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Abstract: Key–value (KV) stores based on the LSM-tree have become the mainstream of contemporary
store engines, but there are problems with high write and read amplification. Moreover, the real-world
workload has a high data skew, and the existing KV store lacks hot-awareness, leading to its unreliable
and poor performance on the highly skewed real-world workload. In this paper, we propose HoaKV,
which unifies the key design ideas of hot issues, KV separation, and hybrid indexing technology in a
system. Specifically, HoaKV uses the heat differentiation in KV pairs to manage the hot data and the
cold data and conducts real-time dynamic adjustment data classification management. It also uses
partial KV separation technology to manage differential KV pairs for large and small KV pairs in the
cold data. In addition, HoaKV uses hybrid indexing technology to index the hot data and the cold
data, respectively, to improve the performance of reading, writing, and scanning at the same time. In
the mixed read and write workloads experments show that HoaKV performs significantly better than
several state-of-the-art KV store technologies such as LevelDB, RocksDB, PebblesDB, and WiscKey.

Keywords: key–value store; LSM-tree; hash indexing; hot-awareness; KV separation

1. Introduction

Persistent KV stores are an essential part of modern store infrastructure [1,2]. KV stores
are used in a wide variety of applications due to its excellent horizontal scalability and ac-
cess speed and support for unstructured data stores, such as web search [3–6], e-commerce,
social networking, data deduplication [7], and graph stores [8]. KV stores, organizes, and
manages data in the form of KV pairs, usually providing a set of simple interfaces for data
operation: write, read, and scan. With the development of Internet applications, the scale of
user access and data are growing rapidly. Compared with relational databases, KV stores
can better support mass user access.

The Log-Structured Merge-tree (LSM-tree) [9] is the main structure of persistent
KV stores, such as the classic Google LevelDB [10]; Facebook RocksDB [11], which is a
multi-threaded improvement based on LevelDB; Amazon DynamoDB [12]; the Apache-
distributed database Cassandra [13]; the large-scale KV store HBase [3]; and BigTable [4].
The LSM-tree is a persistent index structure optimized for write-intensive workloads. The
core idea is to improve write efficiency by sacrificing partial read performance and con-
verting random write requests into sequential writes. The LSM-tree has the advantages of
efficient write performance, efficient range query performance, and scalability. Compres-
sion operation is the key technology to ensure the read speed of the LSM-tree, but a large
number of compression operations will reduce the system performance and lead to write
amplification, which has always been the main limitation of the LSM-tree. Therefore, the
previous research directions of KV store optimization based on the LSM-tree mainly include
write amplification, compression operation optimization [14], adaptation to new hardware
problems [15], special workload [16], secondary index or memory optimization [17,18],
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etc. Reducing the write amplification [19] is often accompanied by a decline in query
performance or the use of large memory. Thus, the full performance potential of KV stores
are still constrained by the inherent multi-level-based LSM-tree design.

Among KV store workloads in the real world, delete-intensive and update-intensive
workloads dominate many store scenarios, including server log cleaning [20] and online
transaction processing [21]. Therefore, hot issues in mixed workloads (that is, a small
number of projects frequently visited in highly skewed workloads) [22] are a common
problem in real scenarios and have been extensively studied in the literature [23,24]. Many
store systems, such as LevelDB [10] and RocksDB [11], use KV stores in memory to manage
hot projects. UniKV [25] takes the latest incoming data as the hot data and uses the hash
index in memory to index the hot data, to achieve efficient access performance. HotRing [26]
is optimized for massively concurrent access to a small portion of items and dynamically
adapts to the shift of hotspots by pointing bucket heads to frequently accessed items.
However, how to accurately judge the hot and cold of the currently accessed file block has
always been a research difficulty. In recent years, with the development of machine learning
technology, various classification algorithms have been increasingly applied to the field
of system structure design. Therefore, the use of machine learning algorithms, to predict
the hot and cold of the file block and is applied to the cache optimization mechanism, is a
problem worth studying. In addition, the access frequency of data changes dynamically, so
it is meaningful to take timely response measures to the access of data.

To this end, we design a novel KV store. Based on the differentiated key-value
management scheme, mixed index method, and a variety of well-designed technologies,
HoaKV achieves high read, write, and scan performance for large KV stores with mixed
workloads. Our main contributions are summarized as follows:

• We propose HoaKV, which coordinates the differential management of the hot data
and the cold data to effectively adapt to mixed workloads. Specifically, HoaKV divides
KV pairs according to the frequency of read and write access (i.e., heat), preferentially
allocates system resources for the hot data to achieve fast access, and further carries
out special management for the cold data according to its size.

