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Abstract: The research of mobile robot path planning has shifted from the static environment to the
dynamic environment, from the two-dimensional environment to the high-dimensional environment,
and from the single-robot system to the multi-robot system. As the core technology for mobile
robots to realize autonomous positioning and navigation, path-planning technology should plan
collision-free and smooth paths for mobile robots in obstructed environments, which requires path-
planning algorithms with a certain degree of intelligence. Metaheuristic algorithms are widely used in
various optimization problems due to their algorithmic intelligence, and they have become the most
effective algorithm to solve complex optimization problems in the field of mobile robot path planning.
Based on a comprehensive analysis of existing path-planning algorithms, this paper proposes a
new algorithm classification. Based on this classification, we focus on the firefly algorithm (FA)
and the cuckoo search algorithm (CS), complemented by the dragonfly algorithm (DA), the whale
optimization algorithm (WOA), and the sparrow search algorithm (SSA). During the analysis of the
above algorithms, this paper summarizes the current research results of mobile robot path planning
and proposes the future development trend of mobile robot path planning.

Keywords: mobile robot; path planning; metaheuristic algorithm; firefly algorithm; cuckoo search
algorithm

1. Introduction

The term “mobile robot” refers to a machine system that can move autonomously or
partially autonomously in a variety of environments. It is supposed to possess the ability
to perceive the surrounding environment through highly sensitive sensors, accurately
identify and comprehend its position, create precise maps of the environment, enable safe
navigation to the intended destination, and accomplish pre-determined tasks [1,2]. Mobile
robots can be categorized into three groups based on their operating environments [3]:
(i) ground mobile robots, such as autonomous vehicles (AV) and autonomous guided
vehicles (AGV); (ii) marine mobile robots [4–6], such as autonomous underwater vehicles
(AUV) and surface mobile vehicles (SMV); (iii) air mobile robots, such as unmanned aerial
vehicles (UAV). Table 1 shows the categorization of mobile robots according to the operating
environments and their main planning tasks in different operating environments. Mobile
robots are now utilized in the applications of industry, agriculture, military, medicine,
and entertainment because of the developments in computational intelligence and sensor
accuracy. However, regardless of the application, mobile robots need to have a certain level
of autonomy in a working environment without human intervention [7–9].

The implementation of autonomous control technology for mobile robots depends on
four aspects: motion, perception, cognition, and navigation [10]. The structure of the main
components that make up a mobile robot is depicted in Figure 1. Navigation technology
has extensive development prospects since it is essential for mobile robots to achieve
autonomous movement and adaptive planning. Navigation technology [11] includes four
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basic requirements: perception, localization, cognition, and path planning, among which
path planning is the most fundamental research task [12–14].

Table 1. Planning tasks and applications of mobile robots in different environments.

Classification of Mobile Robots
(Operating Conditions) Major Planning Tasks Mission

Ground mobile
robots

Autonomous vehicles (AV)
Autonomous guided

vehicles (AGV)

1. avoiding obstacles;
2. shortest route planning;
3. dynamic environmental adaptation;
4. multi-objective path planning.

auto-navigation;
transportation of materials;
patrol (police, army, or navy);
search and rescue missions.

Marine mobile
robots

Underwater mobile
vehicles (UMV)
Surface mobile
vehicles (SMV)

1. avoiding obstacles;
2. adaptation to the marine environment;
3. safety of navigation;
4. optimization of energy;
5. interaction with other vessels.

exploration for marine resources;
seabed topographic mapping;
marine ecological monitoring.

Air mobile robots Unmanned aerial
vehicles (UAV)

1. avoiding obstacles;
2. air route planning (ARP);
3. optimization of energy;
4. considering wind resistance and
meteorological factors;
5. avoiding air traffic.

battlefield reconnaissance;
electronic reconnaissance;
mine detection;
laser guidance.
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Path planning for mobile robots belongs to a class of “Nondeterministic Polyno-
mial”(NP) problems [15]. Its solution is usually guessable and verifiable in polynomial
time. However, at present, a universally applicable method for solving NP problems has
yet to be discovered, resulting in inherent uncertainty when dealing with this topic [16,17].
In most cases, there are multiple feasible paths in the search space from the starting position
to the target position, and the decision of which path to take as the optimal or approximate
solution to the problem is determined by some guiding criteria (e.g., shortest distance,
path smoothness, minimum energy consumption, etc.) [18,19]. As a result, path-planning
algorithms have grown to be a significant issue in the field of mobile robots [20,21]. As
the configuration region dimension increases, so does the complexity, and some classical
path-planning algorithms that were once widely used no longer suffice [22]. At present,
path-planning algorithms are divided into two types: heuristic algorithms and metaheuris-
tic algorithms. Heuristic algorithms are a class of algorithms tailored to solve a specific
problem, which are capable of solving problems within a reasonable timeframe or finding
approximate solutions in cases where traditional methods fail to provide precise solutions.
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However, similar to most classical methods, heuristic algorithms still need to be based on a
specific problem framework, which restricts their broad application [23]. In recent years,
metaheuristic algorithms have evolved to become capable of addressing a wide range of
optimization problems without changing the core algorithmic foundation. Regardless of the
structure or feature of a challenge, they are capable of finding workable solutions [24]. As a
result, metaheuristic algorithms are widely regarded as effective approaches for solving a
wide range of optimization problems and have become popular algorithms for addressing
practical optimization problems in a variety of fields [25–33]. Table 2 summarizes the
relevant characterization of path-planning algorithms for different classes of mobile robots.

Table 2. The table of the performance of different kinds of path-planning algorithms.

Types of
Algorithms

Typical
Algorithms Advantages Limitations Versatility

traditional
algorithms

CD efficient at finding the
shortest paths

struggles with complex
obstacle distributions

applicable to finding the
shortest paths in various

environments

PRM
applicable to various types of

maps and obstacle
distributions

requires pre-building of the
graph, not suitable for
dynamic environments

approximate optimal
solutions

RRT efficient in high-dimensional
space

may generate non-smooth
paths

high-dimensional space path
planning

heuristic
algorithms

A* heuristic search is more
efficient

requires appropriate
heuristic function design

single-source shortest-path
problems

Dijkstra simple and easy to
implement

high-time complexity
(inefficient on dense graphs)

applicable to non-negative
weighted graphs

metaheuristic
algorithms

PSO strong global optimization
ability, fast convergence

requires appropriate
parameter settings

applicable in path planning
for obstacle avoidance and

global optimization
problems

FA fast convergence, strong
global search ability

may require longer search
time for complex problems

applicable to global
optimization problems

CS
fast convergence and

performs well in complex
problems

requires appropriate
parameter settings

applicable to global
optimization problems

There has been tremendous progress in the application of metaheuristics to mobile
robot path-planning problems over the last two decades [34–37]. In this discipline, the
genetic algorithm (GA), ant colony optimization (ACO), and particle swarm optimization
(PSO) are the most well-studied and representative algorithms. Numerous studies [38–53]
have been conducted on these algorithms, which are regarded as being typical for mobile
robot path planning. Recently, researchers have shown increasing interest in newly de-
veloped algorithms such as the firefly algorithm (FA) and the cuckoo Search algorithm
(CS) [35–37,54,55].

In Section 2, we propose a novel classification method based on nature, human, and
discipline behavior. In Section 3, we evaluate the research development of nature behavior
algorithms in mobile robot path planning by using the FA algorithm and the CS algorithm
as the key algorithms. In Section 4, we mainly discuss the research progress of the FA
algorithm and the CS algorithm in mobile robot path planning, along with the current
development status of metaheuristic algorithms along with the urgent problems in the
future development of metaheuristic algorithms. In Section 5, we summarize the above
and put forward new ideas for future research in mobile robot path planning.

2. Metaheuristic Algorithms

The expression “metaheuristic algorithms” refers to a family of algorithms inspired
by human intelligence or nature, which can be broadly classified as a type of stochastic
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optimization algorithm. When information is lacking or knowledge of the problem under
consideration is insufficient, metaheuristic algorithms are thought to be a class of optimiza-
tion techniques that are independent of the problem [56]. As a result, they can be widely
applied to the majority of optimization problems, as well as highly nonlinear and discrete
problems [57,58].

2.1. The Fundamental Principle of Metaheuristic Algorithms

Metaheuristic algorithms can be considered a general algorithmic framework or a
black-box optimizer. They can be applied to practically every optimization problem since
they make few presumptions about the issues. In the vast majority of cases, metaheuristic
algorithms typically outperform heuristic algorithms in optimization situations [59,60].
Laporte and Osman described the mechanisms of metaheuristic algorithms in [61] as “in-
telligently combining different concepts, mechanisms for generating iterative lower-level
heuristics through guidance and constructing information within learning strategies, ex-
ploring and exploiting the search space in a series of steps to more efficiently find solutions
that are close to optimal”. Similarly, ref. [62] defined the mechanism of metaheuristic
algorithms as “a process of exploration and exploitation”. The terms “exploitation” and
“exploration” summarize the search mechanisms of metaheuristic algorithms graphically.
“Exploration” is the ability of the algorithm to search the environment comprehensively
and generate different solutions; “exploitation” is the ability of the algorithm to search the
local area and find the current optimal or suboptimal solution. The idea of randomization
in metaheuristic algorithms enables the algorithm to transition from local searching to
global searching. Therefore, almost all metaheuristic algorithms are suitable for the issue
of global optimization problems. The “exploration” capability adds diversity to solutions,
whereas the “exploitation” capability adds intensity to solutions. While the intensity of
local search prevents slow algorithmic convergence and boosts the quality of solutions, the
randomization in global exploration helps avoid becoming stuck in local optima and raises
the diversity of solutions. As a result, the harmony between these two talents determines
how well metaheuristic algorithms perform in their search for global optimal solutions.
Nowadays, metaheuristic algorithms are viewed as a group of search techniques that
include developing heuristics, carrying out local searches, and more general guidelines for
resolving particular issues [63].

