented RPN to directly gen-
erate high-quality oriented candidate boxes at almost no cost. S2A-Net [23] proposes a
feature alignment module to obtain high-quality anchor points. Based on Faster-RCNN,
CAD-NET [24] proposes a context-aware detection network to learn global and local con-
texts in images. SCRDET++ [25] designs a new feature map-based instance-level denoising
module for detecting small, cluttered, and rotated objects.
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3. Proposed Approach
3.1. Circular Gaussian Distribution Construction

In this section, we present our approach. First, we adopt the discrete circular Gaussian
distribution spanning a single minimal positive period as the ground truth of the angle.
The circularization of Gaussians solves the boundary problem and discretization avoids the
multi-valued problem. For instance, an original label of the angle (−89◦) can be used to
generate a circular Gaussian distribution in [−90◦, 89◦], as shown in Figure 1b. The loss of
accuracy in the rotation detection task is minimal despite the conversion from continuous
angle to discrete angle, just like the analysis in CLS [15]. Next, the Gaussian distribution
of the angle can be represented as a multi-dimensional vector Dt = {d−90, d−89, . . . , d89},
with the l-th dimension as follows:

dl = exp(−(l−θt)
2

2σ2 ), l = −90, 89, . . . , 89

dl =
dl

∑89
l=−90 dl

,

89
∑

l=−90
dl = 1

(1)

where l denotes the l-th binned angle, θt is the binned ground-truth angle, and σ is the
standard deviation of Gaussian distribution. As a hyperparameter, σ, we experimentally
find that its selection is reliable within a particular range. More information will be provided
in Table 1.

Table 1. Comparison between different standard deviation σ for Gaussian label on HRSC2016 dataset.
The CenterNet-FPN model is used as the detector.

σ Backbone mAP07 mAP12

2 R-50-FPN 6.56 3.08
4 R-50-FPN 90.44 97.31
6 R-50-FPN 90.54 97.76
8 R-50-FPN 90.52 97.17
10 R-50-FPN 90.47 97.08

Then, the training set can be represented as {(Ii, Dt
i ), 1 ≤ i ≤ B}, and the objective of

the model learning is to obtain a group of model parameters ω to produce a probability
distribution F p(Ii; ω) for the label set.

F p(Ii; ω) = { f (p−90|Ii; ω), . . . , f (p89|Ii; ω)},
89
∑

l=−90
f (pl |Ii; ω) = 1

(2)

Finally, the loss function quantifying the similarity between the predicted distribution
F p(Ii; ω) and the ground-truth distribution Dt

i is constructed using the Kullback–Leibler
divergence. The objective of the Label Distribution Learning is to minimize the following
loss function:

LKL =
B
∑

i=1

89
∑

l=−90
dl

Ii
ln

dl
Ii

f (pl |Ii ;ω) (3)

where I is the input image, and B is the number of images in the batch.
Algorithm 1 provides the pseudo-code of circular Gaussian distribution (CGD).
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Algorithm 1 Pseudocode of CGD in a Numpy-like style.

# angle: angle of bounding box
# sig: standard deviation of Gaussian distribution

def Circular_Gaussian_Distribution(angle, sig=4.0):

x = np.array(range(math.floor(-180/2), math.ceil(180/2), 1))

d = np.exp(-(x) ** 2 / (2 * sig ** 2))

d_left = d[math.ceil(180/2)-angle:]

d_right = d[:math.ceil(180/2)-angle]

CGD = np.concatenate([d_left, d_right], axis=0)

return CGD

3.2. Overall Architecture

Our overall framework is illustrated in Figure 2. Anchor-based detectors require
the calculation of the angle for each anchor, and discretizing the angle for anchor-based
detectors increases the computational complexity of the model dramatically. Therefore,
we used an anchor-free detector CenterNet [17] as our baseline, which models an object
as a single point (i.e., the center point of the bounding box) and predicts the center offset,
object size, and angle. Specifically, the first branch is utilized to detect the center points of
the bounding box and predict the offsets of the center point. The second branch is used to
determine the size (i.e., width w and height h) of the bounding box for each object. The last
branch predicts the angle distribution of the bounding boxes.

