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Abstract: The presence of a large amount of echoes significantly impairs the quality and intelligibility
of speech during communication. To address this issue, numerous studies and models have been
conducted to cancel echo. In this study, we propose a multi-stage acoustic echo cancellation model
that utilizes an adaptive filter and a deep neural network. Our model consists of two parts: the
Speex algorithm for canceling linear echo, and the multi-scale time-frequency UNet (MSTFUNet) for
further echo cancellation. The Speex algorithm takes the far-end reference speech and the near-end
microphone signal as inputs, and outputs the signal after linear echo cancellation. MSTFUNet takes
the spectra of the far-end reference speech, the near-end microphone signal, and the output of Speex as
inputs, and generates the estimated near-end speech spectrum as output. To enhance the performance
of the Speex algorithm, we conduct delay estimation and compensation to the far-end reference
speech. For MSTFUNet, we employ multi-scale time-frequency processing to extract information
from the input spectrum. Additionally, we incorporate an improved time-frequency self-attention to
capture time-frequency information. Furthermore, we introduce channel time-frequency attention to
alleviate information loss during downsampling and upsampling. In our experiments, we evaluate
the performance of our proposed model on both our test set and the blind test set of the Acoustic
Echo Cancellation challenge. Our proposed model exhibits superior performance in terms of acoustic
echo cancellation and noise reverberation suppression compared to other models.

Keywords: acoustic echo cancellation; multi-stage model; adaptive filter; deep neural network

1. Introduction

With the continuous progress of modern technology, the 5G era has arrived. Thanks
to the unceasing innovation in communication and network technology, VoIP (Voice over
Internet Protocol) communication technology has gained widespread popularity compared
to the 4G era. Applications such as WeChat, Skype, and various conference software have
become widely used among the general public. VoIP has attracted market and public
attention due to its ability to fully exploit network bandwidth, minimize call costs, and
facilitate the implementation of value-added services. Moreover, with the recent outbreak
of COVID-19, offline meetings have shifted to online platforms, and traditional classrooms
have transitioned to online classrooms. Consequently, VoIP communication technology has
garnered increased significance.

However, it is worth mentioning that during VoIP communication, not only does the
near-end microphone capture the speech of the near-end speaker, but it also records the
sound played by the near-end speaker, causing the far-end speaker to potentially hear the
echo of their speech. Moreover, due to speech encoding, decoding, and the transmission of
data over the network, there may be varying levels of time delays that further contribute
to the generation of echo, causing inconvenience for speakers. Therefore, in line with
the continuous development of the VoIP industry, echo cancellation has emerged as a
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prominent research focus and a crucial area for improvement to enhance the quality of
communication processes and enhance user experience.

There are two main types of echo in VoIP communication: circuit echo and acoustic
echo. Due to the two to four wire conversion of the switch, circuit echo is generated on the
network side [1]. However, due to the advancement of echo cancellation technology, circuit
echo has been effectively reduced and canceled. As a result, the focus of echo cancellation
has shifted from circuit echo to acoustic echo.

It is very difficult to cancel acoustic echo. There are several main reasons: (1) the
communication process mainly takes place in enclosed environments such as conference
rooms, where the sound emitted by the speaker will be reflected repeatedly and then
captured by the microphone, mixing with the speech of the near-end speaker. This process
results in a long tail of the echo, and the corresponding echo path [2] has a long impulse
response. Therefore, to achieve echo cancellation, it is necessary to increase the order of the
adaptive filter. (2) During communication, it is impossible to guarantee absolute silence in
the environment. Noise caused by personnel movement or other forms of interference can
disrupt the propagation of sound, leading to significant fluctuations in the pulse response
of the acoustic echo. Therefore, the acoustic echo path is not stable. The rapid changes in
the echo path require the echo cancellation process to have a fast convergence speed [3]
and good tracking performance. However, algorithms with fast convergence speeds are
closely related to computational complexity. The echo cancellation filter used to cancel
echo has a high order, and conventional fast algorithms often cannot effectively solve the
problem. (3) During the VoIP communication process, environmental noise can affect echo
cancellation. Additionally, in situations with high background noise, echo cancellation not
only needs to handle the echo, but also needs to consider the background noise, making
filter design extremely challenging.

In summary, the main research challenge in echo cancellation currently lies in dealing
with the acoustic echo. The noise, reverberation, and variations in echo paths signifi-
cantly increase the complexity of acoustic echo cancellation. Developing an efficient echo
cancellation system can greatly enhance the user experience during VoIP communication.

For acoustic echo, it can be classified into two types: linear echo and non-linear
echo. Linear echo refers to the echo produced by sound waves propagating in a straight
path in space, while non-linear echo refers to the non-linear effect generated by sound
waves propagating in space [4]. Linear echo can be effectively canceled using traditional
methods. These methods primarily rely on adaptive filtering techniques, such as the Least
Mean Square (LMS) algorithm [2], Normalized Least Mean Square (NLMS) algorithm [3],
Recursive Least Squares (RLS) algorithm [5], and Blocked Frequency Domain Adaptive
Filter (PBFDAF) [4]. Diniz et al. [2] propose a method that involves utilizing LMS adaptive
filters to replicate the echo path and subsequently subtracting the estimated echo signal
from the input signal, thereby achieving effective echo cancellation. This algorithm is
straightforward, dependable, and widely applicable; however, it utilizes instantaneous
values instead of expected values in its calculation during the iteration process. As a
consequence, this approach introduces errors into the calculation process, which are affected
by the input signal and subsequently evolve as the input signal changes. When assessing
the performance of the adaptive filtering algorithm, the LMS algorithm may introduce
uncertainty in the rate of convergence, which ultimately leads to numerous uncertain
factors in echo and unstable echo cancellation.