2.2. The Development and Classification of Metaheuristic Algorithms

GA [64] is a type of metaheuristic algorithm inspired by the theory of “Darwinian
evolution”. It is widely regarded as the first metaheuristic algorithm because it simulates the
evolutionary process to search for optimal solutions. As the research progressed, scholars
traced back to earlier studies on metaheuristic algorithms, such as the simulated annealing
algorithm (SA) [65] invented by Kirkpatrick et al. in 1983. In 1986, the Tabu Search
algorithm (TS) [66] was proposed, and in 1995, Kennedy and Eberhart proposed PSO [67].
In 1999, Dorigo et al. established an ant colony model and proposed ACO [68]. Figure 2
illustrates the development of metaheuristic algorithms. Since the beginning of the 21st
century, there has been explosive growth in the development of metaheuristic algorithms,
with new algorithms being proposed almost every year. According to incomplete statistics,
there are hundreds of metaheuristic algorithms and their variants [56,57,69,70] at present.

For metaheuristic algorithms, there are currently three common categorization meth-
ods: (1) based on the source of inspiration [24,71–74]; (2) based on whether they are
nature-inspired [24,73,75]; (3) based on individual or trajectory [61,73,76,77]. Here is the
translation of the three classification methods for metaheuristic algorithms: The first clas-
sification method, based on the source of inspiration, divides metaheuristic algorithms
into swarm intelligence algorithms, evolutionary algorithms, bio-inspired algorithms, and
natural science algorithms. The second classification method, based on whether they are
naturally inspired, categorizes metaheuristic algorithms into natural inspiration algorithms
and non-natural inspiration algorithms. The third classification method divides metaheuris-
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tic algorithms into individual-based algorithms and trajectory-based algorithms. Relying
only on method 1 might result in algorithm intersections, where an algorithm (such as
PSO) may belong to both the biological inspiration and the swarm intelligence inspiration.
Simply relying on method 2 or method 3 cannot comprehensively cover the majority of
metaheuristic algorithms. By studying the development of metaheuristic algorithms and
the inspirations of classical metaheuristic algorithms [57,60,62,71,78], we find that the ideas
of metaheuristic algorithms are derived from the natural behavior of animals and plants,
human social behavior, and scientific behavior. Therefore, this paper combines methods
1 and 2 and proposes a new classification method based on natural behavior, human be-
havior, and scientific behavior. Based on this proposed classification method, Figure 3
presents an incomplete classification of the mainstream metaheuristic algorithm. Table 3
summarizes the advantages and disadvantages of the algorithms under the classification
method proposed in this paper.
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Table 3. The advantages and disadvantages of typical metaheuristic algorithms.

Classification Method Typical Algorithms Advantages Disadvantages

Natural behavior-based

PSO
GWO

FA
CS

1. simple structure and principles;
2. intelligent and robust;
3. adaptive organization;
4. balanced global and local search
capabilities.

1. long iteration time;
2. artificial parameter pettings.

Human social
behavior-based

IWD
ICA

1. stronger global search capability;
2. fewer parameter settings.

1. lack of diversity of viable solutions;
2. artificial parameter settings.

Discipline behavior-based GWA
BHA

1. strong localized search capability;
2. small size of calculated costs.

1. complex algorithmic principles;
2. weak global search capability;
3. artificial parameter settings.
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Among the three categories, the metaheuristic algorithm based on natural behavior
demonstrates an exceptional ability to strike a balance between global search and local
search, making it the most prevalent choice in mobile robot path planning. However,
it does come with the drawback of needing to traverse all feasible solutions during a
complete iterative search, resulting in slower convergence speed and increased memory
consumption.

2.3. Nature-Inspired Metaheuristic Algorithms

Table 4 displays an incomplete compilation of classical and novel nature-inspired
metaheuristic algorithms that are often used in mobile robot path planning since the 1990s.
PSO and ACO are the two metaheuristic algorithms inspired by natural behavior that are
most used in mobile robot path planning with the most abundant variants due to their
early years of proposal. With the increasing scale and complexity of mobile robot path
planning, recent years have witnessed a rise in interest among academics in intelligent
algorithms such as the artificial bee colony algorithm (ABC), FA, CS, DA, WOA, SSA, and
other algorithms, of which the most widely studied algorithms are the FA and DA, and in
addition, the most promising algorithms are the DA, WOA, and SSA.
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Table 4. Metaheuristic algorithms based on natural behavior.

Complete Name of the Algorithm Abbreviation Year of Invention Main Application Environments

Particle swarm optimization [79–82] PSO 1995 Static\dynamic\multi-robot

Ant colony optimization [39–42,44,83–86] ACO 1991 Static\dynamic\multi-robot

Bacterial foraging algorithm [87] BFA 2002 Static

Artificial bee colony algorithm [88–90] ABC 2005 Static\dynamic\multi-robot

Grey wolf optimizer algorithm [91–98] GWO 2007 Muti-robot

Firefly algorithm [99–101] FA 2009 Dynamic\multi-dimensional

Cuckoo search algorithm [102–104] CS 2009 Dynamic\multi-dimensional\multi-robot

Dragonfly algorithm [105] DA 2015 Dynamic\multi-robot\heterogeneous system

Whale optimization algorithm [106] WOA 2016 Dynamic\unknown\
multi-robot

Squirrel search algorithm [107] SSA 2020 Dynamic\unknown\
multi-robot

3. Progress of Nature-Based Behavior Algorithms in Mobile Robot Path Planning

The schematic diagram of the FA and CS algorithm applied in path planning reviewed
in this paper is shown in Figure 4. As Figure 4 shows, in mobile robot path planning,
(XS, YS) represents the starting point, while (XG, YG) represents the ending point, and
dynamic obstacles are represented by yellow matrix blocks. Ideally, there are no obsta-
cles at the start and end points and the global map environment is known. The mobile
robot follows the principle of the shortest straight-line distance between two points for
global planning (indicated by the gray dashed line). When the robot moves to a certain
position, the sensor recognizes a dynamic obstacle at the position (XC, YC). At this time,
the mobile robot needs to avoid dynamic obstacles and perform local path planning to
re-plan an optimal path to the endpoint. As the algorithms search for the optimal solution
with different mechanisms, the location of the next waypoint is determined differently
when performing local planning, resulting in multiple feasible path points and multiple
feasible paths. In Figure 4, we have listed some example points, such as points (XC

′, YC
′),

(XC
′′, YC

′′), (XC
′′′, YC

′′′). The path generated by the path-planning algorithm is usually
required to be the minimization of one or more objective optimization functions [108].
Therefore, at this stage, the path-planning problem, from simply planning a collision-free
smooth route from the starting point to the ending point in different environments, grad-
ually evolves into a class of multi-objective optimization problems and implements local
path planning in dynamic environments to find the global optimal solution or approximate
solution [37]. In this section, we take the FA and CS as the primary algorithms to analyze
and study the present research state of metaheuristic algorithms based on natural behaviors
in mobile robot path planning.
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3.1. Firefly Algorithm

The FA is a metaheuristic algorithm proposed by Yang XS [109], inspired by the
behavior of fireflies in nature, where they emit light to attract mates or ward off enemies.
Three rational properties for the FA were introduced by Yang XS: (1) All individual fireflies
are gender-neutral, and theoretically, any two fireflies have an attraction or can be attracted
to a relationship. (2) The brightness of fireflies and the distance between them are directly
inversely correlated with how appealing they are. The lower-brightness firefly will travel
toward the higher-brightness one if there are two flashing fireflies. A particular firefly
will move arbitrarily if there is not another firefly brighter than it. (3) The cost function
(light intensity), which needs to be tuned, determines the luminosity of fireflies. Figure 5
shows the flowchart and phases of the FA. Moreover, Algorithm 1 shows the pseudo-code
diagram of the FA.

Algorithm 1: The Pseudo-code diagram of the FA.

Input:
Population size(n)
Maximum number of iterations (max_iterations)
Attraction coefficient (beta0)
Absorption coefficient (gamma)
Lower bounds of variables (lb)
Upper bounds of variables (ub)
Objective function to be optimized (f)
While (t < max_iterations),
for i = 1 : n (population size(n))

for j = 1 : n (population size(n))
if (Ii < Ij)

Initialize fireflies[i][j] randomly between lb[j] and ub[j]
end if

Evaluate new solutions and update light intensity.
end for j

end for i
Rank the fireflies and find the current global best position
end while
Output:
The best solution found (the firefly with the highest brightness)
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Since its inception, it has been demonstrated that the FA outperforms PSO and the GA
when it comes to searching for optimal solutions for specific complex optimization prob-
lems. Because of its simplicity, the limited number of algorithm parameters, and simplicity
in implementation, the FA is efficient for tackling complicated multi-objective NP problems.
Although the FA outperforms other algorithms in terms of optimization speed and solution
correctness, it still has several problems that need to be fixed. For instance, the FA is prone
to becoming trapped in local optima, its performance significantly depends on the choice
of control parameters, and it prematurely converges during implementation [110–114].
Researchers have modified the algorithm from several perspectives to address these prob-
lems, which may be divided into three primary categories: (1) improved attraction mode
strategies, (2) adaptive parameter control strategies, and (3) hybrid improvement strategies.

There have been several FA variations since 2016. The significant research advance-
ments are listed in Figure 6 below.
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Regarding the mobile robot path-planning problem, before 2018, mobile robot path-
planning research was limited to static situations. In [115], the MO-FA algorithm with
innovative evolutionary operators was suggested. It is designed to address three goals:
optimal path length, smoothness, and safety of the way. The algorithm was statistically as-
sessed and evaluated using multi-objective metrics such as HV and SC through simulation
experiments in eight different static real-world scenarios. The outcomes demonstrated that
the modified algorithm performed more effectively than the widely used NSGA-II strategy.
In [116], an improved FA called the path center-based computation method FA (PPMFA)
was proposed. It addressed the issue of convergence in the standard algorithm by replacing
the fixed step size search mechanism with a Gaussian random walk, which diversified
the population and improved the algorithm’s random search capability. The algorithm
increased the success rate of generating optimal solutions when used in conjunction with a
dual-checking strategy. Comparative investigations revealed that in terms of accuracy and
convergence speed, the proposed algorithm performed superior to PSO and the standard
FA. In [110], a hybrid optimization algorithm called the improved whale-firefly optimiza-
tion (IWFO) was proposed to overcome the shortcomings of the standard FA in multi-robot
path planning, such as being prone to local optima or premature convergence. The IWFO
introduced IWO into the standard FA to accelerate convergence, allowing for more accurate
feasible solutions with less computational time.

