
Citation: Ahmed, A.; Choi, B.J.

FRIMFL: A Fair and Reliable

Incentive Mechanism in Federated

Learning. Electronics 2023, 12, 3259.

https://doi.org/10.3390/

electronics12153259

Academic Editors: Weiting Zhang,

Chuan Zhang and Tong Wu

Received: 30 May 2023

Revised: 20 July 2023

Accepted: 25 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FRIMFL: A Fair and Reliable Incentive Mechanism in
Federated Learning
Abrar Ahmed and Bong Jun Choi *

School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
abrar@soongsil.ac.kr
* Correspondence: davidchoi@soongsil.ac.kr

Abstract: Federated learning (FL) enables data owners to collaboratively train a machine learning
model without revealing their private data and sharing the global models. Reliable and continuous
client participation is essential in FL for building a high-quality global model via the aggregation of
local updates from clients over many rounds. Incentive mechanisms are needed to encourage client
participation, but malicious clients might provide ineffectual updates to receive rewards. Therefore,
a fair and reliable incentive mechanism is needed in FL to promote the continuous participation of
clients while selecting clients with high-quality data that will benefit the whole system. In this paper,
we propose an FL incentive scheme based on the reverse auction and trust reputation to select reliable
clients and fairly reward clients that have a limited budget. Reverse auctions provide candidate
clients to bid for the task while reputations reflect their trustworthiness and reliability. Our simulation
results show that the proposed scheme can accurately select users with positive contributions to
the system based on reputation and data quality. Therefore, compared to the existing schemes, the
proposed scheme achieves higher economic benefit encouraging higher participation, satisfies reward
fairness and accuracy to promote stable FL development.

Keywords: federated learning; client selection; reverse auction; incentive mechanism

1. Introduction

Federated learning is a promising machine learning technique that aims to preserve the
privacy of data owners as they collaboratively train a global model without exposing their
raw data [1]. Its potential to assist artificial intelligence in achieving unprecedented success
is phenomenal in solving user privacy problems and data islands. As shown in Figure 1,
each data owner downloads a global model from a server and trains it locally using its
private data samples and computational resources. After local data training, the parameters
of locally trained models are aggregated with the server’s global model [2] using the model
averaging (FedAvg) algorithm. This process continues for multiple training rounds until
the desired accuracy or objective function is achieved. Since there is no upload of raw data,
FL drastically improves data privacy and security issues. FL’s salient privacy-preserving
feature and numerous high system characteristics have gained attention and research in
academia and industry [3], enabling its broad applicability in various fields such as finance,
IoT, health care, and telecommunication. For instance, Google adopted FL in its keyboard
application GBoard to improve the performance [4].

Despite its numerous advantages, federated learning still faces significant challenges.
Most existing studies assume that all data owners participate unconditionally [5] and
honestly contribute data [6]. But this assumption is impractical due to communication and
computational resource costs incurred by inevitable training [7]. Simultaneously, clients
might face additional barriers of privacy threats and information leakages. Therefore,
self-interested individuals will hesitate to participate in model training [8] without any
incentives and not serve for free [9]. Hence, without any rewards, individuals will not
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remain in the FL system, leading to untenable performance. Meanwhile, some data owners
might exhibit undesirable behaviors by deceptively training results via submitting poor
models intentionally or unintentionally to improve their utilities; the server may need to
be fully aware of their computational resources, amount, and data quality. Participants
may launch poisoning attacks [10] or malicious updates affecting the global model learning
performance. They might also launch free-riding attacks to trick the system and obtain the
rewards [11]. Fairness in an emerging trustworthy FL pillar demands a multidisciplinary
approach [12,13]. Unfairness exists during client selection [14], model optimization [15],
contribution evaluation stages, and incentive distribution [3] that can adversely impact
the FL server and clients if not appropriately addressed. Current research in incentive
mechanisms lacks fairness in the aggregation phase to weigh individual updates according
to their performances [16] and the reward phase in distributing models/payoffs according
to their contribution [17]. Clients might be discouraged from enrolling in FL training
by unfair treatment. However, equal treatment for all clients without considering their
potential contributions can reduce server capability to attract high-quality users, leading to
poorly generalized FL models [18]. Moreover, the studies are ineffective in coupling reliable
client selection with fair incentive mechanisms, as evaluating client behaviors is inefficient.
The clients are inconsistent and have no motivation to participate. Hence, designing an
efficient and reliable incentive mechanism in FL is crucial to stimulate clients to contribute
quality work and promote stable FL development.

Figure 1. Workflow of incentive distribution in FL.

In this study, we propose an incentive mechanism based on reverse auctions for pricing
and reputation trust to encourage clients towards active participation and permit model
owners to receive high-quality results. Reverse auctions effectively model training costs
and encourage users to participate truthfully. Reputation measures useful updates through
trust metrics to reflect an individual’s reliability. Client behaviors to manipulate the training
process are simulated with at least 60% of malicious poisoning data that lead to slow model
convergence and performance in the test environment. To evaluate reputation, we propose
a quality-aware selection to examine and differentiate high-quality workers. The server
stores and updates candidates’ information in the incentive module.