..
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Figure 2. Overall architecture of our method to detect rotated objects in images. We propose a circular
Gaussian distribution (CGD)-based method for angular prediction. (Best viewed by zooming in).

3.2.1. Backbone

Different from raw CenterNet, we used ResNet as the backbone and built a feature
pyramid network (FPN). The FPN enhances a conventional convolutional network with a
top-down pathway and lateral connections to effectively build a rich, multi-scale feature
pyramid from a single-resolution input image.

3.2.2. Center Branch

For oriented objects in the input image, the heatmap is utilized to localize their center
locations. Following the original CenterNet, a 2-D Gaussian kernel is adopted to produce a
heatmap Y ∈ [0, 1](W/4)×(H/4)×C. Any other pixel is treated as the negative sample, while
the peak of the Gaussian distribution, which is also the pixel at the center of the box, is
treated as the positive sample. The element-wise maximum is used when two Gaussians of
the same class overlap. The training objective is a modified focal loss:
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Lk =
−1
N ∑

xyc


(1− Ŷxyc)α log(Ŷxyc) if Yxyc = 1

(1−Yxyc)β(Ŷxyc)α

log(1− Ŷxyc)
otherwise

(4)

where α and β are hyper-parameters of the focal loss, and N is the number of keypoints in
image I. We set α = 2 and β = 4 in all our experiments, following CenterNet.

The model predicts an additional center offset O ∈ [0, 1](W/R)×(H/R)×2 to remove the
discretization error brought on by the output stride. For the regression of the center offset,
we used Smooth L1 loss.

3.2.3. Size Branch

In contrast to the raw CenterNet, which directly regressed the variables w and h, we
used indirect regression log((w/R)), log((h/R)) to lessen the effect of the varied object as-
pect ratio. Then, we used Smooth L1 loss for the estimation of the {log((w/R)), log((h/R))}.

3.2.4. Angle Branch

For the object orientation, the model outputs a distribution of angle
F p ∈ [0, 1](W/4)×(H/4)×180. Then, the Kullback–Leibler Divergence loss is applied to mea-
sure the difference between prediction and target distribution.

Thus, the overall training objective of our model is

Ldet = Lcls + λo f f Lo f f + λsizeLsize + λangLKL, (5)

where Lcls, Lsize, and Lo f f are the losses of center point recognition, scale regression, and
offset regression, which are the same as CenterNet; and λsize, λo f f , and λang are constant
factors, set to 0.1 in our experiments.

4. Experiments
4.1. Datasets and Implementation Details
4.1.1. DOTA

DOTA [9] is a large dataset dedicated to rotated object detection for aerial images. The
size of each image varies from 800× 800 to 4000× 4000. Specifically, the annotated DOTA
contains 2806 aerial images, which include 188,282 instances of 15 object categories. The
whole dataset is divided into 1411, 458, and 937 images for training, validation, and testing,
respectively. Furthermore, the training images are cropped into patches of size 1024× 1024
pixels with an overlap of 256 pixels so as to fit the limited GPU memory.

4.1.2. HRSC2016

HRSC2016 [10] is an aerial image dataset for ship detection. The dataset contains
1061 images of ships sourced from two scenarios which are the sea and the inshore at six
famous harbors. The size of each image varies from 300× 300 to 1500× 900. HRSC2016
is divided into 436,181, and 444 images for training, validation, and testing. Furthermore,
the long side of each image is resized to a fixed size (e.g., 640 px) in experiments. To keep
structural information, the original aspect ratio of each image is kept.

4.1.3. Evaluation Metric

mAP is a classical metric for detection methods. Therefore, we use mAP in all our
experiments to evaluate the performance. For the DOTA dataset, we can obtain the test
results from the official evaluation server. For the HRSC2016 dataset, we use metrics that
include the VOC07 AP and VOC12 AP with an IoU threshold of 0.5. For the PANDORA
dataset, we use metrics that include mAP with an IoU threshold of 0.5.
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4.1.4. Implementation Details

Our implementation is based on PyTorch and 8 NVIDIA GeForce RTX 3090 GPUs.
We choose the ResNet model pretrained on ImageNet as our backbone. The models are
optimized by Adam for 140 epochs with the learning rate dropped by 10× at 100 and
130 epochs for all datasets. For all datasets, the batch size is set to 64, and the initial learning
rates are set to 2× 10−4 and 1.25× 10−4, respectively. Data augmentations are used to
improve model performance. Our data augmentations include random graying, random
flipping, and random rotation. ResNet-50-FPN is used for ablation studies.