• We propose a dynamic adjustment technology for the hot and cold data to achieve
high scalability in large KV stores. Specifically, we timely adjust the classification of
data and change its store management method according to the heat of real-time data
changes.

• We propose a hybrid index method, namely the three-level hash index method in
memory designed for the hot data and the three-level direct index technology on
disk designed for the cold data, to improve I/O performance and reduce memory
overhead.

• We propose a fine-grained partial KV separation and distinguish between small and
large KV pairs in the cold data management to reduce the I/O overhead caused by
frequent value movement caused by the compression operation of large KV pairs in
the LSM-tree. In order to improve the performance of reading, writing, and scanning,
we also propose a dynamic value grouping method to effectively manage the large KV
pairs.

• We implemented a HoaKV prototype on LevelDB [10] and evaluated its perfor-
mance using micro-benchmark and YCSB [24]. For micro-benchmark testing, HoaKV
achieved efficient loading throughput, compared to LevelDB [10], RocksDB [11], Wis-
cKey [19], and PebblesDB [27]. It also achieved significant throughput improvements
in updates and reads.

2. Related Work

HoaKV is based on the previous work of building and optimizing KV stores. This
section briefly introduces the previous work and the work close to HoaKV.

LSM-tree. Many persistent KV stores are built on the LSM-tree to solve scanning and
scalability problems. In addition to building KV stores on new hardware such as non-
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volatile memory or describing the real-world KV store workload, some research focuses
on optimizing the write performance of the LSM-tree KV store, including optimizing the
structure of the LSM-tree [27,28], KV separation [19,29,30], and reducing the compression
overhead [31,32]. The main problem of write performance is the write amplification caused
by the merge operation. For this reason, many researchers focus on how to optimize the
merge operation. This can be roughly divided into two directions. One is the separation of
key and value. WiscKey [19] uses the KV separation strategy to directly write the value
into the value log and write the key and its corresponding value address into the LSM-
tree. Helen H.W. Chan et al. put forward HashKV [29] based on WiscKey. Its core idea
is to use the hash to group KV pairs, store the KV pairs in the corresponding segment
group, and use the segment group as the unit when performing GC, thus reducing the
GC overhead. However, its write performance is not ideal. Another research direction
is reducing the write amplification by relaxing the requirement of data ordering in the
same layer. DiffKV [28] utilizes a new structure, vTree, for value management with partial
ordering. PebblesDB [31] proposes a fragmented LSM-tree, which relaxed the complete
sorting of KV pairs by dividing each level into multiple non-overlapping segments and
allowing KV pairs in each segment to not be sorted. UniKV [25] unifies hash indexing
and the LSM-tree in a single system and leverages data locality with a layered design and
dynamic range partitioning.

Hot-awareness. HashKV [29] proposes a distinction strategy between hot keys and
cold keys. HashKV stores the hot keys in the segment of vLog, and separates the cold key,
stores in the disk then. HotRing [26] proposes a novel hotspot-aware KVS, named HotRing,
which is optimized for massively concurrent access to a small portion of items. Based on
the cost–benefit model, uCleaner [33] proposes a method to separate the hot and cold data
to reduce the I/O traffic caused by the phenomenon of valid data movement during GC.

Hybrid indexing. UniKV [25] aims to simultaneously achieve high performance in
read, write, and scan, while supporting scalability, and it is also deployable in commodity
store devices (e.g., SSDs). Data Calculator [34] and Continuums [35] focus on unifying
the major different data structureto achieve self-designed KV stores. HiKV [36] and Nov-
eLSM [37] designed a new index structure for nonvolatile memory. KVS_Top [38] uses a
combination of hash and b-tree technologies to support the high-speed search of a large
number of keys (40 million). DPPDL [39] adopts a dynamic partial-parallel strategy, which
dynamically allocates the storage space with an appropriate degree of partial-parallelism
according to performance requirements.

HoaKV also adopts the mixed index method. Different from the above hybrid index
technology, HoaKV aims to achieve high-performance read, write, and scan, and supports
scalability at the same time. HoaKV combines log structure and KV stores based on hash
and sorting and uses a compact hash table to reduce the memory usage of each key. That
is to say, HoaKV divides the data into the hot data and the cold data. Different methods
are used for indexing the hot data and the cold data. In order to achieve fast read/write
performance of the hot data, we use the hash index in memory. At the same time, for the
index of the cold data, we use a common index that does not consume memory resources.