To summarize, our contributions are as follows:

• We proposed a reliable FL incentive scheme (FRIMFL) that combines reverse auction
and reputation to incentivize clients.

• We constructed a weighted trust assessment method to reflect clients’ reliability con-
sidering the quality of model updates.
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• We introduced Shapley method to derive the per-round marginal contributions of
participants. FRIMFL incorporates reputation (computed from trust and contribution
measures) in fair reward allocation to participants.

• The simulation analysis regarding social welfare, contribution fairness, and accu-
racy shows that our proposed mechanism is compatible, individually rational, and
budget feasible.

The remainder of this paper is organized as follows. Section 2 presents related works.
Section 3 elaborates on the taxonomy of incentive schemes. Section 4 provides materials
and methods consisting of details of the proposed FRIMFL mechanism that distributes
incentives using quality, trust, and contribution assessments. Section 5 presents a theoretical
analysis to show the economic properties of the proposed mechanism. Section 6 includes the
performance evaluation in terms of economic benefits, client selection performance, model
accuracy, and fairness. Finally, Section 7 provides discussions, and Section 8 concludes
the paper.

2. Related Work

McMahan et al. [1] proposed a FedAvg algorithm that calculates the local model
weights accordingly to the client data amount. However, clients may act as free riders or
perform malicious attacks like data poisoning attacks. Incentive schemes were proposed to
remedy these problems. Client selection, contribution evaluation, and payment allocation
are the fundamental building components for incentive mechanisms [19], where optimal re-
ward strategies for both FL servers and clients are computed through objective optimization
functions. Kang et al. [20] presented an FL incentive scheme based on a combination of con-
tract theory and reputation using a subjective logic model (SLM). Cong et al. [21] proposed
an incentive design in mobile networks using contract theory to tackle the information
asymmetry issue for attracting high-quality workers. Similarly, Ye et al. [22] introduced a
2D contract based on client quality and computational capabilities to determine the rewards
in a monopolist system. However, the workers’ pricing cost for training remains an open
question before incentivizing.

Fairness in FL is examined as resource distribution and model optimization using
personalization techniques [15]. Ezzeldin et al. [23] proposed a group fairness strategy to
mitigate bias in FL models. In [24], a federated dropout pruning approach was presented to
customize client models. However, these works only focus on selection and group fairness
notions [18]. For context, to deal with fairness from the contribution notion, Zhang et al. [25]
measured client contributions based on self-reported information in hierarchical FL. The
information includes quality, quantity, communication capabilities, and data collection
costs for joining the system. In [26], the authors introduced a mutual evaluation approach
where each client receives points based on local credibility protected by differential privacy
and blockchain. Michieli and Ozay [16] proposed FairFL for the uniform treatment of users
based on their contributions via fair aggregation of model weights. Le et al. [27] adopted
auctions using self-reporting where the server evaluates bid information for contribution
and winner determination. Cong et al. [28] proposed a Vickey–Clarke–Grove (VCG) scheme
to incentivize participants to report costs and quality truthfully. However, self-reported
information does not guarantee truthfulness in practice. Zheng et al. [29] introduced a multi-
dimensional auction scheme to motivate high-quality workers to participate. Still, there is
no assurance that selected individuals would work according to the bidding agreement.

Nishio et al. [14] proposed an FedCS protocol for high-quality client selection with
restricted resources. They overshadowed the reliability and data accuracy aspects by
considering only computational and communication costs. Zhang et al. [17] proposed a
scheme based on auction and reputation to incentivize clients instead of self-reporting. The
reputation depends on the contribution evaluation via cosine similarity between the client
and global models. However, this might not be reliable for clients with highly imbalanced
distribution. Moreover, the formulation of trust through Gompertz’s function as a static
non-linear mathematical model does not take into account subjective beliefs. It models the
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trust in a smooth sigmoidal curve, which might not always hold in real-world scenarios.
Reputation is an essential metric in FL incentive schemes. Rehman et al. [30] presented a
reputation-based blockchain system for client selection. However, the proposed scheme
lacks a comprehensive consideration of client contributions to model updates.

The above-mentioned notable works drive client selection and reward systems under
threshold-based approaches, thus resulting in the disinterest of FL participants. It is crucial
to strike a balance between the interests of all entities in the FL system. Therefore, to address
the fairness and reliable evaluation of client performance, our scheme (FRIMFL), based on
a reputation mechanism with subjective trust quality, federated Shapley contribution, and
reverse auctions, promotes quality performance and ensures contribution fairness during
both the client selection and contribution evaluation stages.

3. Taxonomy of Incentive Mechanisms

Incentives motivate data owners to continue participating in the federated learning
environment. They can be classified as positive and negative incentives. Positive incentives
quest to motivate participants by recognizing the positive impact of contributions and
encouraging rewards. Negative incentives intend to avoid malicious attackers or negative
participation through reputation, penalty loss, etc. Current studies to incentivize workers
can be classified into settings, stages, methods, and research challenges, as described in the
following subsections. Figure 2 illustrates the taxonomy of incentive mechanisms.