However, investigations increasingly expanded to dynamic environments after 2018,
with a focus on hybrid methods and parameter adaptability optimization. In [117], ACO
was introduced into the standard FA, resulting in a hybrid algorithm called the hybrid
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ACO-FA (HAFA). The results of the experiments demonstrated that this modified algo-
rithm could locate approximation optimal solutions at a faster convergence rate. According
to [118], an improved FA algorithm named the modified FA (mFA) was presented to fulfill
goals including path smoothness, path safety, and low computational time cost. It added
a directional random approach and enhanced the mobile step size in the standard FA.
The results of simulation experiments validated the efficiency of this modified strategy.
Additionally, this optimization strategy provided an innovative approach for resolving
path-planning issues for mobile robots in environments with three-dimensional spherical
obstacles that are known, partially known, or unknown. In the same year, reference [119]
focused on autonomous planning for AUVs and considered runtime constraints, energy
consumption issues, and the uncertainty of dynamic unknown underwater environments.
They proposed a differential evolution-based FA optimization (DEFO). The improved
strategy was tested in a complex three-dimensional simulation environment to validate its
adaptive performance. Through Monte Carlo trials, the effectiveness of the hybrid algo-
rithm’s model was demonstrated, showing low computational costs and a certain level of
real-time capability. Flinders University has used the model for extensive experimentation
and study.

In 2019, a random guided firefly algorithm (ERaFA) based on elite strategy has been
proposed in [113] to tackle challenges such as high computational time complexity and
sluggish convergence speed in complicated environments. The algorithm introduced a
crossover operator mechanism based on the GA to enhance its local search ability. It proved
through verification utilizing the CEC2015 benchmark set and three limited engineering
problems that the ERaFA performed superior in terms of convergence speed performance
than the standard FA, RaFA, and ApFA. In [112], a modified FA named the modified
FA (MFA) was proposed. By controlling the parameters, the algorithm’s optimization
ability was enhanced. Experimental results showed that when the MFA was used for path
planning, the robot’s trajectory length was shorter compared to the standard GA and FA,
thus improving the efficiency of mobile robot operations. This laid the foundation for
research on mobile robot path planning in unknown environments.

In 2020, to address the issue of the standard FA frequently becoming trapped in local
optima and improve its performance, ref. [120] suggested an improved adaptive dynamic
fuzzy planning FA algorithm (ADFA) by introducing standard fuzzy rules. A dynamic
adaptive FA algorithm (GDAFA) was proposed in [114]. The global movement mechanism
in this improved algorithm facilitated the dynamic modification of step size and attrac-
tiveness. The overall evolutionary optimization efficiency of the strategy was enhanced
by combining a Gaussian distribution with an adaptive deviation strategy based on opti-
mal distance. The GDAFA demonstrated significant advantages in terms of convergence
time as well as solution correctness through validation utilizing 18 distinct optimization
characteristics of classical test functions and engineering constraint issues.

In 2023, a hybrid FA-TPM strategy for complicated dynamic situations was proposed
in [121]. This new system employed an adaptive selection strategy based on changes in the
environment to allow mobile robots to swiftly determine the most effective collision-free
path. The effectiveness of the algorithm was confirmed using real-world validation with a
robot powered by an Atmel ATMEGA8 central CPU and OpenGL simulation on a software
platform.

From 2015 to 2022, FA algorithms have achieved significant results in the field of
mobile robot path planning. Table 5 summarizes some of the key research results.
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Table 5. The significant research progress of the FA in mobile robot path planning.

Year Research Focus Examples of Research

Before 2018 Optimal path search in multi-objective
optimization requirements

[110]
[115]
[116]

Before 2018 Multi-robot coordination in complex
static environments

[115]
[116]

After 2019 Extension to dynamic and
high-dimensional environments

[112]
[118]
[119]
[121]

After 2020 Advancements in parameter optimization
and hybrid intelligence algorithms

[112]
[118]
[119]
[120]

After 2023 Advancements in parameter optimization
and hybrid intelligence algorithms [121]

3.2. Cuckoo Search Algorithm

The cuckoo, a bird found in nature, possesses a beautiful song, but along with its
melodious tunes, it exhibits aggressive behavior in its brood parasitism. Cuckoos can mimic
the color and pattern of host bird eggs, allowing them to deceive other birds by laying their
eggs in the host birds’ nests. Host birds have two ways of dealing with parasitic cuckoo
eggs: either abandoning the eggs and the nest or incubating the cuckoo eggs. If the eggs are
successfully hatched, the cuckoo chicks will push the host’s eggs out of the nest during their
growth process. Yang and Deb presented the CS in 2008 [122], a metaheuristic algorithm
that was motivated by the cuckoos’ natural parasitic activity. As shown in Figure 7, the
CS developed by Yang and Deb simulates the parasitic behavior of cuckoos and follows
three idealized criteria: (1) a cuckoo can only lay one egg at a time and randomly place
it in a host nest; (2) nests with high-quality eggs (solutions) are preserved for the next
generation; (3) the probability of a host bird discovering a parasitic egg is denoted as Pa
(where Pa ∈ (0, 1)). The objective of these three criteria is to achieve an optimal solution
search in the CS, implementing the idea of the algorithm: replacing less promising solutions
with potentially better ones [123]. The CS is based on the Levy flight criterion, which differs
from the random step size mechanism. In Levy flight, the step size follows a heavy tailed
distribution, enabling the algorithm to explore feasible solutions more effectively [124].
Algorithm 2 shows the pseudo-code diagram of the CS.
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Algorithm 2: The Pseudo-code diagram of the CS

Input:
Population size (n)
Maximum number of iterations (max_iterations)
Cuckoo egg laying rate (pa)
Step size scaling factor (alpha)
Lower bounds of variables (lb)
Upper bounds of variables (ub)
Objective function to be optimized (f)
While (t < max_iterations),
for i = 1 : n (population size(n))

for j = 1 : n (population size(n))
if (Ii < Ij)

Initialize fireflies[i][j] randomly between lb[j] and ub[j]
end if

Evaluate new solutions and update light intensity.
end for j

end for i
Rank the cuckoo and find the current global best position
end while
Output:
The best solution found (the cuckoo with the highest fitness)

Since the introduction of the CS, it has been widely applied in various engineering
problems, including image processing, robotics, biotechnology, and predictive modeling,
due to its minimal initialization parameters and simple principles, making it suitable for
multi-objective optimization problems. Ref. [103] compiled and categorized 12 typical
variants of the CS and their respective application domains from its inception to 2017.
Ref. [125] provided a concise summary of the development of the variants of the CS, which
can be broadly categorized into two groups: (1) directly optimizing the basic parameters of
the step size and (2) indirectly optimizing the basic parameters of the step size. The first
group either introduces a dynamic adaptive approach using the conventional parameters
or replaces the Levy distribution with another distribution form, such as the Gaussian
or Cauchy distribution. The second group develops a new mathematical function model
to regulate the parameters for updating the position at each iteration, combining the
benefits of various algorithms with the CS. In addition, a fresh version of the CS (NMS-CS)
was put forth in [125], and 23 traditional benchmark functions are used to demonstrate
its effectiveness. Additionally, utilizing three engineering design issues, the accuracy of
the proposed variant strategy was compared with the PSO, GSA, and GWO algorithms,
demonstrating the effectiveness of the NMS-CS in addressing multi-constraint optimization
problems.

For the mobile robot path-planning problems, in 2015, a hybrid optimization algorithm
for navigation of multiple mobile robots (CS-ANFIS) based on the CS and least squares
estimation (LSE) was proposed in [126]. The ANFIS parameters were optimized using
the CS and LSE, and the mobile robot’s turning angle was determined to prevent robot
collisions. Real mobile robots were employed to verify the strategy, while simulation
experiments were carried out in a static environment. The results demonstrated that the
proposed strategy is adaptable to any difficult environment. It was recommended that
dynamic obstacles be taken into account in future advancements in mobile robot technology.

In 2018, a dynamic adaptive CS algorithm (ACS) was put forth in [127] to address the
issue of safe navigation of mobile robots in chaotic environments. This dynamic strategy
identified the most optimal target direction based on the fitness function value by first
evaluating the mobile robot’s position regarding the goal and obstacles. Ref. [127] was the
initial attempt to use the dynamic adaptive CS algorithm in mobile robot path planning,
serving as the basis for further study. In the same year, ref. [128] provided an improved
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strategy for the CS-bat hybrid algorithm. Ref. [128] provided a new strategy for optimizing
algorithms by combining two or more metaheuristic algorithms. However, the hybrid
algorithm presented in [128] focused on path planning in static environments, and future
research in this field should expand to complex dynamic environments.