3. HoaKV Design

We propose HoaKV, which divides KV pairs into the hot data and the cold data, and
further divides them into the large KV pairs and the small KV pairs according to the size
of the cold data to achieve differential management of KV pairs. It supports efficient read
and write through the hash index and the normal index. The data classification is adjusted
through the dynamic change of the key value to the heat, to realize the dynamic scalable
and high-performance KV store.

3.1. Architectural Overview

HoaKV consists of two parts as shown in Figure 1. The first part is called the HotStore,
which stores the hottest part of KV pairs, and that is the data with the highest recent
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read/write access frequency. The second part is called the ColdStore, which stores KV pairs
differentiated by value size. Our insight is to calculate the heat of data using the read and
write frequencies of KV pairs. The hot data are the largest part of the read–write ratio and
accounts for only a small fraction of all KV pairs, so we keep them in the HotStore (fully
sorting by heat) and index them directly with in-memory hash indexing for fast reads and
writes. Meanwhile, we keep the remaining large amount of cold KV pairs in the ColdStore
for efficient scans and scalability. HoaKV realizes the idea via the following techniques:

• Hot-awareness splitting. HoaKV stores the hot data in the HotStore. When KV pairs
in a data block are written from in-memory, we calculate the heat of each KV pair and
compare it with the minimum heat of the HotStore, then, if it is large, we store it in the
HotStore.

• Hot KV indexing. To improve read performance, HoaKV stores the keys and values
of the hot data separately. Also, HoaKV designs lightweight three-level hash hot
indexing to balance memory usage and hash collisions. The hash indexing tables
indexes keyTag, heat, and vTableID.

• Partial KV separation. To efficiently manage KV pairs in the ColdStore, HoaKV
presents a partial KV separation scheme. The cold data are divided into small KV
pairs and large KV pairs. Furthermore, a differentiated and fine-grained key-value
management mechanism is implemented in the ColdStore to avoid frequent value
movement in the merge process.

• Dynamic value grouping. To achieve high read and write performance in large KV
stores, HoaKV proposes a value grouping scheme that dynamically splits KV pairs
into multiple groups that are independently managed according to the key ranges, to
expand a KV store in a scale-out manner.

• Cold KV indexing. In order to quickly find the location of the values of KV pairs and
update the heat of the cold data in real-time, HoaKV uses the cold indexing table to
record keys, heat, and group ID, where the value is located.
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3.2. Hot-Awareness Splitting

HoaKV divides all KV pairs into the hot data and the cold data. The hot data, which
are the most frequently read–write accessed part of the data, accounts for a small portion of
all key value pairs. The remaining data are the cold data, which accounts for the majority of
the total data, and the cold data has less read and write access in a short time. HoaKV stores
the hot data in the HotStore, and KV pairs are sorted by heat, that is, the data with the
highest heat achieves the fastest read–write access efficiency. To reduce sorting overhead
for the hot data, HoaKV stores the keys and values of the hot data separately.

We define the frequency of read–write access to KV pairs per unit time as heat, whose
probability density function is as follows:

heat = (PWi + PRi)/T (1)

where PWi and PRi represent the write frequency and read frequency of the ith KV pair,
respectively, in the time T, and T is time. Data blocks are passed in from memory and
the heat of each KV pair in the data block is calculated. HoaKV limits the size of the heat.
When a KV pair has a heat greater than or equal to the predetermined threshold HeatLimit,
the KV pair is the hot data, and HoaKV stores the KV pair in the HotStore. The KV pairs
in the HotStore are sorted by heat, and the heat of KV pairs changes dynamically. The
HotStore needs to sort the KV pairs frequently. To reduce sorting overhead, the HotStore
stores the key and value of the hot data separately. The HotStore stores the key and the
corresponding heat in the heat sorting and stores the value separately in the hot vlog.