Figure 2. Taxonomy of incentive mechanisms in FL.

3.1. Reward
3.1.1. Monetary Incentives

Monetary incentives deal with the direct distribution of payoffs to FL clients and tend
to motivate them to actively participate. This leads to better model training and, thus,
high-quality contributions. Data owners and users of FL final models are assumed to be
separate entities where data owners care more about their economic preferences.

3.1.2. Non-Monetary Incentives

Non-monetary incentives motivate clients by distributing different FL models or
satisfying psychological needs such as reputation or virtual credit. Based on their work
quality, such rewards are suitable in scenarios (1) unavailability of monetary budget,
(2) clients value the final model more than the monetary incentive.

3.2. Settings

Incentives can be applied to both cross-device and cross-silo FL scenarios. Cross-
device FL comprises many data owners, such as mobile or edge devices. In contrast,
cross-silo FL has a relatively small number of data owners, such as medical hospitals or
financial companies that collaboratively train a global model [31]. Recently, studies [32,33]
have addressed cross-silo FL. In this methodology, our incentive scheme is designed for
cross-device FL.
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3.3. Stages

Figure 1 shows that the complete FL process includes model training and prediction.
The training aims to obtain a high-quality global model, while prediction focuses on the
good test performance of the designed system.

3.4. Challenges

• Client management to select qualified workers to join and remain in the training process.
• Resource allocation for clients based on the amount of work and data quality.
• Contribution evaluation to measure the contribution of each participant.
• Budget constraints due to the time-consuming commercialization and training of

models or unavailability.
• Collaborative fairness corresponding to participant rewards should fairly reflect dif-

ferent levels of contributions.
• Robustness to targeted and untargeted attacks by malicious workers.

3.5. Methods
3.5.1. Contract Theory

Like economics, an FL contract is designed between a server (employer) and data own-
ers (employees). The server cannot always be assumed to know the data owner’s resources,
data size, and quality. To overcome this issue of information asymmetry, the studies
in [20,21,34] adopted contract theory to attract high-quality users. Contract-based selection
can enhance participation and model quality; however, it only focuses on optimizing the
user’s utility/reward.

3.5.2. Game Theory

Game theory involves strategic interactions between rational participants. The goal is
to determine the optimal strategy for a client’s payoff in relation to other clients’ strategies.
The Stackelberg game is a game theoretic model with interaction between a leader (server)
and follower (client) [35]. The central server gives a set of rules for participants to devise
optimal strategies. This iterates until reaching the Nash equilibrium, where no player can
improve its payoff by changing their strategy. However, this method is inefficient amid
information asymmetry, undesirable behaviors, and non-i.i.d. data to incorporate multiple
factors to design incentive schemes.

3.5.3. Blockchain

Blockchain is a decentralized digital ledger in peer-to-peer networks that records each
user’s encrypted transaction. This allows the features of robust and tamper-proof FL; thus,
modern studies adopted it to provide privacy-preserving FL [36,37]. This security advan-
tage can be a transparent record environment to store candidates’ information. However,
scalability due to time delays can occur in the blockchain FL system.

3.5.4. Auction Theory

Auction theory is an effective mathematical tool for task allocation and cost pricing.
Auctions can be classified into forward and reverse auctions. In a forward auction, a seller
displays an item, and bidders place the bid price. For our FL incentive scheme, we use the
reverse auction where the server acting as a buyer requests a required service/task, and
data owners acting as potential sellers perform the task. Le et al. [38] adopted auctions in
wireless networks considering computational resources. In general, an auction scheme not
only guarantees truthfulness or efficiency but also reduces the computation latency.

3.5.5. Deep Reinforcement Learning

Deep reinforcement learning (DRL) under FL consists of multiple agents performing
actions under an environment to maximize rewards and privacy [39]. Incomplete informa-
tion about clients’ decisions and contribution concerns create a challenge in formulating
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an ideal scheme. Therefore, Zhang et al. [40] adopted DRL with game theory to compute
optimal trade pricing and tackle information asymmetry. The authors in [41] designed a
hierarchical game to maintain a trade-off between maximizing payment and minimizing
the learning rate through DRL. It focused on reducing the training time and determining a
strategy based on experience.

4. Materials and Methods
4.1. Proposed Mechanism (FRIMFL)

We consider a collaborative horizontal FL environment with many potential candidates
and model owner. Candidates serve as data owners and can be IoT or edge devices. The
model owner broadcasts a training task anytime and recruit candidates to participate.
Interested data owners examine their data quality and quantity, weigh the cost prices with
reward possibility, and formulate strategies to submit bid prices to the server. The server
combines their bids and reputation status for client selection and pays for their rewards.
Figure 3 illustrates the overall workflow of our architecture.