In 2019, research on the CS in mobile robot path planning mainly focused on the ex-
tension and application of the dynamic adaptive strategy proposed in [127] and the hybrid
intelligent algorithm strategy proposed in [128]. In [129], the challenge of spatially optimal
path planning for moving robots was discussed, and a hybrid genetic cuckoo algorithm was
suggested. This hybrid strategy eliminated the reliance on algorithm parameters by intro-
ducing the crossover and mutation processes of the genetic algorithm into the population
initialization phase of the standard CS. The weaknesses of a single algorithm were made
up for by the hybrid algorithm. Based on the results of the simulation, it was demonstrated
that the hybrid algorithm could reconcile the conflict between computing time and an
optimal solution. In [130], an improved CS algorithm (chaotic CS) was applied to UCAV
path planning. To improve the dynamic flexibility of the initial parameters throughout
the iteration process as well as the search effectiveness of the algorithm in locating global
optimal solutions, the circular chaotic mapping concept was added to the standard CS.
Through trials on six benchmark functions, the performance of the chaotic CS was ex-
amined. This showed how flexible the hybrid algorithm is when it comes to optimizing
complex and multimodal objective functions. For the three-dimensional path planning of
mobile robots, ref. [102] proposed an improved CS algorithm based on compact parallel
technology. The concept of a compact algorithm was introduced into the standard CS using
a probability model to represent the entire population. With less storage consumption,
this method produced a performance that was comparable to the standard algorithm. To
further enhance the performance of the compact algorithm, a parallel strategy was intro-
duced. The proposed parallel CCS algorithm outperformed the ACS proposed in [127] on
16 benchmark functions, but it exhibited poor performance on certain benchmark functions
(f7, f9, f10, etc.).

Based on [127], ref. [131], published in 2020, provided an intelligent SCS algorithm
and developed a new fitness function. To address the weak convergence issue of the
standard CS, they created an adaptive dynamic tuning parameter mechanism. According
to simulation results, the SCS can adapt to various environments and navigate smoothly
and safely to their destination. In the same year, ref. [132] presented an improved CS
algorithm based on a competition selection function. Instead of using the random selection
idea included in the standard CS, this algorithm replaced it with a competition selection
function that calculated the best route for robots from their initial position to their final
position. Instead of using the random selection idea included in the standard CS, this
algorithm replaced it with a competition selection function that calculated the best route for
robots from their initial position to their final position. The introduction of the competition
selection function mechanism overcame the problem of robots becoming stuck in local
minima while searching in the search space, increasing the probability of finding the optimal
result. When testing this improved algorithm in a multi-robot system, experimental results
demonstrated a 5–8% improvement in computational time and path length.

In 2021, based on the multi-robot path planning proposed in [126], ref. [104] presented
a dual-robot global path-planning algorithm based on the CS. Through simulations, the
algorithm was shown to possess better global planning capability.

In 2022, ref. [133] presented a cuckoo-beetle hybrid algorithm (CBSS), combining
beetle populations into the cuckoo population to address the path-planning problems of
heterogeneous robots. The standard CS frequently runs into problems including premature
convergence and local minima. The proposed CBSS was applied to two-dimensional
and three-dimensional path planning for heterogeneous robots. In comparison to earlier
proposed similar algorithms, the CBSS could guarantee locating the shortest global optimal
path on maps of various dimensions and types.
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From 2018 to 2022, CS algorithms have achieved significant results in the field of
mobile robot path planning. Table 6 summarizes some of the key research results.

Table 6. The significant research progress of the CS in mobile robot path planning.

Year Research Milestones and Algorithms Literature References

2015 Initial research on CS-ANFIS for multi-mobile
robot navigation and optimization [126]

2016
Continued focus on CS-ANFIS as a hybrid

intelligent algorithm for mobile robot
path planning

—

2017 CS-ANFIS remained a significant research focus
in mobile robot path planning —

2018

Introduction of dynamic adaptive optimization
CS algorithm (ACS) for unstructured mobile

robot path planning;
proposal of CS-bat algorithm

[127]
[128]

2019

The emergence of several algorithms for optimal
path planning in multi-dimensional spaces:

hybrid genetic-cuckoo algorithm; chaotic CS
algorithm; parallel CCS algorithm; intelligent

SCS algorithm

[129]
[130]
[102]

2020 Continued research on algorithms for mobile
robot path planning in multi-dimensional spaces

[131]
[132]

2021

The research focus shifted to collaborative
path-planning for multi-mobile robots, especially

heterogeneous robots, in high-dimensional
spatial environments

[104]
[133]

3.3. Other Algorithms

Based on the systematic application summary of the FA and CS in mobile robot
path-planning problems in Sections 3.1 and 3.2, these two intelligent algorithms have
made contributions to various path-planning problems for mobile robots, including path
planning in complex or dynamic environments, multi-objective path planning, and collab-
orative path planning of multiple robots in 3D spatial environments. The application of
nature-inspired heuristic algorithms in mobile robot path planning is not limited to the
FA and CS. In 2015, Mirjalili developed the dragonfly algorithm (DA) [105] by studying
the natural behavior of dragonflies in evading predators and finding food. The following
year, Mirjalili et al. proposed the whale optimization algorithm (WOA) [134], inspired by
the hunting behavior of whales. In 2020, Jian Shuang Cui from Donghua University in
China introduced the sparrow search algorithm (SSA) [135] by simulating the foraging
and anti-predation behavior of sparrows in nature. These three algorithms were proposed
relatively recently, and research on their application in mobile robot path planning is still
relatively scattered, lacking a comprehensive research framework. However, over the past
two years, these three algorithms have made some significant research advances in the
fields of real-time path planning for heterogeneous multi-robot systems in complex multi-
dimensional environments, as well as single/multi-mobile robot path-planning problems
in dynamic unknown environments or complex multi-dimensional environments. They
have paved the way for more study in this area and offered innovative viewpoints.

A similar article [136] in the same year addressed real-time path planning for hy-
brid UAV/UGV systems in unknown 3D environments. They proposed a grid-based
path-planning strategy that combined biomimetic neural networks with an optimized DA
algorithm. The initial search process of the DA algorithm was modified to increase search
efficiency by developing a three-dimensional dynamic motion model based on bio-inspired
neural networks. Simulation experiments demonstrated that the improved dynamic pro-



Electronics 2023, 12, 3263 15 of 22

gramming algorithm effectively accomplished real-time trajectory planning tasks for the
hybrid UAV/UGV systems in different states, including static and dynamic environments,
static and dynamic targets, and more.

In 2021, ref. [137] proposed a fuzzy-WOA optimization strategy by fusing the WOA
with fuzzy control technology. The proposed innovative approach demonstrated a 20.63%
increase in path length through simulation trials that took into account static and dynamic
settings as well as single/multi-robot real-time scenarios. In [138], the exploration prob-
lem of mobile robots in unknown environments was addressed, which also developed
the FMH-WOA integration strategy in a multi-robot detection system. This algorithm
combined deterministic CME technology with the standard WOA. According to simu-
lations, the strategy demonstrated effectiveness in all situations by adding a frequency
modification function to modify the random parameters in the WOA. Ref. [139] provided
an improved ISSA strategy on robot route planning in actual environments based on local
route smoothing (LPS), a neighborhood search approach, and an improved position update
formula. The algorithm’s advantages of quick convergence and robust optimization in
path-planning issues have been verified by simulation studies that proved its effective-
ness. It was additionally stated that the modified algorithm might be used in the future
for dynamic obstacle avoidance and multi-robot path planning. Simulation experiments
verified the algorithm’s effectiveness and verified its advantages of rapid convergence
and robust optimization in path-planning problems. It was additionally suggested that
the modified algorithm might be used in the future for dynamic obstacle avoidance and
multi-robot path planning. An improved fusion strategy for the problem of multiple drone
path planning in complicated hilly situations was put forth in [140]. The SSA, improved
BINN (biogeography-based neural network) technology, and B-spline curve technology
were all combined in this algorithm. The path-planning problem for numerous drones
in complicated mountainous landscapes was successfully solved by the fusion algorithm
through simulation trials and analysis, revealing considerable benefits in terms of safety
and path length. In [107], the path-planning problem for mobile robots in unexplored
environments was discussed, and an improved SSA strategy was suggested. The approach
developed a hybrid fitness function taking into account path length and safety and in-
troduced the fitness-distance-balance (FDB) mechanism and the Harris Hawks algorithm
(HHA) as inspiration. Through CEC2017 experiments, the effectiveness of the suggested
modified ISSA has been verified.

In 2022, ref. [106] aimed to solve the path-planning problem for mobile robots in highly
complex dynamic environments. An improved whale optimization algorithm (NWOA)
was proposed to address issues such as slow convergence speed and lack of dynamic
obstacle avoidance capability in the standard WOA and its optimization variants. The
NWOA incorporated an improved potential field factor into the standard WOA to enhance
the robot’s dynamic obstacle avoidance ability. Simulation experiments showed that the
proposed NWOA exhibited faster convergence speed and improved dynamic planning
performance in mobile robot path planning.

4. Discussion

(1) At present, the FA and CS have formed a preliminary framework in the research of
path planning in complex and multidimensional environments. The future research di-
rection is to further study optimization in algorithm performance based on the existing
optimization techniques with the fusion algorithm and adaptive parameter improve-
ment as the main optimization strategies. Based on the current application research of
the FA in dynamic environments, future research should aim at the improvement and
optimization of the FA in unknown environments and establish a perfect parameter
optimization mechanism to achieve high robustness and high adaptive performance
of the algorithm in unknown environments. The CS shows excellent performance
in dynamic and high-dimensional environments, but most of the algorithms are still
tested in simulation platforms, and a standardized and reasonable evaluation system
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has not been established to evaluate the proposed improvement algorithms, which
makes the proposed improvement algorithms not universal and generalizable. Future
research should establish a standardized mathematical evaluation mechanism to ver-
ify the rationality of the optimization algorithm, and at the same time, the algorithm
effectiveness test should break through the virtual environment established by the
simulation platform and be extended to the real scenario for physical testing. The DA,
WOA, and SSA are cutting-edge research in the field of mobile robot path planning,
especially in dealing with unknown space and heterogeneous multi-robot systems.
However, it is not possible to establish a framework for the optimization of these three
algorithms. Table 7 summarizes the algorithmic complexity and computer hardware
requirements of the FA, CS, DA, SSA, and WOA algorithms to guide subsequent
research.