4.2. Ablation Study

We create the following ablation research to eliminate the hyper-parameter’s unpre-
dictability and to confirm the viability of the suggested approach. We use CenterNet-FPN
as the detection model in the ablation study. Accurate detection results are difficult to
acquire because the HRSC2016 dataset comprises a high number of ships with large aspect
ratios. We use HRSC2016 as our dataset for ablations.

4.2.1. Influence of Different Hyper-Parameter Value

We studied the impact of the σ (standard deviation) of the Gaussian distribution. A
different constant for the σ has been established experimentally. The results are shown
in Table 1. We observe that the AP only varies somewhat while adjusting σ in a specific
range (from 4 to 10), which indicates that the choice of σ is robust in this range. The best
performance is obtained by the model when σ = 6, as shown in Table 1. Therefore, we fix
the σ to 6 in all the subsequent experiments.

4.2.2. Effectiveness of CGD

We conducted a number of baseline experiments, including direct regression-based
angle prediction (Smooth L1), indirect regression-based angle prediction (trigonometric
functions), CSL-based angle classification, and our CGD approach, to verify the effective-
ness of our method. The above-mentioned methods share the same network structure
except for the different orientation branches. The results are shown in Table 2, and using a
regression method to directly predict the angle of the rotated object achieves 85.39% mAP07
and 90.25% mAP12 on the HRSC2016 test set. The indirect regression-based trigonometric
functions loss enhances the direct regression approach by 2.43% mAP07 and 3.42% mAP12
by removing the discontinuous boundary problems brought on by the angular periodic-
ity. However, the angular value output by the model can lie in any period, causing the
multi-value problem. The CSL-based algorithm has a better result than the angle indirect
regression-based method, because it can naturally aggregate multi-values across periods
into their equivalence classes to fix the multi-value issue. The CSL-based algorithm achieves
89.98% mAP07 and 95.13% mAP12 on the HRSC2016 test set. As our CGD eliminates the
discontinuous boundary issues caused by the angular periodicity and the multi-valued
issues caused by out of the defined range, it achieves 90.52% mAP07 and 97.76% mAP12.
Finally, in Table 2, we present the running speed of our CGD method and the baseline
method. The running speed here refers to the time it takes to process four images in
one run on an NVIDIA GeForce RTX 3090 GPU. As shown in Table 2, our CGD method
also has an advantage in terms of speed compared to the baseline methods (0.3912 ms
vs. 0.4950 ms, 0.4606 ms, 0.5910 ms). All experimental results demonstrate that the CGD’s
overall performance is superior to the baseline.
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Table 2. Comparison between different losses for the rotated bounding box on HRSC2016 dataset.
The CenterNet-FPN model is used as the detector.

Loss Backbone mAP07 mAP12 Speed (ms)

DR R-50-FPN 85.39 90.25 0.4950
IR R-50-FPN 87.82 93.67 0.4606

CSL R-50-FPN 89.98 95.13 0.5910
CGD R-50-FPN 90.52 97.76 0.3912

4.3. Comparisons with the State-of-the-Art Methods

To validate the effectiveness of our approach, we compared other state-of-the-art
methods on the HRSC2016 and DOTA datasets. The performances of all methods were
taken from a single model without cross-model test augmentation such as model ensemble
by default.

The results of the HRSC2016 dataset are shown in Table 3. Our CGD obtains 90.61%
and 98.14% mAP based on R-101-FPN when using the VOC07 metric and the VOC12
metric, respectively. These results are quite competitive when compared to the most recent
state-of-the-art methods. We visualize the detection results in Figure 3.

Table 3. Comparison with state-of-the-art methods on the HRSC2016 dataset.