Figure 3. Architecture of FRIMFL.

The processes involved in each step are described below:

1. The server broadcasts the task information to N candidates, describing the budget
and model requirements.

2. Interested candidates devise their bidding strategy based on data quantity or compu-
tational resources and submit their bid prices Bp

i to the server.
3. The server examines the candidates’ reputation in all associated tasks and applies

reverse auctions for global model distribution.
4. Selected participants from the candidates receive the initial global model and train

local models iteratively on their local dataset.
5. The participants send their training results to the server.
6. The model owner collects training results, receives gradients, and executes quality

detection through marginal loss evaluation.
7. The server aggregates quality models corresponding quality weights and measures

participant contribution via a federated Shapley assessment and reputation to dis-
tribute payoffs.

8. Finally, participants are rewarded as per their level of reputation.
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4.2. Reverse Auction-Based Optimal Client Selection

The assessment and selection of highly reputed candidates for any task are reflected
by reverse auction design. The utility function of the auction is to maximize social surplus
(SS) defined as a composite utility of all participants (Pu) and server (Su) formulated as:

max
SS

N

∑
i=1

Pu
i + Su, (1a)

s.t.
N

∑
i=1

xi pi ≤ B, (1b)

xivi ≤ pi. (1c)

where xi is a binary variable as if candidate i is selected to participate, xi = 1, otherwise
xi = 0. The utility of participant i is expressed as the difference between its payoff incentive
and cost calculated as Pu

i = (pi − vi). After global aggregation, the server obtains a final
global performance and distributes incentives. Thus, the server utility is calculated as
Su = [B−∑n

i=1 pi]. Here, Equation (1b) guarantees that the participant payoff pi satisfies
the budget feasibility, and Equation (1c) guarantees that the participant i should not be
compensated less than its true cost vi.

4.3. Design Properties

Since task requesters and clients are rational, FRIMFL must satisfy the following
economic properties:

• Incentive Compatibility (IC) : The auction process satisfies incentive compatibility
when all the participants obtain a maximum payoff by reporting bids truthfully.

• Individual Rationality (IR): When the participating users receive positive utility, the
mechanism achieves incentive rationality.

• Budget Feasibility: The total incentive amount paid to participants does not exceed
the model owners’ budget.

• Computational Efficiency: The scheme can be computationally efficient if the winner
determination and incentive distribution are computed within polynomial time.

• Aggregation Fairness: Each participant’s aggregated weight shall correspond to its
performance quality.

• Reward Fairness: Each participant shall be fairly rewarded, corresponding to their
contribution levels for the task.

4.4. Quality Trust Assessment

With the ease of accessibility and lack of standard evaluation in the FL system, the
participation influence cannot be fully ensured. The client’s behavior can be classified as

• Positive Clients: These clients participate honestly, provide reliable model updates
without malicious activity, and bid truthful data to complete training tasks.

• Negative Clients: These clients intend to have deceptive behavior, by either data poi-
soning through incorrect/sign-flip labels to decrease data accuracy or model poisoning
to manipulate training performance [42,43].

An inherent way to achieve this is to evaluate the loss of the client model or update
that exceeds a predetermined threshold [5]. But determining the threshold might be
challenging where the performance of local models might improve in later training rounds
if the threshold decreases, respectively. Therefore, we proposed a marginal error loss-based
method executed by the server. A local model i is included in the global model m, and
the loss lm of this model is computed on a validation set. Likewise, this local model i is
excluded, to make global model m′ and loss lm′

i be computed. When a high-quality local
model (Ml

i) is aggregated, the loss of the global model is reduced.
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We define the threshold quality value ψ to accept the local model (ψi < ψ) as

ψi = lm′
i − lm. (2)

In Vanilla FL [1], clients with large amounts of data receive higher weights. In
FairFL [16], they receive equal weights. However, this might be an unfair way for an
honest client to have a small amount of data with good quality. The existence of free riders
can amplify the data size, and client heterogeneity can significantly affect the weights in
model aggregation. Hence, it is necessary to aggregate local model weights passing the
quality detection. Therefore, the aggregated weight (αi) for participant i can be computed as

αi =
ψi

∑i ψi
. (3)

Accordingly, the new aggregated global model (Gm) in round t can be determined as

Gm = ∑
i

αi Ml
i . (4)

The proposed weighted quality detection in FRIMFL is stated in Algorithm 1. Line 1
initializes an empty track of participants (Rt) kept by the model owner, followed by the loss
calculation on the global model m. Lines (3–5) describe the evaluation process to compute
for a marginal loss impact on all clients using Equation (2). Lines (6–12) present quality
detection; for successful detection, (np

i ) increases and vice versa. Finally, lines (13–16)
describe the quality of the local weight used in the final global model aggregation.