Figure 2 depicts the hot-awareness splitting design. The data block are passed in from
in-memory, and HoaKV updates and calculates the heat of each KV pair. If the heat of a
KV pair is greater than or equal to HeatLimit, the KV pair is the hot data and are stored in
the HotStore. For frequent read–write access to the hot data, the HotStore stores the keys
and heat of the hot data in the hot sorting and sorts by heat. To reduce sorting overhead,
the HotStore stores the values of the hot data in the hot vlog. The hot vlog is composed
of multiple vTables, and the value of the hot data is stored in the vTable. The value of
HeatLimit in the HotStore is dynamic. HeatLimit represents the minimum heat of the hot
data. Due to the size of the HotStore being fixed, when the heat of the newly inserted KV
pair is greater than HeatLimit, the KV pair corresponding to HeatLimit is redefined as the
cold data, which is extracted from the HotStore and transferred into the ColdStore as the
cold data. Then, the minimum heat in the latest sorting result is taken as HeatLimit, so the
value of HeatLimit is dynamic.

The cold and hot data adjustment. The read and write access of KV pairs will increase
the heat. The hot and cold data are not fixed, so they need to be adjusted dynamically. As
shown in Algorithm 1, when a KV pair is inserted into the disk, we use a hash function
to calculate the keyTag based on the key. Then, we search for the keyTag in the hot
indexing table first. If it exists, it indicates that the KV pair is the hot data. We update its
corresponding heat and perform a new hot sorting. The motivation proposed in this article
is suitable for highly tilted workloads, so it is necessary for the efficient processing of the
hot data. According to real-time reading and writing accesses of the data, we will timely
update the location of the hot data in the disk through the heat sorting, so that the hot data
that we need is accessed at the fastest speed and improves the performance of the storage
engine. Furthermore, we require a higher time complexity for the sorting of the hot data,
and the space complexity is not high. According to Algorithm 1, if the keyTag is in the
hot indexing table, the system will update the heat of the hot data. As it is only updated
and then sorted, the heat order sequence is basically orderly and decreasing, and the heat
update of the hot data has been increasing. Therefore, based on the above characteristics,
we have chosen the best sorting algorithm suitable for this situation for the hot sorting.
Specifically, after updating the heat of the hot data, we start to compare and move forward
from the position of the key to the previous node until the heat is less than the previous
node. Therefore, in the worst case, the time complexity of this sorting algorithm is O
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(N), and the space complexity is O (N). If corresponding to a read operation, the value
corresponding to the key is returned from the hot vlog based on the vTableID in the hot
indexing table. If it is a write operation, due to the real-time requirement for processing the
hot data, we find the corresponding value from the hot vlog based on the vTableID and
recycle the invalid value directly, where we then store the written value in the location of
the old value. If the keyTag is in the cold indexing table and represents the KV pair as the
cold data, we update its heat in the cold indexing table and compare it with HeatLimit. If it
is greater than HeatLimit, we update it to the hot data. Specifically, we find the key with
the lowest heat from the hot sorting, calculate the keyTag, find the vTableID from the hot
indexing table, and then return the value from the hot vlog based on the vTableID. (this
is the process of taking the heat minimum KV pair). Then, we update it to the cold data,
compare its value to the threshold Value_Size (if greater than the threshold, take the key
value separation technique, otherwise store the KV pair directly in LSM-tree). Then, we
insert the new hot data into the hot sorting to further redo the hot sorting. Specifically, we
calculate the keyTag of the new hot data, store the heat in the hot indexing table, store the
value of the hot data in the vTable of the hot vlog, and then return the vTableID which is
stored in the indexing entry of the hot indexing table. For the read operation, the value of
the hot data is returned directly when the new hot data are inserted into the HotStore. For
the write operation, we insert the latest value directly into the vTable of the hot vlog. If the
keyTag is not in the cold indexing table, we insert it directly into the ColdStore. For read
operation, we return the null values directly. For write operation, we write directly when
the KV pair is inserted into the ColdStore. This enables dynamic adjustment of the cold
and hot data.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 17 
 

 

3.2. Hot-Awareness Splitting 

HoaKV divides all KV pairs into the hot data and the cold data. The hot data, which 

are the most frequently read–write accessed part of the data, accounts for a small portion 

of all key value pairs. The remaining data are the cold data, which accounts for the major-

ity of the total data, and the cold data has less read and write access in a short time. HoaKV 

stores the hot data in the HotStore, and KV pairs are sorted by heat, that is, the data with 

the highest heat achieves the fastest read–write access efficiency. To reduce sorting over-

head for the hot data, HoaKV stores the keys and values of the hot data separately. 