(2) The focus of future mobile robot path-planning research tends to be (1) solving op-
timization problems in path planning of single or multi-robot systems in complex
dynamic environments with low computational costs; (2) solving safety and smooth-
ness in path planning of spatial robots or heterogeneous robot systems in unknown
multidimensional environments, combined with the ultimate development goal of mo-
bile robots to replace humans in unknown and dangerous environments The ultimate
development goal of mobile robots is to achieve fully autonomous exploration tasks in
unknown hazardous environments instead of humans. Therefore, the path-planning
algorithm research should continue to study in depth the two optimization strategies
of dynamic adaptive optimization of parameters and fusion of intelligent algorithms,
in addition to the combination of general artificial intelligence (GAI) techniques, such
as (AI-generated content, AIGC). The future research direction is to consider the
dynamic parameter adaptive optimization strategy by combining various hyperpara-
metric optimal configuration strategies (HPO), such as resampling error estimation
based on supervised machine learning for adaptive parameter modification, which
will boost the intelligence of these three algorithms in mobile robot path planning.

(3) For multi-objective optimization NP problems such as path planning for mobile robots,
the current technology cannot find one or more algorithms to solve such problems.
The intelligent algorithms reviewed in this paper have shown some intelligence and
effectiveness in dealing with complex optimization problems, but according to the
“No Free Lunch Theorem” (NFL), it is difficult to find a general and effective algorithm
for solving all optimization problems. In particular, in the field of mobile robot path
planning, it is impossible to find one or more metaheuristic algorithms that can adapt
to all environmental states or meet all practical problem requirements, so only suitable
algorithms can be selected according to actual application scenarios or desired goals.
Metaheuristic algorithms are one of the effective algorithms for solving multi-objective
optimization problems, and new metaheuristic algorithms are proposed every year.
However, almost all metaheuristic algorithms suffer from the problem of imbalance
between global and local search ability during the global optimal solution search,
mainly because a complete mathematical analysis theory has not been established to
evaluate the performance of metaheuristic algorithms. The current research mainly
relies on various evaluation mechanisms to subjectively verify the effectiveness of the
algorithms, which lacks objectivity. Future research should be devoted to developing
a sound objective mathematical evaluation mechanism to further improve the balance
between global search and local search of metaheuristic algorithms, thus enhancing
the solution quality.
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Table 7. The analysis of practical applications of algorithms.

Algorithms Computing
Resources

Computational
Complexity

Computational
Time

Requirements for
Onboard Vehicle

Computers

Recommended
Computer

Configuration

FA Moderate to high
CPU and RAM Moderate Moderate

Adequate CPU and RAM
for algorithm execution,

suitable for vehicles with
moderate computing

capabilities

CPU: 4 core
clock speed of 2.5 GHz

or high;
RAM: 8 GB;

Storage: 128 GB

CS Moderate CPU
and RAM Moderate Moderate

Adequate CPU and RAM
for algorithm execution,

suitable for vehicles with
moderate computing

capabilities

CPU: 4 core
clock speed of 2.5 GHz

or high;
RAM: 8 GB;

Storage: 128 GB

WOA Moderate to high
CPU and RAM Moderate Moderate

Adequate CPU and RAM
for algorithm execution,

suitable for vehicles with
moderate computing

capabilities

CPU: 4 core
clock speed of 2.5 GHz

or high;
RAM: 8 GB;

Storage: 128 GB

SSA Low CPU and
RAM Low Low

Low CPU and RAM
requirements, suitable for

vehicles with limited
computing capabilities

CPU: 2 core
clock speed of 2.5 GHz

or high;
RAM: 4 GB;

Storage: 256 GB

DA Moderate CPU
and RAM Moderate Moderate

Reasonably capable CPU
and RAM for algorithm
execution, suitable for

vehicles with moderate
computing capabilities

CPU: 4 core
clock speed of 2.5 GHz

or high;
RAM: 8 GB;

Storage: 128 GB

5. Conclusions

In summary, research in the field of mobile robot path planning has made some
progress, and the FA and CS have shown excellent performance in complex scenarios.
The DA, WOA, and SSA, on the other hand, have the potential for cutting-edge research.
However, to further advance the research, physical testing of the effectiveness of the
algorithms should be enhanced and combined with GAI techniques to develop intelligent
path-planning algorithms for mobile robot systems.

Author Contributions: Conceptualization, Y.X.; methodology, Y.X.; software, Y.X.; validation, Y.X.;
formal analysis, Y.X.; investigation, Q.L.; resources, J.Y.; data curation, X.X.; writing—original draft
preparation, Y.X.; writing—review and editing, J.Y.; visualization, Q.L; supervision, J.Y.; project
administration, Y.C.; funding acquisition, J.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
32072498).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int.

J. Adv. Robot. Syst. 2019, 16, 1729881419839596. [CrossRef]
2. Niloy, M.A.; Shama, A.; Chakrabortty, R.K.; Ryan, M.J.; Badal, F.R.; Tasneem, Z.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F.

Critical design and control issues of indoor autonomous mobile robots: A review. IEEE Access 2021, 9, 35338–35370. [CrossRef]

https://doi.org/10.1177/1729881419839596
https://doi.org/10.1109/ACCESS.2021.3062557


Electronics 2023, 12, 3263 18 of 22

3. Alatise, M.B.; Hancke, G.P. A review on challenges of autonomous mobile robot and sensor fusion methods. IEEE Access 2020, 8,
39830–39846. [CrossRef]

4. Yazdani, A.M.; Sammut, K.; Yakimenko, O.; Lammas, A. A survey of underwater docking guidance systems. Robot. Auton. Syst.
2020, 124, 103382. [CrossRef]

5. Mahmoudzadeh, S.; Abbasi, A.; Yazdani, A.; Wang, H.; Liu, Y. Uninterrupted path planning system for Multi-USV sampling
mission in a cluttered ocean environment. Ocean Eng. 2022, 254, 111328. [CrossRef]

6. Gu, Z.; Ahn, C.K.; Yan, S.; Xie, X.; Yue, D. Event-Triggered Filter Design Based on Average Measurement Output for Networked
Unmanned Surface Vehicles. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3804–3808. [CrossRef]

7. Fang, S.; Ru, Y.; Liu, Y.; Hu, C.; Chen, X.; Liu, B. Route planning of helicopters spraying operations in multiple forest areas. Forests
2021, 12, 1658. [CrossRef]

8. Wu, Y.; Xie, F.; Huang, L.; Sun, R.; Yang, J.; Yu, Q. Convolutionally evaluated gradient first search path planning algorithm
without prior global maps. Robot. Auton. Syst. 2022, 150, 103985. [CrossRef]

9. Wang, X.; Ma, X.; Li, Z. Research on SLAM and Path Planning Method of Inspection Robot in Complex Scenarios. Electronics 2023,
12, 2178. [CrossRef]

10. Liu, L.; Wang, X.; Yang, X.; Liu, H.; Li, J.; Wang, P. Path planning techniques for mobile robots: Review and prospect. Expert Syst.
Appl. 2023, 227, 120254. [CrossRef]

11. Abbasi, A.; MahmoudZadeh, S.; Yazdani, A.; Moshayedi, A.J. Feasibility assessment of Kian-I mobile robot for autonomous
navigation. Neural Comput Applic 2022, 34, 1199–1218. [CrossRef]

12. Panigrahi, P.K.; Bisoy, S.K. Localization strategies for autonomous mobile robots: A review. J. King Saud Univ.-Comput. Inf. Sci.
2022, 34, 6019–6039. [CrossRef]

13. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 2016, 86,
13–28. [CrossRef]

14. Ajeil, F.H.; Ibraheem, I.K.; Azar, A.T.; Humaidi, A.J. Autonomous navigation and obstacle avoidance of an omnidirectional mobile
robot using swarm optimization and sensors deployment. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420929498. [CrossRef]

15. Jawad, M.M.; Hadi, E.A. A Comparative study of various intelligent algorithms based path planning for Mobile Robots. J. Eng.
2019, 25, 83–100. [CrossRef]

16. Erickson, L.; LaValle, S. A simple, but NP-hard, motion planning problem. Proc. AAAI Conf. Artif. Intell. 2013, 27, 1388–1393.
[CrossRef]

17. Chen, B.; Quan, G. NP-hard problems of learning from examples. In Proceedings of the 2008 Fifth International Conference on
Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20 October 2008; Volume 2, pp. 182–186.

18. Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A review of motion planning for highway autonomous driving. IEEE Trans.
Intell. Transp. Syst. 2019, 21, 1826–1848. [CrossRef]

19. Zafar, M.N.; Mohanta, J.C. Methodology for path planning and optimization of mobile robots: A review. Procedia Comput. Sci.
2018, 133, 141–152. [CrossRef]

20. Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones
2023, 7, 211. [CrossRef]

21. Abdallah, M.; Abdelsalam, I.; Abu-Rub, H.; Agustin, C.A.; Ahmad, A.; Ahmed, N.A.; Akbarzadeh, A. 2022 Index IEEE Open
Journal of the Industrial Electronics Society Vol. 3. IEEE Open J. Ind. Electron. Soc. 2022, 3, 778–790. [CrossRef]

22. Reda, M.; Onsy, A.; Elhosseini, M.A.; Haikal, A.Y.; Badawy, M. A discrete variant of cuckoo search algorithm to solve the
Travelling Salesman Problem and path planning for autonomous trolley inside warehouse. Knowl.-Based Syst. 2022, 252, 109290.
[CrossRef]

23. Wu, B.; Chi, X.; Zhao, C.; Zhang, W.; Lu, Y.; Jiang, D. Dynamic Path Planning for Forklift AGV Based on Smoothing A* and
Improved DWA Hybrid Algorithm. Sensors 2022, 22, 7079. [CrossRef]

24. Fausto, F.; Reyna-Orta, A.; Cuevas, E.; Andrade, Á.G.; Perez-Cisneros, M. From ants to whales: Metaheuristics for all tastes. Artif.
Intell. Rev. 2020, 53, 753–810. [CrossRef]

25. Pelteret, J.-P.; Walter, B.; Steinmann, P. Application of metaheuristic algorithms to the identification of nonlinear magneto-
viscoelastic constitutive parameters. J. Magn. Magn. Mater. 2018, 464, 116–131. [CrossRef]