Algorithm 1 FRIMFL quality detection

Input: Rt, ψ

Output: np
i , n f

i , Gm
1: Rt = ∅
2: calculate lm on global model m
3: for each client i ∈ N do
4: calculate lm′ on global model m′

5: calculate ψi using Equation (2)
6: if ψi >ψ then
7: Rt ← Rt ∪ {i}
8: np

i ++
9: else

10: n f
i ++

11: end if
12: end for
13: for each client i ∈ Rt do
14: calculate αi using Equation (3)
15: end for
16: calculate Gm using Equation (4)
17: return np

i , n f
i , Gm

4.5. Contribution Assessment

Fairness is an important parameter to evaluate contributions to attract and retain high-
performing users in FL. We propose a per round evaluation method leverage through the
Shapley value (SV) method [32,44]. It provides a fair reward distribution to participants as
per their marginal contributions to calculate individual utility and encourages high-quality
ones to join as early as possible. For instance, three clients, i.e., client 1, client 2, and client 3,
collaborate on a task, given a characteristic evaluation function V(.), such that V(1) = 40,
V(2) = 60, V(3) = 80, V(1, 2) = 70, V(1, 3) = 75, V(2, 3) = 85, and V(1, 2, 3) = 90. Table 1
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depicts all possible combinations to quantify the contribution of all individuals. For any
subset S, it is defined as

ci =
1

N! ∑
S⊆N\i

|S|!(N − |S| − 1)![V(S ∪ i)−V(S)]. (5)

Thus, the collective contribution by participant i from round 1 to T can be expressed as

ci =
T

∑
t=1

ct
i . (6)

The contribution quantification in FL is coherent with the following properties.

• Fairness: Participants with similar models or updates shall receive similar contribution
values. The contribution scale is correlated with the reward.

• Availability: The contribution value by negative clients shall be 0, as they have no
impact on the global model in the current round.

• Additivity: With each cycle of global updates, both long- and short-term contributions
are additive to the overall FL process.

We analyze fairness using the Pearson correlation coefficient. Let contributions on x
axis such as x = {c1, c2, . . . , cn}, rewards on y axis such as y = {p1, p2, . . . , pn} and average
of x and y as {x̂, ŷ}. The fairness correlation is given as

fc =
∑n

i=1(xi − x̂)(yi − ŷ)
nsxsy

, (7)

where {sx, sy} denote the standard deviations of x and y, respectively. The range of
the correlation coefficient is [−1, 1]. The larger fc value suggests high fairness (positive
correlation), whereas the negative coefficient implies unfairness (negative correlation). The
rewards for quality workers are positively correlated with contributions and reputation. If
worker i performs higher than worker j (ci > cj), then pi > pj. The analysis and evaluation
of fc are discussed in the following sections.

Table 1. An example of the contribution evaluation in different coalitions.

Client 1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1 SV

1 40 40 10 5 0 5 16.67
2 30 15 60 60 10 5 30
3 20 35 20 25 80 80 20

4.6. Reputation Measurement

A reputation mechanism indirectly reflects a participant’s credibility and reliability
leveraged through client selection and the reward distribution mechanisms. The effective
and accurate reputation calculation is crucial for trustworthy FL because high-reputation
clients with high performances play a crucial role in model training. The model owner
manages the reputation of each participant i based on its contribution and the trust notion
associated with quality detection. The trust value for each participant i is computed as

ti =
ωnp

i

ωnp
i + (1−ω)n f

i

. (8)

where ω denotes the weight on the interaction events. The positive events np
i increase the

trust score of the participants, and vice versa. To refrain from quality evaluation failure,
negative events n f

i are given a higher weight than positive events. Combining Equations
(6) and (8), the reputation of any participant in round t can be stated as
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ri = tici. (9)

4.7. Client Selection Reward Module

To achieve any desirable task, the model owner can select different types of participants
based on their data quality, bid price, and performance. The participant’s reward density is
computed as

rd
i = Bp

i /ri. (10)

Hence, to pick the early contributors (highly reputed), the participant set is arranged
in the order of increasing reward density as

rd
1 < rd

2 < . . . < rd
n. (11)

The incentive price pi for different quality participants in the ranking is

pi =


rd

i + 1, if ri ≥ 0.85 (high reputed) ;
rd

i + 0.5, if 0.70 < ri < 0.85 (moderate high reputed) ;
rd

i , if 0.6 < ri < 0.70 (moderate low reputed) ;
0, if ri ≤ 0.6 (low reputed) .

(12)

This shows that reputation performance can add an extra incentive of 1 or 0.5 to the
user’s overall payoff (Algorithm 2).

Algorithm 2 FRIMFL incentive allocation.

Input: B, xi, w, P = {P1, P2, . . . , Pn}
Output: pi

1: pi = 0, xi = 1
2: for each client i ∈ P do
3: Calculate ci using Equation (6)
4: Calculate ti using Equation (8)
5: Calculate ri using Equation (9)
6: Calculate rd

i using Equation (10)
7: Sort all using Equation (11)
8: while ∑n

i=1 xi pi ≤ B do
9: Calculate pi using Equation (12)

10: end while
11: end for
12: return pi

5. Theoretical Analysis

Theorem 1 (FRIMFL achieves aggregation fairness). FRIMFL gives the aggregation weight to
each participant update based on its performance corresponding quality.