We define the frequency of read–write access to KV pairs per unit time as heat, whose 

probability density function is as follows: 

ℎ𝑒𝑎𝑡 = (𝑃𝑊𝑖 + 𝑃𝑅𝑖)/𝑇 (1) 

where PWi and PRi represent the write frequency and read frequency of the ith KV pair, 

respectively, in the time T, and T is time. Data blocks are passed in from memory and the 

heat of each KV pair in the data block is calculated. HoaKV limits the size of the heat. 

When a KV pair has a heat greater than or equal to the predetermined threshold HeatLimit, 

the KV pair is the hot data, and HoaKV stores the KV pair in the HotStore. The KV pairs 

in the HotStore are sorted by heat, and the heat of KV pairs changes dynamically. The 

HotStore needs to sort the KV pairs frequently. To reduce sorting overhead, the HotStore 

stores the key and value of the hot data separately. The HotStore stores the key and the 

corresponding heat in the heat sorting and stores the value separately in the hot vlog. 

Figure 2 depicts the hot-awareness splitting design. The data block are passed in from 

in-memory, and HoaKV updates and calculates the heat of each KV pair. If the heat of a 

KV pair is greater than or equal to HeatLimit, the KV pair is the hot data and are stored in 

the HotStore. For frequent read–write access to the hot data, the HotStore stores the keys 

and heat of the hot data in the hot sorting and sorts by heat. To reduce sorting overhead, 

the HotStore stores the values of the hot data in the hot vlog. The hot vlog is composed of 

multiple vTables, and the value of the hot data is stored in the vTable. The value of Heat-

Limit in the HotStore is dynamic. HeatLimit represents the minimum heat of the hot data. 

Due to the size of the HotStore being fixed, when the heat of the newly inserted KV pair 

is greater than HeatLimit, the KV pair corresponding to HeatLimit is redefined as the cold 

data, which is extracted from the HotStore and transferred into the ColdStore as the cold 

data. Then, the minimum heat in the latest sorting result is taken as HeatLimit, so the value 

of HeatLimit is dynamic. 

 

Figure 2. Hot-awareness splitting. Figure 2. Hot-awareness splitting.



Electronics 2023, 12, 3227 7 of 17

Algorithm 1: Flow chart of dynamic adjustment of the cold and hot data

Input: KV pairs <key, value>
1: Calculate the keyTag
2: if the keyTag in the hot indexing table then
3: update heat in the hot sorting and the hot indexing table
4: adjust heat sorting
5: read the vTableID according to the keyTag
6: if operation == read then
7: read value according to the vTableID in the hot vlog
8: return value
9: else if operation == write then
10: find the value from the hot vlog based on the vTableID
11: recycle the invalid value
12: store the written value in the location of the old value
13: end if
14: else if the keyTag in the cold indexing table then
15: update heat
16: if heat > HeatLimit then
17: take the heat minimum KV pair
18: calculate the keyTag
19: update it to the cold data
20: if value > Value_Size then
21: take the key value separation technique
22: else
23: store the KV pair directly in the LSM-tree
24: end if
25: insert the new hot data into the HotStore
26: redo the hot sorting
28: if operation == read then
29: return the value of the new hot data
30: else if operation == write then
31: insert the latest value directly into the vTable
32: end if
33: end if
34: else
35: insert it directly into the ColdStore
36: if operation == read then
37: return null
38: else if operation == write then
39: write value
40: end if
41: end if

3.3. Hot KV Indexing

For data management in memory, HoaKV adopts a similar method to the traditional
KV store based on the LSM-tree and ensures data durability using write-ahead logging
(WAL). That is, the KV pairs are first appended to the log on the disk for crash recovery
and then inserted into the MemTable, which is organized into a skiplist in memory. When
the MemTable is full, it is converted into an Immutable MemTable. Then, according to the
heat, a part of KV pairs, that is, the hot data, are refreshed to the HotStore on the disk via a
background process.

Keys and values of KV pairs in the HotStore are stored separately; keys and the latest
heat are stored in hot sorting via a heat-sorted manner; values are stored separately in the
vTable of the hot vlog; and keys and values are indexed using a hash index in memory. To
update and read the latest value in time, HoaKV also stores the heat in the hash index table.
Its constituent level: <keyTag, vTableID, heat>. The keyTag stores the upper two bytes of
the hash result calculated with the different hash functions. The vTableID is the location of
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the hot data stored in the vTable of the hot vlog. The heat is the frequency of read–write
access to KV pairs per unit time.