26. Kaveh, M.; Mesgari, M.S. Application of meta-heuristic algorithms for training neural networks and deep learning architectures:
A comprehensive review. Neural Process. Lett. 2022, 1–104. [CrossRef]

27. Chong, H.Y.; Yap, H.J.; Tan, S.C.; Yap, K.S.; Wong, S.Y. Advances of metaheuristic algorithms in training neural networks for
industrial applications. Soft Comput. 2021, 25, 11209–11233. [CrossRef]

28. Aryafar, A.; Mikaeil, R.; Haghshenas, S.S.; Haghshenas, S.S. Application of metaheuristic algorithms to optimal clustering of
sawing machine vibration. Measurement 2018, 124, 20–31. [CrossRef]

29. Soler-Dominguez, A.; Juan, A.A.; Kizys, R. A survey on financial applications of metaheuristics. ACM Comput. Surv. 2017, 50,
1–23. [CrossRef]

30. Iwendi, C.; Maddikunta, P.K.R.; Gadekallu, T.R.; Lakshmanna, K.; Bashir, A.K.; Piran, M.J. A metaheuristic optimization approach
for energy efficiency in the IoT networks. Softw. Pract. Exp. 2021, 51, 2558–2571. [CrossRef]

31. De León-Aldaco, S.E.; Calleja, H.; Alquicira, J.A. Metaheuristic optimization methods applied to power converters: A review.
IEEE Trans. Power Electron. 2015, 30, 6791–6803. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.2975643
https://doi.org/10.1016/j.robot.2019.103382
https://doi.org/10.1016/j.oceaneng.2022.111328
https://doi.org/10.1109/TCSII.2022.3175221
https://doi.org/10.3390/f12121658
https://doi.org/10.1016/j.robot.2021.103985
https://doi.org/10.3390/electronics12102178
https://doi.org/10.1016/j.eswa.2023.120254
https://doi.org/10.1007/s00521-021-06428-2
https://doi.org/10.1016/j.jksuci.2021.02.015
https://doi.org/10.1016/j.robot.2016.08.001
https://doi.org/10.1177/1729881420929498
https://doi.org/10.31026/j.eng.2019.06.07
https://doi.org/10.1609/aaai.v27i1.8545
https://doi.org/10.1109/TITS.2019.2913998
https://doi.org/10.1016/j.procs.2018.07.018
https://doi.org/10.3390/drones7030211
https://doi.org/10.1109/OJIES.2023.3234634
https://doi.org/10.1016/j.knosys.2022.109290
https://doi.org/10.3390/s22187079
https://doi.org/10.1007/s10462-018-09676-2
https://doi.org/10.1016/j.jmmm.2018.02.094
https://doi.org/10.1007/s11063-022-11055-6
https://doi.org/10.1007/s00500-021-05886-z
https://doi.org/10.1016/j.measurement.2018.03.056
https://doi.org/10.1145/3054133
https://doi.org/10.1002/spe.2797
https://doi.org/10.1109/TPEL.2015.2397311


Electronics 2023, 12, 3263 19 of 22

32. Chicco, G.; Mazza, A. Metaheuristic optimization of power and energy systems: Underlying principles and main issues of the
‘rush to heuristics’. Energies 2020, 13, 5097. [CrossRef]

33. Abd Elaziz, M.; Elsheikh, A.H.; Oliva, D.; Abualigah, L.; Lu, S.; Ewees, A.A. Advanced metaheuristic techniques for mechanical
design problems. Arch. Comput. Methods Eng. 2021, 29, 695–716. [CrossRef]

34. Deng, X.; Li, R.; Zhao, L.; Wang, K.; Gui, X. Multi-obstacle path planning and optimization for mobile robot. Expert Syst. Appl.
2021, 183, 115445. [CrossRef]

35. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comparative review on mobile robot path planning: Classical or meta-heuristic
methods? Annu. Rev. Control 2020, 50, 233–252. [CrossRef]

36. Gangadharan, M.M.; Salgaonkar, A. Ant colony optimization and firefly algorithms for robotic motion planning in dynamic
environments. Eng. Rep. 2020, 2, e12132. [CrossRef]

37. Patle, B.K.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def.
Technol. 2019, 15, 582–606.

38. Ye, M.; Yan, X.; Jia, M. Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM. Entropy 2021, 23, 762. [CrossRef]
39. Yang, L.; Fu, L.; Li, P.; Mao, J.; Guo, N.; Du, L. LF-ACO: An effective formation path planning for multi-mobile robot. Math. Biosci.

Eng 2022, 19, 225–252. [CrossRef]
40. Chen, Y.; Bai, G.; Zhan, Y.; Hu, X.; Liu, J. Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid

algorithm with adaptive early-warning. IEEE Access 2021, 9, 40728–40742. [CrossRef]
41. Lyridis, D.V. An improved ant colony optimization algorithm for unmanned surface vehicle local path planning with multi-

modality constraints. Ocean Eng. 2021, 241, 109890. [CrossRef]
42. Saeed, R.A.; Omri, M.; Abdel-Khalek, S.; Ali, E.S.; Alotaibi, M.F. Optimal path planning for drones based on swarm intelligence

algorithm. Neural Comput. Appl. 2022, 34, 10133–10155. [CrossRef]
43. Wang, Y.; Wang, S. UAV path planning based on improved particle swarm optimization. Comput. Eng. Sci. 2020, 42, 1690.
44. Xiong, C.; Chen, D.; Lu, D.; Zeng, Z.; Lian, L. Path planning of multiple autonomous marine vehicles for adaptive sampling using

Voronoi-based ant colony optimization. Robot. Auton. Syst. 2019, 115, 90–103. [CrossRef]
45. Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic

competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007;
pp. 4661–4667.

46. Tan, Y.; Zhu, Y. Fireworks algorithm for optimization. In Proceedings of the Advances in Swarm Intelligence: First International
Conference, ICSI 2010, Beijing, China, 12–15 June 2010; Proceedings, Part I 1. Springer: Berlin/Heidelberg, Germany, 2010;
pp. 355–364.

47. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.
[CrossRef]

48. Kashan, A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships.
Appl. Soft Comput. 2014, 16, 171–200. [CrossRef]

49. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
50. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
51. Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111. [CrossRef]
52. Kaveh, A.; Talatahari, S. Charged system search for optimal design of frame structures. Appl. Soft Comput. 2012, 12, 382–393.

[CrossRef]
53. d’Auvergne, E.J.; Gooley, P.R. Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within

the model-free and Brownian rotational diffusion spaces. J. Biomol. NMR 2008, 40, 107–119. [CrossRef]
54. Yang, X.-S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50. [CrossRef]
55. Fister, I.; Fister, I., Jr.; Yang, X.-S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput. 2013, 13, 34–46.

[CrossRef]
56. Ezugwu, A.E.; Shukla, A.K.; Nath, R.; Akinyelu, A.A.; Agushaka, J.O.; Chiroma, H.; Muhuri, P.K. Metaheuristics: A comprehen-

sive overview and classification along with bibliometric analysis. Artif. Intell. Rev. 2021, 54, 4237–4316.
57. Yang, X.-S. Mathematical analysis of nature-inspired algorithms. Nat.-Inspired Algorithms Appl. Optim. 2018, 744, 1–25.
58. Wong, W.K.; Ming, C.I. A review on metaheuristic algorithms: Recent trends, benchmarking and applications. In Proceedings of

the 2019 7th International Conference on Smart Computing & Communications (ICSCC), Sarawak, Malaysia, 28–30 June 2019;
pp. 1–5.

59. Halim, A.H.; Ismail, I.; Das, S. Performance assessment of the metaheuristic optimization algorithms: An exhaustive review. Artif.
Intell. Rev. 2021, 54, 2323–2409.

60. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. Comput. Intell. Multimed.
Big Data Cloud Eng. Appl. 2018, 185–231. [CrossRef]

61. Laporte, G.; Osman, I.H. Routing problems: A bibliography. Ann. Oper. Res. 1995, 61, 227–262. [CrossRef]
62. Hussain, K.; Mohd Salleh, M.N.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019, 52,

2191–2233. [CrossRef]

https://doi.org/10.3390/en13195097
https://doi.org/10.1007/s11831-021-09589-4
https://doi.org/10.1016/j.eswa.2021.115445
https://doi.org/10.1016/j.arcontrol.2020.10.001
https://doi.org/10.1002/eng2.12132
https://doi.org/10.3390/e23060762
https://doi.org/10.3934/mbe.2022012
https://doi.org/10.1109/ACCESS.2021.3062375
https://doi.org/10.1016/j.oceaneng.2021.109890
https://doi.org/10.1007/s00521-022-06998-9
https://doi.org/10.1016/j.robot.2019.02.002
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1016/j.asoc.2013.12.005
https://doi.org/10.1016/j.ins.2012.08.023
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1016/j.asoc.2011.08.034
https://doi.org/10.1007/s10858-007-9214-2
https://doi.org/10.1504/IJSI.2013.055801
https://doi.org/10.1016/j.swevo.2013.06.001
https://doi.org/10.1016/B978-0-12-813314-9.00010-4
https://doi.org/10.1007/BF02098290
https://doi.org/10.1007/s10462-017-9605-z


Electronics 2023, 12, 3263 20 of 22

63. Chiarandini, M.; Paquete, L.; Preuss, M.; Ridge, E. Experiments on metaheuristics: Methodological overview and open issues.
Tech. Rep. 2007. Available online: https://www.researchgate.net/publication/216300436_Experiments_on_metaheuristics_
methodological_overview_and_open_issues (accessed on 1 April 2023).

64. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
65. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]

[PubMed]
66. Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
67. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
68. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Piscataway, NJ, USA, 6–9 July 1999; Volume 2, pp. 1470–1477.
69. Molina, D.; Poyatos, J.; Ser, J.D.; García, S.; Hussain, A.; Herrera, F. Comprehensive taxonomies of nature-and bio-inspired

optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cogn. Comput. 2020, 12, 897–939.
70. Agushaka, J.O.; Ezugwu, A.E. Initialisation approaches for population-based metaheuristic algorithms: A comprehensive review.