Proof. The local model weight passing the quality detection is computed based on the
performance instead of the amount of data, i.e., αi =

ψi
∑i ψi

.

Theorem 2 (FRIMFL achieves reward fairness). FRIMFL fairly distributes rewards to individ-
uals based on their performance contribution.
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Proof. To quantify fairness, fc is ∑n
i=1(xi−x̂)(yi−ŷ)

nsxsy
. For performers, bringing yi = pi =

ti
ci

∑ cj
= ti

xi
∑ xj

and assuming similar trust values ti = tj into Equation (8), we obtain

fc =
∑n

i=1(xi − 1
n ∑ xi)(ti

xi
∑ xj
− 1

n ∑ ti
xi

∑ xj
)

nsxsy

=
∑n

i=1 xi(ti
xi

∑ xj
)− xi(

1
n ∑ ti

xi
∑ xj

)− 1
n ∑ xi(ti

xi
∑ xj

) + 1
n ∑ xi(

1
n ∑ ti

xi
∑ xj

)

nsxsy

=

ti
∑ xj

∑n
i=1(x2

i −
1
n ∑ xixi − 1

n ∑ xixi +
1
n ∑ xi

1
n ∑ xi)

nsx(ti
x

∑ xj
)

=

ti
∑ xj

1
n ∑n

i=1(xi − 1
n ∑ xi)

2

nsx(ti
x

∑ xj
)

= 1.

Theorem 3 (FRIMFL satisfies individual rationality). Each individual can receive positive
utility.

Proof. The utility for a selected individual i is computed as ui = xi(pi − vi). If unselected,
its utility is zero. Since the incentive is proportional to the contribution, ui ≥ 0.

Theorem 4 (FRIMFL is budget feasible). The total amount paid to the participating users does
not exceed the server’s budget.

Proof. The scheme determines and rewards n participants subjected to ∑n
i=1 xi pi ≤ B. For

the winner i, the incentive is pi, and for the loser i, the incentive is 0.

6. Results
6.1. Experimental Settings

We evaluated the performance of the proposed FRIMFL incentive scheme using
MNIST [45], Fashion MNIST [46], and CIFAR10 [47] image datasets. The MNIST dataset
consists of handwritten digits [0–9], with 60,000 training and 10,000 test samples. Each
image has 28 × 28 pixels, and the pixel channel is grayscale. The Fashion MNIST dataset
consists of clothing images with 70,000 samples belonging to 10 categories. The image pixel
size, channel, and division of training and test set are identical to the MNIST. The CIFAR10
dataset comprises different object images with 60,000 samples and 32 × 32 pixels belonging
to 10 categories. For i.i.d. settings, the dataset is uniformly distributed among participants,
each with equal random samples, denoted as (UNI). The dataset is randomly partitioned
among participants for non-i.i.d. settings and client heterogeneity. To illustrate, five
participants own {50, 100, 150, 200, 250} samples, denoted as (IMB). The model comprises
a simple convolutional neural network (CNN) with two fully connected layers. Table 2
shows the parameter settings. We introduced negative or malicious behaviors in the FL
system as

• Poison clients [42]: They perform training with some percentage of incorrect noisy
labels to represent a degree of unreliability.

• Sign-flip clients [48]: They perform training with some percentage of flip labels to
represent a degree of unreliability.

We compare our proposed FRIMFL mechanism with the following baselines.

• VFL [1]: It performs standard vanilla FL to randomly select fraction n individuals and
calculates aggregation weights based on local dataset sizes.
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• FairFL [16]: It gives equal weights to all clients for aggregating local models.
• Greedy: A mechanism always prefers candidates with lower bid prices only. It does

not contain reputation and contribution assessment methods.
• RRAFL [17]: An auction and reputation (RRAFL)-based incentive scheme, primar-

ily suited to uniform settings only. The reputation, quality-detection, and reward
distributions are different from FRIMFL.

We compare the performances regarding the reverse auction, reputation-based selec-
tion, model convergence accuracy, robustness, and contribution fairness. The performance
of the reverse auction shows the economic benefits and checks whether the proposed
scheme satisfies IR and IC design properties. The performance of reputation-based selection
shows how well the scheme can select participants with good data quality. The performance
of model accuracy shows the convergence speed and the stability of the scheme. The ro-
bustness through cumulative rewards reflects the effectiveness of quality–reputation-based
selection to promote positive participation and eliminate negative participation. Lastly, the
performance of contribution fairness shows how well the scheme promotes contributions
from individual participants.

Table 2. Parameter settings for simulation results.