To address this issue, Slock et al. [3] replace the LMS algorithm with the NLMS
algorithm to simulate the echo path, accompanied by the incorporation of normalization
operations into the LMS algorithm. This modification aims to ensure algorithm convergence
through normalization, thereby enhancing the overall convergence effect. Nevertheless,
it is important to note that this algorithm possesses significant drawbacks in terms of
convergence rate and steady-state error.

Duttweiler et al. [6] introduce the proposition normalized Least Mean Square (PNLMS)
algorithm as a means to emulate the echo path. This algorithm effectively modifies the filter
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weight in proportion to the sparse character of the echo path (sparse character describes
the phenomenon where there are fewer significant signal components present on the echo
path during the transmission of acoustic signals), which enhances convergence speed
and minimizes steady-state error for the sparse echo path. However, the performance
of this algorithm might diminish for the non-sparse echo path. Liu et al. [1] propose the
improvement normalized Least Mean Square (IPNLMS) algorithm to address the issue
of performance degradation in the non-sparse echo path. In comparison to the PNLMS
algorithm, this method effectively enhances the convergence rate when dealing with the
non-sparse echo path; however, the steady-state error and computational complexity also
increase as a result.

Speex is an open source audio codec, mainly used for real-time audio communication [7].
Its echo cancellation part is based on NLMS and implemented using a multi-delay block filter [8]
in the frequency domain. It has the advantages of efficient echo suppression, low latency, and
cross platform support, making it widely used in real-time communication applications.

For linear echo, adaptive filters can already achieve good cancellation effects. However,
when it comes to nonlinear echo, adaptive filters often fall short in achieving the desired
effect due to the presence of reverberation and complex acoustic characteristics (such as
distortion, non-linear resonance, and interference effect [9]). In order to address the intricate
non-linear relationship between inputs and outputs, deep neural networks (DNNs) are
increasingly utilized for echo cancellation tasks. A DNN is a neural network with multiple
layers. It is introduced by Hinton et al. [10], which effectively tackles the problem of
gradient explosion and vanishing in multi-layer neural networks, thereby enabling the
creation of truly deep networks. As deep learning technology evolves, DNNs are able to
more effectively extract deep data information. Compared to shallow neural networks,
DNNs possess stronger capabilities in expressing non-linear relationships.

UNet [11] is a network model that follows a symmetrical U-shaped structure. It is
typically an encoder–decoder structure. The first half of UNet is responsible for feature
extraction and continuously reducing the input size, typically achieved through convolution
and down-sampling operations. The latter half aims to restore the original input size.
Apart from convolution, the crucial steps of this process include up-sampling and skip
connections. Skip connections concatenate the location information of the bottom layer with
the semantic information of the deep layer to achieve better results. Because the network
structure of UNet has local connectivity characteristics, it can be used for speech signal
processing. Choi et al. [12] improve UNet by proposing Tiny Recurrent UNet (TRUNet),
and propose phase-aware β-sigmoid mask (PHM) for speech enhancement. Fu et al. [13]
build a network framework based on UNet and Conformer [14] to enhance speech and
cancel echo.

In the field of speech signal processing, the self-attention mechanism can capture
long-range dependencies in the input, and dynamically adjust focus to distinct regions.
However, the simple self-attention approach presents significant challenges due to its
high computational complexity, rendering it impractical for speech processing tasks. To
alleviate this problem, Zhang et al. [15] propose a axial self-attention (ASA) for acoustic
echo cancellation. ASA can reduce the need for memory and computation, making it more
suitable for speech signals. Consequently, many scholars are still working hard to find
effective strategies to mitigate the complexity of self-attention.

The acoustic echo cancellation system based on DNN primarily operates in the time-
frequency domain and relies on spectral masking for its main processing [16]. Spectral
masking refers to the process of multiplying the spectrum of the original signal with the
mask element by element in the time-frequency domain to obtain the mask corrected
spectrum. The mask can take various forms, such as ideal binary mask (IBM), ideal ratio
mask (IRM), and complex ideal ratio mask (cIRM) [17].

One-step methods are the simplest application of DNN in acoustic echo cancellation
systems, which simultaneously solve linear and non-linear echo. Westhausen et al. [18]
proposes the dual signal transformation LSTM [19] network (DTLN), which successfully
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achieves both linear and non-linear echo cancellation. The network is comprised of two
key blocks, each consisting of two LSTM layers and a fully connected layer. The prediction
of the mask is accomplished using the sigmoid activation function. The input feature is the
normalized logarithmic power spectrum of the near and far end microphones connected in
series. This structure has high modeling ability and can further improve echo cancellation
ability by stacking models.