Method Backbone mAP07 mAP12

RRPN [26] VGG16 79.08 85.64
R2CNN [6] VGG16 73.07 79.73

RT [1] R-101-FPN 86.20 -
ARG [27] R-101-FPN 88.08 93.83

GV [2] R-101-FPN 88.20 -
DRN [13] Hourglass-104 - 92.70
GWD [12] R-101-FPN 89.43 -
DAL [14] R-101-FPN 89.77 -
VGL [16] DLA34-DCN 89.78 -

S2ANet [23] R-101-FPN 90.17 95.01
AOPG [28] R-101-FPN 90.34 96.22

CGD (Our) R-101-FPN 90.61 98.14

Figure 3. The visualization results of our method on the HRSC2016 dataset. (Best viewed by
zooming in).
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There are numerous categories of complexity scenes in the DOTA dataset. We assessed
the performance of state-of-the-art rotation object detection methods on DOTA dataset. We
report the results of oriented detectors in Table 4. Our CGD surpasses existing advanced
oriented detectors, achieving 76.41% mAP based on R-50-FPN and 77.34% mAP based on
R-101-FPN. Our models also achieve the best results in some very challenging categories,
such as bridge (BR), ship (SH), storage tank (ST), harbor (HA), and swimming pool (SP).
We visualize some detection results and show them in Figure 4.

Figure 4. The visualization results of our method on the DOTA dataset. (Best viewed by zooming in).
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Table 4. Comparison with state-of-the-art methods on the DOTA dataset.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Two-stage

RRPN [26] R-101 80.94 65.75 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.01
R2CNN [6] R-101 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67

RoI Transformer [1] R-101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet [29] R-101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

Gliding Vertex [2] R-101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
Faster-RCNN-O [7] R-50-FPN 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05

AOPG [28] R-101-FPN 89.14 82.74 51.87 69.28 77.65 82.42 88.08 90.89 86.26 85.13 60.60 66.30 74.05 67.76 58.77 75.39
CSL [15] R-152-FPN 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

One-stage

RetinaNet-O [8] R-50-FPN 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29 82.18 74.32 54.75 60.60 62.57 69.67 60.64 68.43
DRN [13] Hourglass-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
DAL [14] R-50-FPN 88.68 76.55 45.08 66.80 67.00 76.76 79.74 90.84 79.54 78.45 57.71 62.27 69.05 73.14 60.11 71.44

RSDet [30] R-101-FPN 89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00 72.20
R3Det [31] R-101-FPN 88.76 83.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94 73.79

S2ANet [23] R-50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
GWD [12] R-152-FPN 86.96 83.88 54.36 77.53 74.41 68.48 80.34 86.62 83.41 85.55 73.47 67.77 72.57 75.76 73.40 76.30

Ours

CGD R-50-FPN 89.80 81.66 52.00 73.05 77.55 81.83 88.20 90.86 86.23 86.10 60.08 67.28 76.32 75.07 60.08 76.41
CGD R-101-FPN 90.12 84.33 55.46 74.14 75.40 81.26 88.92 90.81 83.27 87.12 63.71 66.20 77.13 80.50 61.79 77.34
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5. Conclusions

In this paper, we analyzed the limitations of regression-based and classification-
based oriented object detectors. To address their issues, we propose a circular Gaussian
distribution (CGD)-based method for angular prediction. Our method’s key insight is
converting the labeled angle into a discrete circular Gaussian distribution spanning a single
minimal positive period as ground truth, and letting the model predict the distribution.
Then, to improve the overall efficiency of the detection model, we design an oriented object
detector based on the CenterNet method. The experimental results on the challenging
HRSC2016 and DOTA datasets indicated that our proposed CGD could achieve superior
performance over the state-of-the-art competitors. In particular, our approach outperforms
state-of-the-art competitors with improvements of 1.92% and 1.04% in terms of AP points
on the HRSC2016 and DOTA datasets, respectively. It is worth noting that our proposed
CGD method can be applied to any task that requires angle prediction, including 3D object
detection, panoramic object detection, and so on. In the future, we plan to expand the
application of the CGD method to additional tasks.
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