Parameter Value

Number of participants (n) 5–20
Bid price (Bp

i ) 5–10
Budget (B) 100–300
Learning rate (η) 0.05
Batch size (B) 100
Loss quality threshold (ψ) −0.03

6.2. Performance of Reverse Auction

Figure 4 compares the three schemes in terms of economic perspective. With 20 partic-
ipants and a budget of 250, FRIMFL distributes higher payoffs and achieves a 7% higher
surplus than RRAFL and Greedy. This is due to an increase in the selection probability of
clients and their willingness to participate. Similarly, we compare the payments and cost
value sum of all clients to join the training, and the results show that FRIMFL satisfies IR
and IC design properties. This provides significant economic benefit for users to participate
and makes the overall trade market more stable than both Greedy and RRAFL.

Figure 4. Comparison of economic benefit.
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6.3. Performance of Reputation-Based Selection

We evaluate the reputation performance of truthful participants with different data
quality rates. Table 3 shows the impact of the data accuracy level (p) on the average
reputation for both schemes. Assuming honest participants with at least 60% true quality
data, we can observe that the reputation reduces as the individual data accuracy rate
decreases with non-linearity. For example, for the clients with a quality rate of 1 (i.e., a
dataset containing all accurate labels) and a quality rate of 0.8 (i.e., a dataset containing 80%
accurate labels and 20% incorrect labels), FRIMFL gives a higher reputation than RRAFL to
those participants with higher quality rates. The reputation of FRIMFL is relatively higher
than that of RRAFL due to the fair estimation of contributions. This shows that clients with
good-quality data can receive a higher reputation for better incentives.

Table 3. Reputation analysis with different data quality rates.

1 0.8 0.7 0.6

Dataset RRAFL FRIMFL RRAFL FRIMFL RRAFL FRIMFL RRAFL FRIMFL

MNIST 0.965 0.974 0.698 0.742 0.588 0.635 0.431 0.508

CIFAR10 0.951 0.959 0.638 0.711 0.504 0.601 0.416 0.494

FMNIST 0.962 0.970 0.664 0.737 0.581 0.640 0.425 0.510

The evaluation of the model accuracy under the existence of different reputed clients
is illustrated in Figure 5. For datasets [MNIST, CIFAR10, FMNIST], the highest accuracies
[0.979, 0.801, 0.981] are observed in the presence of highly reputed (i.e., positive) clients,
whereas the lowest accuracies [0.914, 0.722, 0.920] were reported with low reputed clients
after 10 global epochs. The low-reputed participants had greater influence than the medium
reputed participants on model convergence as they exhibit negative behavior by the falsified
quality and lesser contribution towards the global model update. This also shows that
slow model convergence is not guaranteed after 10 epochs and could create a loss to the
model owner regarding payoff and system performance. With positive and medium clients,
model convergence is not only fast but overall useful for model owners.

Figure 5. Effect on model accuracy by different reputed clients.

Table 4 shows the percentage of reliable participants selected in all four schemes on
three datasets. Overall, FRIMFL selects the most participants, which means that it has
effectively encouraged participation. For example, in CIFAR10, the proportion of client
selection with good data quality is 0.94 in FRIMFL, significantly higher than 0.92 in RRAFL,
0.62 in VFL, and 0.40 in Greedy. Therefore, FRIMFL can benefit the model owners by
providing higher chances to select users with better data quality.
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Table 4. Participant selection probability in all four schemes.

Dataset VFL Greedy RRAFL FRIMFL

MNIST 0.61 0.41 0.93 0.95
CIFAR10 0.62 0.40 0.92 0.94
FMNIST 0.61 0.41 0.92 0.95

Figure 6 compares the accuracy of the final aggregated model in all four schemes.
FRIMFL not only filters malicious behaviors through quality detection but also fairly
aggregates weights to enhance the model accuracy than all three FairFL, RRAFL, and VFL
at the end of task completion. Among the baselines, FairFL achieves a relatively higher
performance in terms of convergence and stability than both RRAFL and VFL. This suggests
that aggregation fairness handling data heterogeneity can make the global model more
accurate and indicates that all reliable participants selected by FRIMFL have a positive
effect on the global model accuracy, reaching [0.981, 0.812, 0.988] in three datasets [MNIST,
CIFAR10, FMNIST], respectively, at the earliest.

Figure 6. Performance of model accuracy.

The advantage of FRIMFL in an unreliable federation is shown in Figure 7. The x axis
represents communication iterations, and the y axis represents the global model accuracy.
The percentage of sign-flip and poison clients is equal to 75% to demonstrate untrustwor-
thiness. The combination of such clients causes damage to the global model on all three
datasets. The malicious behavior not only slows down the convergence speed but also
requires three times more iterations to reach a stable accuracy of 0.812. In contrast, the
honest behavior achieves a convergence accuracy of 0.963 approximately at 20 communica-
tion iterations. Therefore, the damage caused by malicious activity increases with a higher
proportion of faulty labels and training updates.

Figure 7. Model convergence under client behaviours.

6.4. Performance of Model Accuracy

Figure 8 shows the individual accuracy performance by five data owners in each
training round for all three datasets. The participant’s local accuracy rate is normal as they
join the training coalition with a true data quality. With positive behavior and reliable
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updates, the server detects and compares local models for global model aggregation. It can
be seen that the local accuracy saturates after five communication rounds.