In addition to one-step methods, more research is focused on using adaptive filters
to process linear echo and neural networks to process non-linear echo. Lukas et al. [20]
propose a non-linear echo cancellation model that utilizes a recurrent neural network
(RNN), which can achieve better real-time echo cancellation performance while using
lower computing resources. Similarly, Ma et al. [21] also propose an echo cancellation
model based on the RNN denoising network model, but they introduce a separate branch
for the far-end reference speech within the network. The input of the model consists of
two components: the linear filtering output (residual signal) and the far-end reference
speech. The output comprises three components: near-end speech voice activity detection
(VAD), far-end speech VAD, and clean near-end speech. Since the far-end reference speech
is incorporated as an input, this model exhibits superior cancellation performance. In
addition to networks that perform calculations in the real domain, there are also networks
that perform calculations in the complex domain. The complex domain is an extension of
the real domain, which includes all numbers in the form of a + bi. Zhang et al. [22] propose
F-T-LSTM based on phase and time-frequency information in the complex domain. This
model can fully utilize the phase information of speech and achieve better cancellation
performance with fewer parameters and smaller time delay.

In this work, inspired by the above technologies and theories, we use adaptive filters to
cancel linear echo and DNNs to cancel non-linear echo, constructing a multi-stage acoustic
echo cancellation model. In the linear echo cancellation stage, the inputs of the adaptive
filter are far-end reference speech and near-end microphone signal. In the non-linear echo
cancellation stage, the inputs of DNNs are the complex spectra of the far-end reference
speech, the near-end microphone signal and the output of the adaptive filter, and the
output is the complex spectrum of the estimated near-end speech. Our contributions are
summarized as follows:

• To select a more suitable adaptive filter, we conduct a performance comparison on
various adaptive filters using the same dataset. After evaluation, we opt for the Speex
algorithm as the initial component of our multi-stage acoustic echo cancellation model.

• Due to the delay between the far-end reference speech and near-end microphone
signal, we use the Generalized Cross Correlation Phase Transformation (GCC-PHAT)
algorithm for delay estimation. Then we perform delay compensation on the far-end
reference speech to achieve better linear echo cancellation performance.

• With the aim of canceling non-linear echo, we propose Multi-Scale Time-Frequency UNet
(MSTFUNet) as the second component of the multi-stage acoustic echo cancellation model.
MSTFUNet is based on UNet and achieves good echo cancellation performance.

• To address the issue of high computational complexity and difficulty in handling
speech tasks of simple self-attention. We propose Improved Time-Frequency Self-
Attention (ITFSA), which can effectively extract time-frequency speech information.

• In the process of encoding and decoding in UNet, much detailed information is lost. To
alleviate this issue, we introduce the Channel and Time-Frequency Attention (CTFA)
module to connected each encoder and decoder. This module is capable of extracting
information in both channel and time-frequency dimensions at multiple scales.

In the following sections, we will provide a detailed introduction to our proposed
technical terms.

The remaining sections of this paper are organized as follows: In Section 2, we provide
a detailed explanation of the signal model and the various components of our proposed
model. Section 3 introduces the datasets utilized in our experiments, along with the imple-
mentation details. Section 4 showcases the outcomes of our experiments, accompanied by
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a thorough analysis. Lastly, Section 5 concludes this paper by drawing final remarks based
on our findings.

2. Method
2.1. Signal Model

The basic process of acoustic echo generation and cancellation is shown in Figure 1.
Assuming that x(n) represents far-end reference speech, x(n) passes through an unknown
echo path h1(n) to obtain echo signal y(n). At the near-end, the microphone captures near-
end speech with reverberation h2(n) ∗ s(n), echo signal y(n), and additive environmental
noise v(n) to obtain the near-end microphone signal d(n). d(n) can be expressed as follows

d(n) = y(n) + h2(n) ∗ s(n) + v(n) (1)

where y(n) = h1(n) ∗ x(n), h1(n) is the room impulse response (RIR) between the near-end
loudspeaker and microphone, h2(n) is the RIR between near-end speaker and microphone,
s(n) represents near-end speech, ∗ denotes convolution operation. Moreover, based on
the definition of reverberation [23], the RIR h2(n) can be decomposed into the early part
hearly(n) and the late part hlate(n), so d(n) can be re-expressed as:

d(n) = y(n) + hearly(n) ∗ s(n) + hlate(n) ∗ s(n) + v(n) (2)

Because the inputs of our proposed MSTFUNet are complex spectra, the discrete
Fourier transform of Equation (2) is given by

D(L, F) = Y(L, F) + Hearly(L, F)S(L, F) + Hlate(L, F)S(L, F) + V(L, F) (3)

where L and F denote frame index and frequency bin, respectively. Y(L, F) represents the
complex spectrum of echo that needs to be removed. Hlate(L, F)S(L, F) and V(L, F) denote
the complex spectra of reverberation and noise that need to be suppressed, respectively.
Hearly(L, F)S(L, F) represents the target to be estimated.

Farend Nearend

Acoustic Echo 
Cancellation

mic

mic
loudspeaker

loudspeaker

( )x n

2 ( )( ) ns n h∗1( ) ( )x n h n∗

ˆ( )s n

( )d n

( )x n

( )v n

Figure 1. The basic process of acoustic echo generation and cancellation.