Appl. Sci. 2022, 12, 896. [CrossRef]
71. Tzanetos, A.; Dounias, G. Nature inspired optimization algorithms or simply variations of metaheuristics? Artif. Intell. Rev. 2021,

54, 1841–1862. [CrossRef]
72. Fister, I., Jr.; Yang, X.-S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013,

arXiv:1307.4186.
73. Gharehchopogh, F.S. Quantum-Inspired Metaheuristic Algorithms: Comprehensive Survey and Classification. Artif. Intell. Rev.

2023, 56, 5479–5543. [CrossRef]
74. Yang, X.-S.; Deb, S.; Fong, S.; He, X.; Zhao, Y.-X. From swarm intelligence to metaheuristics: Nature-inspired optimization

algorithms. Computer 2016, 49, 52–59. [CrossRef]
75. LaTorre, A.; Molina, D.; Osaba, E.; Poyatos, J.; Del Ser, J.; Herrera, F. A prescription of methodological guidelines for comparing

bio-inspired optimization algorithms. Swarm Evol. Comput. 2021, 67, 100973. [CrossRef]
76. Ng, K.K.H.; Lee, C.K.; Chan, F.T.; Lv, Y. Review on meta-heuristics approaches for airside operation research. Appl. Soft Comput.

2018, 66, 104–133. [CrossRef]
77. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Naseem, R. Common benchmark functions for metaheuristic evaluation: A review. Int. J.

Inform. Vis. 2017, 1, 218–223. [CrossRef]
78. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L.; Alharbi, S.K.; Khalifa, H.A.E.-W. Efficient Initialization Methods for Population-

Based Metaheuristic Algorithms: A Comparative Study. Arch. Comput. Methods Eng. 2023, 30, 1727–1787. [CrossRef]
79. Shin, J.-J.; Bang, H. UAV path planning under dynamic threats using an improved PSO algorithm. Int. J. Aerosp. Eng. 2020, 2020,

1–17. [CrossRef]
80. Wang, Y.; Bai, P.; Liang, X.; Wang, W.; Zhang, J.; Fu, Q. Reconnaissance mission conducted by UAV swarms based on distributed

PSO path planning algorithms. IEEE Access 2019, 7, 105086–105099. [CrossRef]
81. Shao, S.; Peng, Y.; He, C.; Du, Y. Efficient path planning for UAV formation via comprehensively improved particle swarm

optimization. ISA Trans. 2020, 97, 415–430. [CrossRef] [PubMed]
82. Krell, E.; Sheta, A.; Balasubramanian, A.P.R.; King, S.A. Collision-free autonomous robot navigation in unknown environments

utilizing PSO for path planning. J. Artif. Intell. Soft Comput. Res. 2019, 9, 267–282. [CrossRef]
83. Che, G.; Liu, L.; Yu, Z. An improved ant colony optimization algorithm based on particle swarm optimization algorithm for path

planning of autonomous underwater vehicle. J. Ambient Intell. Humaniz. Comput. 2020, 11, 3349–3354. [CrossRef]
84. Hamad, I.; Hasan, M. A Review: On Using Aco Based Hybrid Algorithms for Path Planning of Multi-Mobile Robotics. 2020.

Available online: https://www.learntechlib.org/p/218328/ (accessed on 20 April 2023).
85. Jing, Y.; Luo, C.; Liu, G. Multiobjective path optimization for autonomous land levelling operations based on an improved

MOEA/D-ACO. Comput. Electron. Agric. 2022, 197, 106995. [CrossRef]
86. Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm.

Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]
87. Liang, X.; Li, L.; Wu, J.; Chen, H. Mobile robot path planning based on adaptive bacterial foraging algorithm. J. Cent. South Univ.

2013, 20, 3391–3400. [CrossRef]
88. Xu, F.; Li, H.; Pun, C.-M.; Hu, H.; Li, Y.; Song, Y.; Gao, H. A new global best guided artificial bee colony algorithm with application

in robot path planning. Appl. Soft Comput. 2020, 88, 106037. [CrossRef]
89. Han, Z.; Chen, M.; Shao, S.; Wu, Q. Improved artificial bee colony algorithm-based path planning of unmanned autonomous

helicopter using multi-strategy evolutionary learning. Aerosp. Sci. Technol. 2022, 122, 107374. [CrossRef]
90. Kumar, S.; Sikander, A. Optimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary

programming. Arab. J. Sci. Eng. 2022, 47, 3519–3539. [CrossRef]
91. Gul, F.; Rahiman, W.; Alhady, S.S.N.; Ali, A.; Mir, I.; Jalil, A. Meta-heuristic approach for solving multi-objective path planning for

autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient Intell. Humaniz.
Comput. 2021, 12, 7873–7890. [CrossRef]

https://www.researchgate.net/publication/216300436_Experiments_on_metaheuristics_methodological_overview_and_open_issues
https://www.researchgate.net/publication/216300436_Experiments_on_metaheuristics_methodological_overview_and_open_issues
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1126/science.220.4598.671
https://www.ncbi.nlm.nih.gov/pubmed/17813860
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.3390/app12020896
https://doi.org/10.1007/s10462-020-09893-8
https://doi.org/10.1007/s10462-022-10280-8
https://doi.org/10.1109/MC.2016.292
https://doi.org/10.1016/j.swevo.2021.100973
https://doi.org/10.1016/j.asoc.2018.02.013
https://doi.org/10.30630/joiv.1.4-2.65
https://doi.org/10.1007/s11831-022-09850-4
https://doi.org/10.1155/2020/8820284
https://doi.org/10.1109/ACCESS.2019.2932008
https://doi.org/10.1016/j.isatra.2019.08.018
https://www.ncbi.nlm.nih.gov/pubmed/31416619
https://doi.org/10.2478/jaiscr-2019-0008
https://doi.org/10.1007/s12652-019-01531-8
https://www.learntechlib.org/p/218328/
https://doi.org/10.1016/j.compag.2022.106995
https://doi.org/10.1016/j.cie.2021.107230
https://doi.org/10.1007/s11771-013-1864-5
https://doi.org/10.1016/j.asoc.2019.106037
https://doi.org/10.1016/j.ast.2022.107374
https://doi.org/10.1007/s13369-021-06326-8
https://doi.org/10.1007/s12652-020-02514-w


Electronics 2023, 12, 3263 21 of 22

92. Kiani, F.; Seyyedabbasi, A.; Aliyev, R.; Gulle, M.U.; Basyildiz, H.; Shah, M.A. Adapted-RRT: Novel hybrid method to solve
three-dimensional path planning problem using sampling and metaheuristic-based algorithms. Neural Comput. Appl. 2021, 33,
15569–15599. [CrossRef]

93. Kumar, R.; Singh, L.; Tiwari, R. Path planning for the autonomous robots using modified grey wolf optimization approach. J.
Intell. Fuzzy Syst. 2021, 40, 9453–9470. [CrossRef]

94. Dewangan, R.K.; Shukla, A.; Godfrey, W.W. Three dimensional path planning using Grey wolf optimizer for UAVs. Appl. Intell.
2019, 49, 2201–2217. [CrossRef]

95. Gul, F.; Mir, I.; Alarabiat, D.; Alabool, H.M.; Abualigah, L.; Mir, S. Implementation of bio-inspired hybrid algorithm with mutation
operator for robotic path planning. J. Parallel Distrib. Comput. 2022, 169, 171–184. [CrossRef]

96. Jiang, W.; Lyu, Y.; Li, Y.; Guo, Y.; Zhang, W. UAV path planning and collision avoidance in 3D environments based on POMPD
and improved grey wolf optimizer. Aerosp. Sci. Technol. 2022, 121, 107314. [CrossRef]

97. Qu, C.; Gai, W.; Zhang, J.; Zhong, M. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path
planning. Knowl.-Based Syst. 2020, 194, 105530. [CrossRef]

98. Yu, X.; Jiang, N.; Wang, X.; Li, M. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path
planning. Expert Syst. Appl. 2023, 215, 119327. [CrossRef]

99. Wang, H.; Zhou, X.; Sun, H.; Yu, X.; Zhao, J.; Zhang, H.; Cui, L. Firefly algorithm with adaptive control parameters. Soft Comput.
2017, 21, 5091–5102. [CrossRef]

100. Wang, H.; Wang, W.; Zhou, X.; Sun, H.; Zhao, J.; Yu, X.; Cui, Z. Firefly algorithm with neighborhood attraction. Inf. Sci. 2017, 382,
374–387. [CrossRef]

101. Wang, H.; Wang, W.; Sun, H.; Rahnamayan, S. Firefly algorithm with random attraction. Int. J. Bio-Inspired Comput. 2016, 8, 33–41.
[CrossRef]

102. Song, P.-C.; Pan, J.-S.; Chu, S.-C. A parallel compact cuckoo search algorithm for three-dimensional path planning. Appl. Soft
Comput. 2020, 94, 106443. [CrossRef]

103. Rakesh, S.; Mahesh, S. A comprehensive overview on variants of CUCKOO search algorithm and applications. In Proceedings
of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques
(ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 1–5.

104. Sahu, B.; Das, P.K.; Kabat, M.R. Cuckoo Search Applied Path Planning of Twin Robot in Multi-Robot Environment. In Next
Generation of Internet of Things: Proceedings of ICNGIoT 2021; Springer: Singapore, 2021; pp. 39–50.

105. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and
multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]

106. Dai, Y.; Yu, J.; Zhang, C.; Zhan, B.; Zheng, X. A novel whale optimization algorithm of path planning strategy for mobile robots.
Appl. Intell. 2022, 53, 10843–10857. [CrossRef]

107. Zhang, G.; Zhang, E. An improved sparrow search based intelligent navigational algorithm for local path planning of mobile
robot. J. Ambient Intell. Humaniz. Comput. 2022, 1–13. [CrossRef]

108. Sánchez-Ibáñez, J.R.; Pérez-del-Pulgar, C.J.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors
2021, 21, 7898. [CrossRef]

109. Yang, X.-S. Firefly algorithms for multimodal optimization. In Proceedings of the Stochastic Algorithms: Foundations and Applica-
tions: 5th International Symposium, SAGA 2009, Sapporo, Japan, 26–28 October 2009; Proceedings 5. Springer: Berlin/Heidelberg,
Germany, 2009; pp. 169–178.