(a) MNIST (b) CIFAR10

(c) FMNIST

Figure 8. Performance of accuracy by 5 different clients.

6.5. Performance of Contribution Fairness

Figure 9 shows the individual contribution level by five data owners in each training
round for all three datasets. Initially, the contributions were different for all clients. At
training round 3, the highest contributions were observed. Client 0 appears to be the
highest in all three datasets, whereas clients 3 and 4 contributed the least. Similar influ-
ence by participants in later training rounds demonstrates that FRIMFL promotes early
contributions by all data owners.

For three datasets, we compare FRIMFL with the RRAFL baseline in terms of fairness
measured through the Pearson correlation coefficient, as shown in Table 5. The highest
fc was obtained in uniform settings (UNI) in both mechanisms. The performance of
RRAFL is lower because the contribution measurement via cosine similarity is not ideal
for capturing data heterogeneity where clients might provide similar updates to improve
their performance.

Table 5. Calculation of Pearson correlation coefficient.

MNIST CIFAR10 FMNIST

Scheme UNI IMB UNI IMB UNI IMB

RRAFL 0.989 0.972 0.979 0.960 0.987 0.973
FRIMFL 0.992 0.988 0.985 0.973 0.993 0.986

The robustness of FRIMFL in fair reward distribution is shown in Figure 10. The x
axis represents communication iterations and the y axis represents participants’ cumulative
incentive, where pf is the proportion of data owners’ unreliable (poison-flip) data. The
reward values vary with different pf values. Reputed clients with quality data (low pf ) are
considered collaborators and thus receive rewards. This shows that rewards are positively
related to quality and contributions. Clients with malicious data (high pf ) who have
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malicious interactions (bad reputation) are considered to be negative participants and
hence punished by the server for obtaining rewards.

(a) MNIST (b) CIFAR10

(c) FMNIST

Figure 9. Performance of contribution by 5 different clients.

Figure 10. Cumulative rewards of participants with different data.

7. Discussion

The social surplus is relatively higher in the proposed mechanism due to increased
participants’ desire to select reverse auction. The cost–benefit makes the FL service more
active. The Shapley method allows the measuring of client contributions and their impact on
the overall performance of the model. Our mechanism implicitly assumes a predetermined
incentive budget. However, this might not hold in practice in later training periods [12].
As for future works, a reimbursement option with dynamic incentivizing for long-term
participation in diverse scenarios could be investigated. Additionally, the budget restriction
only applies to the payments that the system employs to hold truthfulness. The convergence
of the model is affected by the influence of negative/malicious clients since they produce
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misleading gradients. Spoofing attacks with robust defense can also be explored to complete
the definition of security in incentive schemes.

8. Conclusions

In this paper, we proposed a fair and reliable incentive mechanism (FRIMFL) for
federated learning services between FL model owners and heterogeneous clients. We
designed our scheme considering client selection and the reward fairness of truthful clients.
First, we adopted reverse auctions to estimate the model training costs and motivate clients
to participate. Second, we introduced a reputation mechanism to detect and differentiate
client behaviors. Participants’ reputation is formulated by combining trust via quality
detection and the contribution evaluation via the Shapley method. Finally, by integrating
the reverse auction with reputation, we designed a selection and reward mechanism to
distribute incentives to individuals for their overall performances. FRIMFL fairly allocates
the incentive reward to positive participants and prevents negative ones from damaging
the quality model. Through the theoretical analysis, web proved that FRIMFL satisfies
individual rationality, incentive compatibility, aggregation fairness, and budget feasibility.
Experimental results have shown that our scheme selects the best combination of clients
to maximize the social surplus in the FL trading marketplace. The proposed FRIMFL
can significantly enhance the economic benefit by 7% based on higher client selection
and the model accuracy of FL tasks from 0.9451 to 0.9832 with faster convergence, hence
encouraging active participation for the stable development of the FL ecosystem and thus
can be a feasible option to incentivize clients.
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Abbreviations
The following abbreviations are used in this manuscript:

αi Local model weight by participant i
B Federation budget
Bp

i Bid price of participant i
ci Contribution of participant i
CNN Convolutional neural network
DRL Deep reinforcement learning
fc Fairness correlation coefficient
FL Federated learning
IC Incentive compatibility
IR Individual rationality
lm
i Loss of model with participant i

lm′
i Loss of model without participant i

https://github.com/Abrar-Ahmed-96/incentivefl
https://github.com/Abrar-Ahmed-96/incentivefl


Electronics 2023, 12, 3259 18 of 20

np
i Number of passing detections for participant i

n f
i Number of failing detections for participant i

p Data quality rate
pi Payoff of participant i
Pu

i Utility of participant i
Rt Record of quality detection
rd

i Reward density of participant i
ri Reputation of participant i
Su

i Server i utility
SS Social surplus
SV Shapley value
ti Trust on participant i
xi Selection flag for participant i
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