In our multi-stage acoustic echo cancellation model, the adaptive filter takes x(n)
and d(n) as inputs, and outputs the error signal e(n). MSTFUNet takes X(L, F), D(L, F),
and E(L, F) as inputs, and outputs Ĥearly(L, F)Ŝ(L, F). According to the definition of



Electronics 2023, 12, 3258 6 of 19

reverberation, Ĥearly(L, F)Ŝ(L, F) can be approximately equal to Ŝ(L, F). ŝ(n) obtained
after the ISTFT change of Ŝ(L, F) is final estimated near-end speech.

2.2. Overall Structure

In recent years, multi-stage acoustic echo cancellation models have shown excellent
echo cancellation performance [24,25]. On this basis, in order to improve the efficiency of
acoustic echo cancellation, we utilize a combination of adaptive filtering algorithm and
DNN. This approach aims to effectively cancel both the linear and non-linear components
of acoustic echo. The complete structure of this methodology is depicted in Figure 2.

Time
Alignment

𝑥𝑥 𝑛𝑛

𝑑𝑑 𝑛𝑛 𝑑𝑑 𝑛𝑛
𝑥𝑥 𝑛𝑛 − ∆ Adaptive 

Filter

STFT

e 𝑛𝑛

DNN
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Figure 2. The overall framework of a multi-stage acoustic echo cancellation model.

Our multi-stage acoustic echo cancellation model is divided into two stages to cancel
linear and non-linear echo, respectively. In the first step, the far-end reference speech
x(n) and the near-end microphone signal d(n) are processed through a time alignment
module to achieve delay compensation for x(n), resulting in x(n − ∆). Afterward, the
delay compensated x(n− ∆) and the near-end microphone signal d(n) undergo processing
by a specially designed adaptive filter. The primary purpose of this filter is to extract the
error signal e(n), which represents the linear echo cancellation signal.

In the second stage, to fully utilize information, we select the STFT transformation
results X(L, F), D(L, F), and E(L, F) of x(n), d(n), and e(n) as inputs to the DNN. The
output of DNN is the estimated near-end speech spectrum Ŝ(L, F). Finally, the estimated
speech spectrum Ŝ(L, F) is subjected to inverse STFT transformation to obtain the echo
canceled speech ŝ(n).

2.3. Time Alignment Module

In a real environment, the far-end speech x(n) experiences a delay, which affects the
performance of the adaptive filter, due to speech coding and decoding, as well as network
data transmission [26]. To address this issue, we employ the GCC-PHAT algorithm [27] to
compensate for the delay. GCC-PHAT algorithm first calculates the PHAT weighting function

ϕ(ω) =
1

|X1(ω)X∗2 (ω)| (4)

where X1(ω) and X2(ω) are the FFT form of near-end microphone signal and far-end
reference speech, and (·)∗ denotes conjugate transpose calculation. Next, the GCC-PHAT
algorithm calculates the generalized cross-correlation function:

R[τ] = IFFT(X1(ω)X∗2 (ω)ϕ(ω)) (5)
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Finally, the estimated delay between the two signals can be obtained from R[τ]:

τ̂ = arg max
τ

(R[τ]) (6)

2.4. Multi-Scale Time-Frequency UNet

In recent years, UNet has been proven to be effective in extracting information from
data and widely used in processing speech tasks [13,28]. We improve UNet and propose
MSTFUNet to cancel non-linear echo. The structure of MSTFUNet is shown in Figure 3.

Phase Encoder

Input Conv Output Conv

Apply Mask
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ITFSA

TF
C
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C
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TFCM
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Bottom 
Modules

�𝑀𝑀 𝐿𝐿,𝐹𝐹

Figure 3. The structure of multi-scale time-frequency UNet.

The inputs to MSTFUNet are the complex spectra of far-end reference speech, linear
echo cancellation signal and near-end microphone signal. First, a phase encoder (PE) is
utilized to fuse three signals and convert the complex spectra to a real spectrum. Next, we
employ an input convolution layer to extract information and adjust the number of channel
dimensions. Then, we utilize three encoders, two bottom modules, three decoders, and
three CTFAs to build the main network.

The primary components of each encoder include a frequency down-sampling (FD)
module, a time-frequency convolution module (TFCM), and an ITFSA module. On the other
hand, the bottom module consists of a TFCM, and an ITFSA. As for the decoder, it exhibits
a similar structure as the encoder but substitutes the FD module with a frequency up-
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sampling (FU) module. In addition, we introduce CTFA in the skip connection between each
encoder and decoder. Finally, the cIRM M̂(L, F) is acquired using an output convolution
layer, followed by the application of the masking method proposed by [15] to obtain the
estimated near-end speech spectrum Ŝ(L, F).

2.5. Phase Encoder and Time-Frequency Convolution Module

Previous studies have demonstrated that real-valued DNNs offer numerous advan-
tages in acoustic echo cancellation, including efficient acoustic echo cancellation, strong
adaptability, high-quality output, excellent real-time performance, and robust scalability. It
ensures clear and natural speech signals, making it suitable for a wide range of real-time
communication and speech processing applications [29,30]. Building on the works pre-
sented in [15], we incorporate the PE module into our model to facilitate the conversion
of the complex spectra to a real spectrum. Our PE module resembles that of [15], which
can fuse three complex spectra and output a real spectrum. The kernel size and the stride
of the complex convolution layer in PE are set to (1,3) and (1,1). All convolutions are
causal, indicating that padding is applied in a way that does not involve any look-ahead.
Additionally, the power compression ratio of the feature dynamic range compression layer
is set to 0.5 [31].