110. Panda, M.R.; Dutta, S.; Pradhan, S. Hybridizing invasive weed optimization with firefly algorithm for multi-robot motion
planning. Arab. J. Sci. Eng. 2018, 43, 4029–4039. [CrossRef]

111. Zhang, T.-W.; Xu, G.-H.; Zhan, X.-S.; Han, T. A new hybrid algorithm for path planning of mobile robot. J. Supercomput. 2022, 78,
4158–4181. [CrossRef]

112. Zhou, J.; Chen, P.; Liu, H.; Gu, J.; Zhang, H.; Chen, H.; Zhou, H. Improved path planning for mobile robot based on firefly
algorithm. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8
December 2019; pp. 2885–2889.

113. Wang, C.; Liu, K. A randomly guided firefly algorithm based on elitist strategy and its applications. IEEE Access 2019, 7,
130373–130387. [CrossRef]

114. Liu, J.; Mao, Y.; Liu, X.; Li, Y. A dynamic adaptive firefly algorithm with globally orientation. Math. Comput. Simul. 2020, 174,
76–101. [CrossRef]

115. Hidalgo-Paniagua, A.; Vega-Rodríguez, M.A.; Ferruz, J.; Pavón, N. Solving the multi-objective path planning problem in mobile
robotics with a firefly-based approach. Soft Comput. 2017, 21, 949–964. [CrossRef]

116. Chen, X.; Zhou, M.; Huang, J.; Luo, Z. Global path planning using modified firefly algorithm. In Proceedings of the 2017
International Symposium on Micro-NanoMechatronics and Human Science (MHS), Nagoya, Japan, 3–6 December 2017; pp. 1–7.

117. Goel, R.; Maini, R. A hybrid of ant colony and firefly algorithms (HAFA) for solving vehicle routing problems. J. Comput. Sci.
2018, 25, 28–37. [CrossRef]

118. Hassan, A.K.A.; Fadhil, D.J. Mobile Robot Path Planning Method Using Firefly Algorithm for 3D Sphere Dynamic & Partially
Known Environment. J. Univ. Babylon Pure Appl. Sci. 2018, 26, 309–320.

https://doi.org/10.1007/s00521-021-06179-0
https://doi.org/10.3233/JIFS-201926
https://doi.org/10.1007/s10489-018-1384-y
https://doi.org/10.1016/j.jpdc.2022.06.014
https://doi.org/10.1016/j.ast.2021.107314
https://doi.org/10.1016/j.knosys.2020.105530
https://doi.org/10.1016/j.eswa.2022.119327
https://doi.org/10.1007/s00500-016-2104-3
https://doi.org/10.1016/j.ins.2016.12.024
https://doi.org/10.1504/IJBIC.2016.074630
https://doi.org/10.1016/j.asoc.2020.106443
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1007/s10489-022-04030-0
https://doi.org/10.1007/s12652-022-04115-1
https://doi.org/10.3390/s21237898
https://doi.org/10.1007/s13369-017-2794-6
https://doi.org/10.1007/s11227-021-04031-9
https://doi.org/10.1109/ACCESS.2019.2940582
https://doi.org/10.1016/j.matcom.2020.02.020
https://doi.org/10.1007/s00500-015-1825-z
https://doi.org/10.1016/j.jocs.2017.12.012


Electronics 2023, 12, 3263 22 of 22

119. MahmoudZadeh, S.; Powers, D.M.; Sammut, K.; Yazdani, A.M.; Atyabi, A. Hybrid motion planning task allocation model for
AUV’s safe maneuvering in a realistic ocean environment. J. Intell. Robot. Syst. 2019, 94, 265–282. [CrossRef]

120. Xu, G.; Zhang, T.-W.; Lai, Q.; Pan, J.; Fu, B.; Zhao, X. A new path planning method of mobile robot based on adaptive dynamic
firefly algorithm. Mod. Phys. Lett. B 2020, 34, 2050322. [CrossRef]

121. Singh, N.H.; Laishram, A.; Thongam, K. Optimal Path Planning for Mobile Robot Navigation Using FA-TPM in Cluttered
Dynamic Environments. Procedia Comput. Sci. 2023, 218, 612–620. [CrossRef]

122. Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World congress on nature & biologically inspired
computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

123. Abdel-Basset, M.; Hessin, A.-N.; Abdel-Fatah, L. A comprehensive study of cuckoo-inspired algorithms. Neural Comput. Appl.
2018, 29, 345–361. [CrossRef]

124. Wang, W.; Tao, Q.; Cao, Y.; Wang, X.; Zhang, X. Robot time-optimal trajectory planning based on improved cuckoo search
algorithm. IEEE Access 2020, 8, 86923–86933. [CrossRef]

125. Cuong-Le, T.; Minh, H.-L.; Khatir, S.; Wahab, M.A.; Tran, M.T.; Mirjalili, S. A novel version of Cuckoo search algorithm for solving
optimization problems. Expert Syst. Appl. 2021, 186, 115669. [CrossRef]

126. Mohanty, P.K.; Parhi, D.R. A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS
approach. Memetic Comput. 2015, 7, 255–273. [CrossRef]

127. Mohanty, P.K.; Kundu, S.; Dewang, H. Navigation control of mobile robot in unknown environments using adaptive cuckoo
search algorithm. In Proceedings of the Hybrid Intelligent Systems: 17th International Conference on Hybrid Intelligent Systems
(HIS 2017), Delhi, India, 14–16 December 2017; Springer: Berlin/Heidelberg, Germany, 2018; pp. 341–351.

128. Gunji, B.; Deepak, B.; Saraswathi, M.B.L.; Mogili, U.R. Optimal path planning of mobile robot using the hybrid cuckoo–bat
algorithm in assorted environment. Int. J. Intell. Unmanned Syst. 2019, 7, 35–52. [CrossRef]

129. Wang, J.; Shang, X.; Guo, T.; Zhou, J.; Jia, S.; Wang, C. Optimal path planning based on hybrid genetic-cuckoo search algorithm.
In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November
2019; pp. 165–169.

130. Pan, J.-S.; Liu, J.-L.; Hsiung, S.-C. Chaotic cuckoo search algorithm for solving unmanned combat aerial vehicle path planning
problems. In Proceedings of the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China, 22–24
February 2019; pp. 224–230.

131. Mohanty, P.K. An intelligent navigational strategy for mobile robots in uncertain environments using smart cuckoo search
algorithm. J. Ambient Intell. Humaniz. Comput. 2020, 11, 6387–6402. [CrossRef]

132. Sharma, K.; Singh, S.; Doriya, R. Optimized cuckoo search algorithm using tournament selection function for robot path planning.
Int. J. Adv. Robot. Syst. 2021, 18, 1729881421996136. [CrossRef]

133. Chen, D.; Wang, Z.; Zhou, G.; Li, S. Path Planning and Energy Efficiency of Heterogeneous Mobile Robots Using Cuckoo–Beetle
Swarm Search Algorithms with Applications in UGV Obstacle Avoidance. Sustainability 2022, 14, 15137. [CrossRef]

134. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
135. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8,

22–34. [CrossRef]
136. Ni, J.; Wang, X.; Tang, M.; Cao, W.; Shi, P.; Yang, S.X. An improved real-time path planning method based on dragonfly algorithm

for heterogeneous multi-robot system. IEEE Access 2020, 8, 140558–140568. [CrossRef]
137. Kumar, S.; Parhi, D.R.; Kashyap, A.K.; Muni, M.K. Static and dynamic path optimization of multiple mobile robot using

hybridized fuzzy logic-whale optimization algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 5718–5735.
[CrossRef]

138. Gul, F.; Mir, I.; Rahiman, W.; Islam, T.U. Novel implementation of multi-robot space exploration utilizing coordinated multi-robot
exploration and frequency modified whale optimization algorithm. IEEE Access 2021, 9, 22774–22787. [CrossRef]

139. Zhang, Z.; He, R.; Yang, K. A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm.
Adv. Manuf. 2022, 10, 114–130. [CrossRef]

140. Liu, Q.; Zhang, Y.; Li, M.; Zhang, Z.; Cao, N.; Shang, J. Multi-UAV path planning based on fusion of sparrow search algorithm
and improved bioinspired neural network. IEEE Access 2021, 9, 124670–124681. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10846-018-0793-9
https://doi.org/10.1142/S0217984920503224
https://doi.org/10.1016/j.procs.2023.01.043
https://doi.org/10.1007/s00521-016-2464-8
https://doi.org/10.1109/ACCESS.2020.2992640
https://doi.org/10.1016/j.eswa.2021.115669
https://doi.org/10.1007/s12293-015-0160-3
https://doi.org/10.1108/IJIUS-07-2018-0021
https://doi.org/10.1007/s12652-020-02535-5
https://doi.org/10.1177/1729881421996136
https://doi.org/10.3390/su142215137
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1109/ACCESS.2020.3012886
https://doi.org/10.1177/0954406220982641
https://doi.org/10.1109/ACCESS.2021.3055852
https://doi.org/10.1007/s40436-021-00366-x
https://doi.org/10.1109/ACCESS.2021.3109879

	Introduction 
	Metaheuristic Algorithms 
	The Fundamental Principle of Metaheuristic Algorithms 
	The Development and Classification of Metaheuristic Algorithms 
	Nature-Inspired Metaheuristic Algorithms 

	Progress of Nature-Based Behavior Algorithms in Mobile Robot Path Planning 
	Firefly Algorithm 
	Cuckoo Search Algorithm 
	Other Algorithms 

	Discussion 
	Conclusions 
	References