In order to extract time-frequency information effectively with small parameters and
convolution kernels, the TFCN module is proposed in [32]. The approach replaces the 1-D
convolutions in TCN with 2-D convolutions. TFCN is capable of conducting time-frequency
analysis on signals, allowing for simultaneous information extraction in both time and
frequency dimensions. Moreover, TFCN offers excellent resolution, enabling the retrieval of
more detailed signal characteristics. Additionally, TFCN enables the analysis of signals at
various scales by adjusting the dilations and kernel size of the convolution layer. Inspired
by this research, we present TFCM, which consists of 6 TFCNs. Each TFCN comprises
two point-wise convolution layers and a 2-D dilated convolution layer. The 2-D dilated
convolution layer has a kernel size of (3,3) and a stride of (1,1). The dilations of the 2-D
dilated convolution layer in the i-th TFCN are configured as 2i−1.

2.6. Improved Time-Frequency Self-Attention

Self-attention has gained extensive usage in capturing long-term dependencies be-
tween information primarily because of its expansive receptive field. Nevertheless, the
incorporation of simple self-attention into neural networks noticeably amplifies the com-
putational complexity of the network. Take the calculation of the self-attention map for
an image of size H ×W as an example. The time complexity involved can reach up to
H2 ×W2. Therefore, simple self-attention is challenging to handle speech tasks, primarily
due to its extensive computational complexity. To address this issue, many studies put
forward solutions [33,34]. Inspired by these studies, we introduce the ITFSA depicted in
Figure 4. By substituting simple self-attention with ITFSA, the computational complexity
of computing the self-attention map becomes L2 + F2, where L and F are the frame index
and frequency bin of the input speech spectrum.

ITFSA effectively extracts speech information under low computational complexity
conditions, mainly owing to two crucial factors:

• ITFSA divides time-frequency self-attention into two parts: time self-attention and
frequency self-attention. The computational complexities of time self-attention and
frequency self-attention are L2 and F2. In comparison to the simple self-attention, the
computational complexity is reduced from L2 × F2 to L2 + F2.

• To enhance the emphasis on local information, we integrate 1 × 1 point-wise convolu-
tions and 3 × 3 depth-wise convolutions before generating the self-attention map.
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In time self-attention of ITFSA, the point-wise convolution layer is employed to capture
the inter-channel information. Subsequently, the depth-wise convolution layer is utilized
to extract the time information, enabling the derivation of query (Qt), key (Kt), and value
(Vt) projection vectors. Mathematically, this process can be expressed as follows

Qt = WQ
D WQ

P X

Kt = WK
DWK

P X

Vt = WV
D WV

P X

(7)

where W∗P and W∗D denote the projection matrixes in the point-wise convolution and depth-wise
convolution layers, X represents the input. The combination of point-wise and depth-wise
convolution layers leverage the information of various channels situated at the same time-
frequency position. This allows the network to focus on local information effectively.
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Figure 4. The structure of improved time-frequency self-attention.

Next, we reshape Qt ∈ R(L,F) and Vt ∈ R(L,F) from the original size of R(F,L). Then,
we compute the dot product of Qt and Kt to encode global information across the time
dimension. Afterwards, we utilize the mask and softmax function to derive the time self-
attention map, whose size is (L, L). The use of the mask is to guarantee the causality of
time self-attention so that no look-ahead is used in the calculation process. Finally, the
dot product of the time self-attention map and Vt is calculated in order to acquire the time
self-attention. Equation (8) demonstrates the calculation procedure.
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T-SA(Qt, Kt, Vt) = Softmax(Mask(
Qt · Kt

µ1
)) ·Vt (8)

where T-SA denotes the time self-attention, µ1 represents a factor that can be learned and
used to scale the output of the dot product of Qt and Kt. Therefore, the complete calculation
process is as follows:

Zt = WP T-SA(Qt, Kt, Vt) + X (9)

The calculation process for both time self-attention and frequency self-attention is
similar, but there are differences in the size of the frequency self-attention calculation
process and the absence of mask usage. The process of entire calculating frequency self-
attention is expressed as:

Q f = WQ
D WQ

P Zt

K f = WK
DWK

P Zt

Vf = WV
D WV

P Zt

F-SA(Q f , K f , Vf ) = Softmax(
Q f · K f

µ2
) ·Vf

Z = WP F-SA(Q f , K f , Vf ) + Zt

(10)

To confirm that our proposed ITFSA indeed reduces time complexity, we compared it
with simple self-attention (SSA) and axial self-attention (ASA) [15]. To ensure the successful
operation of simple self-attention, the length of the speech is selected as 5 s. The comparison
results are shown in Table 1.

Table 1. Comparison results of different self-attentions.

Time (s) MACs Para.

SSA 7.015 317.482 3.936 K
ASA 0.192 152.933 1.752 K

ITFSA 0.064 495.581 6.144 K

Compared to SSA and ASA, although ITFSA has more multiply–accumulate operations
(MACs) and the number of parameters (Para.), ITFSA greatly shortens the runtimes. This
proves that ITFSA indeed reduces computational complexity.

2.7. Frequency Down and Up Sampling

In previous research conducted by [15], it has been proven that FD and FU modules
are successful in extracting information at different scales. In the encoder, FD gradually
reduces the spatial size of the input and extracts more abstract and advanced information
from the signal. In the decoder section, FU restores the spatial details of the signal and
combines the previously extracted high-level information with low-level information to
transmit more contextual information and enhance the DNN’s ability to recover details.
Inspired by their works, we integrate FD and FU modules into our MSTFUNet. Moreover,
to enhance the network’s ability to capture time-frequency information, we introduce
TFCM, and ITFSA components at each scale.

2.8. Channel Time-Frequency Attention

So far, research on attention mechanisms has made remarkable advancements [35].
By introducing attention, we have not only been able to emphasize important areas but
also augment the effectiveness of these regions in representation. Refs. [36,37] calculate
attention weights on both the channel and spatial dimensions, emphasizing the significance
of channel attention. UNet often suffers from loss of important detailed information when
it goes through the encoding and decoding process. To address this issue and extract more
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information, we draw inspiration from the aforementioned researches and incorporate
CTFA into the skip connection. The structure of CTFA is shown in Figure 5. CTFA primarily
comprises both a channel attention module and a time-frequency attention module.

In the channel attention module, the input is initially propagated through the average
pooling layer and the max pooling layer to aggregate the time-frequency speech informa-
tion, resulting in Pca and Pcm, respectively. Following this, Pca and Pcm are passed through a
convolution block (SCB) with shared parameters. Ultimately, by employing a sigmoid func-
tion and element-wise addition, the channel eigenvector Fc is merged and produced. The
entire calculation process of the channel attention module can be summarized as follows

Fc = σ(SCB(Avg(X)) + SCB(Max(X)))⊗ X (11)

where σ represents sigmoid function, Avg(·) and Max(·) denote average and max pooling
calculation, X denotes the input, ⊗ represents element-wise product.

In the time-frequency attention module, the output from the channel attention module
Fc is fed into an average and a max pooling layer to capture channel information of the
speech. This aggregation results in Psa and Psm, respectively. Then, the concatenation of Psa
and Psm is passed through a 7 × 7 convolution layer and subsequently a sigmoid layer. The
output of the time-frequency attention module is as follows

Z = σ(W([Avg(Fc); Max(Fc)]))⊗ Fc (12)

where W represents the projection matrix of the 7 × 7 convolution layer.

X

P-Conv

ReLU

P-Conv

⊕

Shared
Convolution 

Block

⊗

Channel
Attention
Module

caP cmP

T-F
Avg Pooling

T-F
Max Pooling


7x7 Conv

⊗

Z

Time-Frequency
Attention
Module

saP smP

Channel
Avg Pooling

Channel
Max Pooling

Figure 5. The structure of channel time-frequency attention.

2.9. Loss Function

In acoustic echo cancellation tasks, the importance of both magnitude and phase
information cannot be overlooked. Hence, we choose to utilize the complex mean squared
error (cMSE) as our loss function, which is originally introduced in [38]. The cMSE can be
defined as follows

L =
1

L× F
(
α · PcRI + β · PcMag

)
(13)
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where PcRI and PcMag are defined as:

PcRI = ∑
L,F

∣∣ŜcRI − ScRI
∣∣2

PcMag = ∑
L,F

∣∣ŜcMag − ScMag
∣∣2 (14)

where ScRI and ScMag refer to the complex and magnitude compression spectrum of clean
speech, respectively. Ŝ∗ represents the estimated speech spectrum. To keep the equation
concise, we have omitted the frame index L and frequency bin F. The values of α and β
are specified as 0.3 and 0.7, respectively. The specific expressions of ScRI and ScMag are
as follows:

ScMag =
∣∣SMag

∣∣c, ScRI = ScMag ·
SRI

SMag
(15)

where the compressibility coefficient c is set to 0.3.

3. Experiment
3.1. Datasets

In our experiment, we utilize the complete synthetic dataset from the ICASSP 2021
Acoustic Echo Cancellation challenge as our primary dataset. The dataset comprises
10,000 synthetic scenarios, each encompassing single talk, double talk, near-end noise,
far-end noise, and a variety of non-linear distortion scenarios. Each scenario consists of a
far-end speech, echo signal, near-end speech, and near-end microphone signal clip. The
far-end speech is randomly selected from 1627 speakers, with a male proportion of 73%,
while the near-end speech has a male proportion of 67%. The echo is generated using room
impulse responses with RT60 ranging from 0.2 s to 1.2 ms. In 80% of the far-end speech, a
non-linear function is applied to simulate loudspeaker distortion. Additionally, noise is
added to 50% of both the far-end speech and near-end speech. The signal to echo ratios
(SER) range from −10 dB to 10 dB, while the signal to noise ratios (SNR) range from 0 dB to
40 dB. All audio in the dataset has a sampling rate of 16 kHz and a duration of 10 seconds.
Furthermore, the dataset is further divided into a training set, a validation set, and a test
set, following an 8:1:1 ratio.

Furthermore, to facilitate a comprehensive comparison of the acoustic echo cancella-
tion performance under three different scenarios, namely double talk, near-end single talk,
and far-end single talk, we employ the blind test set from the ICASSP 2021 Acoustic Echo
Cancellation challenge as an additional test set.

3.2. Implementation Details

In the experiment, the STFT complex spectrum utilizes a frame length of 20 ms and a
hop length of 10 ms. The output channel numbers for the PE and input convolution layer
are set to 6 and 32, respectively. The three FDs have output channel numbers of 64, 128,
and 256, while the three FUs have output channel numbers of 128, 64, and 32. The output
convolution layer has an output channel number of 4. All convolutions in the network are
causal, which means look-ahead is not used.

The optimizer used in the experiment is AdamW, with an initial learning rate of
0.001. The learning rate is exponentially decayed by a factor of 0.98 as the training epoch
progresses. The network is trained for a total of 50 epochs, with a batch size of 1.

To evaluate the performance of the multi-stage acoustic echo cancellation model, we
select the following metrics:

PESQ (Perceptual Evaluation of Speech Quality) [39]: This is extensively used for
evaluating speech quality. PESQ scores are on a scale from −0.5 to 4.5, with higher scores
indicating superior speech quality.
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STOI (Short-Time Objective Intelligibility) [40]: This is a widely utilized objective
metric that exhibits a strong correlation with speech intelligibility. STOI scores are on a
scale from 0 to 1, with higher scores indicating a greater degree of intelligibility.

AECMOS [4]: This is trained using human ratings obtained from the ground truth,
following the guidance provided by ITU-T Rec. P.831, ITU-T Rec. P.832, and ITU-T Rec.
P.808. It is a highly accurate, efficient, and scalable speech quality assessment metric.
AECMOS scores are on a scale from 0 to 5, with higher scores indicating better acoustic
echo cancellation performance.

4. Results and Analysis
4.1. Performance Comparison of Adaptive Filters

To determine the optimal adaptive filter for the initial stage of the multi-stage acoustic
echo cancellation model, we conduct a performance comparison among several adaptive
filtering algorithms, including LMS [2], NLMS [3], Kalman [41], PFDKF [42], and Speex [7].
We select PESQ and STOI as evaluation metrics. The results of this comparison are presented
in Table 2. From Table 2, it is evident that the Speex algorithm exhibits advantages in
acoustic echo cancellation. This is because the Speex algorithm incorporates a multi-
delay block filter [8] with a short filter length and fast convergence characteristics. This
enables it to dynamically adapt to the acoustic echo cancellation requirements in diverse
environments, delivering good acoustic echo cancellation performance while maintaining
low computational complexity. Compared with the unprocessed audio, PESQ is increased
by 0.531 and STOI is increased by 0.98. Therefore, based on this result, we choose to utilize
the Speex algorithm as our adaptive filter.

Table 2. The performance comparison of different adaptive filters.

Noisy LMS NLMS Kalman PFDKF Speex

PESQ 1.804 1.802 1.558 1.773 1.910 2.335
STOI 0.797 0.796 0.708 0.787 0.811 0.895

As previously mentioned, there is a delay issue with the far-end speech. To address
this problem, we utilized the GCC-PHAT algorithm to estimate and compensate for the
delay. The results after delay compensation can be found in Table 3.

Table 3. The performance comparison of different adaptive filters after delay compensation.

Noisy LMS NLMS Kalman PFDKF Speex

PESQ 1.804 1.800 1.565 1.795 1.945 2.360
STOI 0.797 0.797 0.751 0.799 0.820 0.898

Based on the results presented in Table 3, it is clear that after the delay compensation,
the Speex algorithm continues to demonstrate the most effective acoustic echo cancellation
performance. Compared with the unprocessed audio, PESQ is increased by 0.556 and STOI
is increased by 0.101. Figure 6 provides a more intuitive comparison of the performance of
various adaptive filters before and after delay compensation.
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Figure 6. Performance comparison of different adaptive filters before and after delay compensation.

4.2. Ablation Study

In this section, we perform an ablation study to examine the impact of key modules in
the proposed MSTFUNet on performance. Our evaluation of the acoustic echo cancellation
performance on the test set incorporates metrics, such as PESQ, STOI, and AECMOS.
Specifically, we replace ITFSA with ASA to demonstrate the superiority of ITFSA. We do
not choose SSA because its computational complexity is too large to be used for speech
processing tasks. In addition, we individually remove ITFSA and CTFA modules from
the MSTFUNet architecture. ‘+ASA’ means to replace ITFSA with ASA. ‘-CTFA’ refers
to a configuration where the output of FD is passed directly into FU, without any other
processing, by concatenating and element-wise multiplying it with the input of FU. The
results of the ablation study are presented in Table 4. After replacing ITFSA with ASA, there
is a decrease in various performances. This indicates that ITFSA can extract information
more effectively from the input time-frequency dimension. Combining with Table 1, our
proposed ITFSA has advantages in both runtimes and performance. Despite increasing the
number of parameters by 0.2 M, the CTFA module improves the acoustic echo cancellation
performance of the network. It effectively mitigates the potential information loss during
the down-sampling and up-sampling procedures, and further extracts information from
the time-frequency dimension. On the other hand, although the ITFSA module adds
1.9 M parameters to the network, it successfully extracts time-frequency information and
enhances the acoustic echo cancellation capability.

Table 4. Performance of PESQ, STOI, and AECMOS in the ablation study.

Model Para. PESQ STOI AECMOS

Noisy - 1.804 0.797 2.170
+ASA 5.4 M 3.175 0.951 4.468

MSTFUNet 5.8 M 3.216 0.953 4.527
−CTFA 5.6 M 2.993 0.929 4.533
−ITFSA 3.9 M 3.110 0.947 4.504

4.3. Acoustic Echo Cancellation Performance Comparison

To demonstrate the superior performance of our multi-stage acoustic echo cancellation
model, we conduct a comprehensive comparison with DCGRU22 [43], DTLN [18], and
MTFAA [15]. Notably, DCGRU22 and DTLN are ranked as the 5th and 7th models in the
ICASSP 2021 Acoustic Echo Cancellation challenge, respectively. Furthermore, MTFAA is
the champion model in the ICASSP 2022 Acoustic Echo Cancellation challenge. We still
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select PESQ, STOI, and AECMOS as our evaluation metrics. The comparison results are
shown in Table 5.

Table 5. Performance of PESQ, STOI, and AECMOS of different models.

Model Para. PESQ STOI AECMOS

Noisy - 1.804 0.797 2.170
DCGRU22 2.5 M 2.385 0.891 4.134

DTLN 10.4 M 2.855 0.873 4.368
MTFAA 2.1 M 2.929 0.934 4.440

ours. 5.8 M 3.216 0.953 4.527

According to Table 5, our proposed multi-stage echo cancellation model exhibits
obvious advantages over all the aforementioned models in terms of PESQ, STOI, and
AECMOS. Specifically, compared with the unprocessed audio, PESQ is increased by 1.412,
STOI is increased by 0.156, and AECMOS is increased by 2.357. Compared with the
outputs of MTFAA, PESQ is increased by 0.287, STOI is increased by 0.019, and AECMOS
is increased by 0.087.

In addition, we also conduct a performance comparison on the blind test set from the
ICASSP 2021 Acoustic Echo Cancellation challenge. Since the blind test set does not have
clean near-end speech (i.e., training target), and the calculation of PESQ and STOI requires
clean near-end speech, we only select AECMOS as the evaluation metric. The blind test set
is divided into three scenarios: near-end single talk, far-end single talk, and double talk.
The above three scenarios are represented by ST-NE, ST-FE, and DT, respectively.

From the results presented in Table 6, it is evident that our proposed multi-stage
acoustic echo cancellation model outperforms both DCGRU22 and DTLN in both noisy
and clean environments across all three scenarios. Compared to DTLN, our model exhibits
obvious improvements in AECMOS, with an increase of 0.0915 in ST-FE and 0.2725 in DT.
In comparison to MTFAA, our model demonstrates a decrease in AECMOS by an average
of 0.3355 in ST-FE. However, it showcases an increase of 0.0465 and 0.058 in ST-NE and DT,
respectively, highlighting its superior performance in these scenarios. Taking into account
both the PESQ and STOI results presented in Table 5, it is evident that our model surpasses
DCGRU22, DTLN, and MTFAA in terms of acoustic echo cancellation performance.

Table 6. Performance of AECMOS of different models in three scenarios.

ST-NE ST-FE DT

Noisy Clean Noisy Clean Noisy Clean

DCGRU22 4.999 4.999 3.216 3.534 3.658 3.944
DTLN 4.999 4.999 3.789 4.080 4.098 4.241

MTFAA 4.908 4.997 4.169 4.554 4.291 4.477
ours. 4.999 4.999 3.887 4.165 4.370 4.514

To provide a more visual representation of the acoustic echo cancellation performance
of our model, Figure 7 illustrates the comparison results of the speech spectrogram before
and after processing. The yellow box includes the echo and noise that need to be removed,
and the red box includes echo, noise, and reverberation. It is evident from the spectrogram
comparison that the echo has been partially canceled after the Speex processing. On the
other hand, after the MTFAA processing, the echo, noise and reverberation are obviously
canceled, and there is hardly any visible echo before and after the near-end speech. Remark-
ably, the processing of our model achieves an even better acoustic echo cancellation and
noise and reverberation suppression performance compared to MTFAA, which is shown in
the green box.
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Nearend Microphone Speex

MTFAA Ours.

Figure 7. Comparison of the speech spectrogram before and after processing.

Based on the comprehensive analysis of all experimental results, we can conclude that
our proposed multi-stage acoustic echo cancellation model effectively canceled echo and
noise. It enhances speech clarity and intelligibility in both noisy and clean environments,
under three distinct conditions: near-end single talk, far-end single talk, and double talk.

5. Conclusions

Echo significantly affects the quality and clarity of the VoIP communication process. To
address this issue, we propose a multi-stage acoustic echo cancellation model that combines
an adaptive filter with a deep neural network. In order to estimate and compensate for the
delay of far-end reference speech, we employ the GCC-PHAT algorithm. After evaluating
the performance of multiple adaptive filters, we selected the Speex algorithm to cancel the
linear echo.

To effectively cancel non-linear echo, we improve the UNet architecture and propose a
multi-scale time-frequency UNet. Additionally, we propose an improved time-frequency
self-attention and integrated it with a time-frequency convolution module to extract time-
frequency information. To mitigate information loss during down sampling and up sam-
pling and further extract information, we introduce channel time-frequency attention into
skip connection.
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Based on the experimental results, our proposed multi-stage acoustic echo cancellation
model demonstrates impressive capabilities in canceled echo, suppressing noise, and
mitigating reverberation across diverse environments. These results indicate that our
proposed model has great echo cancellation performance.
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