At the same time, in order to reduce the use of memory, HoaKV establishes a lightweight
hash index, which uses a three-level hash. In addition, HoaKV uses the hash chain and
cuckoo hashing method to solve the hash conflicts problem. As shown in Figure 3, the hash
index contains N buckets. Each bucket stores the index entries of KV pairs with cuckoo
hashing, so it may append one or several overflowed index entries due to hash conflicts.
When we create an index item for a KV pair, we search the bucket according to the hash
results calculated using N hash functions (from the general hash function library), i.e., (h1,
h2, . . ., he, . . ., hE) (key)% N, until we find an empty bucket. Note that we can use up to
N hash functions in this cuckoo hash scheme. If we cannot find an empty bucket among
N buckets, we will generate an overflow index entry and append it to the bucket located
using hE (key)% N.
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After finding a bucket, we record the keyTag and vTableID of the hot data in the
selected index entry. Each index entry contains four attributes:<keyTag, vTableID, heat,
pointer>. The keyTag stores the upper two bytes of the hash result calculated using the
different hash functions, that is, hn+1 (key). It is used to quickly filter out index entries
during key searching. The vTableID uses two bytes to store a vTableID. We can index
128 GB of vTables in the HotStore, each of which is 2 MB in size. The heat uses two bytes
to store the latest value. The pointer uses two bytes to point to the next index entry in the
same bucket.

The finding key and updating heat process works as follows: First, we use hn+1 (key) to
calculate the keyTag. Then, we search for candidate buckets from hn (key)% N to h1 (key)%
N until we find the hot data and update the heat. For each candidate bucket, the latest
overflow entry is appended to the tail. Therefore, we compare the keyTag with the index
entry belonging to the bucket from the tail of the overflow entry. Once we find a matching
keyTag, we will use the vTableID to retrieve the metadata of the vTable andchange the heat
value of the hot data. Note that due to the hash conflicts of hn+1 (key), the queried KV pair
may not exist in this vTable, i.e., different keys have the same keyTag. Finally, if the KV
pair is not found in the HotStore, it indicates that it is the cold data andwe need to further
search in the ColdStore.

We now analyze the memory cost of the hash index. Each KV pair in the HotStore will
consume an index entry, and each index entry will consume 8 bytes of memory. Therefore,
for every 1 GB of hot data in the HotStore and the size of 1 KB KV pairs, it has about
1 million index entries. Considering that in our experiment, the bucket utilization is about
80%, it requires about 10 MB of memory. This memory usage is less than 1% of the data
size in the HotStore. Note that for very small KV pairs, hash indexing may incur a large
memory overhead. However, since all the data stored in the HotStore are the hot data,
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that is, frequent read and write operations will occur in a short period, the large memory
overhead caused by very small KV pairs is acceptable.

Our hash index scheme is a tradeoff in design. On the one hand, when we allocate
buckets for KV pairs, there may be hash conflicts, i.e., different keys have the same hash
value h(key) and are allocated to the same bucket. Therefore, we need to store the key
information in the index entry so that the key can be distinguished during the lookup. On
the other hand, storing a complete key wastes memory. In order to balance memory usage
and read performance, HoaKV uses three hash values and reserves only a 2-Byte hash as a
keyTag. This greatly reduces the probability of hash conflicts, which is also demonstrated
in our experiment. Even if hash conflicts occur, we can still resolve them by comparing the
keys stored on the disk.

3.4. Partial KV Separation

Recall that HoaKV stores a small number of hot data KV pairs in the HotStore and
indexes with an in-memory hash index, which incurs additional memory overhead. The
data that are not frequently read or written recently are defined as the cold data, which
accounts for the majority of KV pair sequences. HoaKV stores the cold data in the ColdStore,
that is, the data whose key value to heat is less than HeatLimit. As the size of KV pairs in
the cold data is not uniform, if the large KV pairs data are directly stored in the LSM-tree,
as in the traditional LSM-tree based KV store, it may cause great I/O overhead. As a result,
the existing KV pairs in the LSM-tree need to be read and written back after merging.
Therefore, how to reduce the merging cost of the cold data is a challenging, key problem for
HoaKV. To improve the range query performance, HoaKV proposes a partial KV separation
strategy, that is, the cold data are further divided according to its KV pair size; the key and
value address of the large KV pair is stored in the LSM-tree; the value is stored separately
in the cold vlog; and the key and value of the small KV pair are retained in the LSM-tree.

After the KV pairs sequence is split by the heat, the remaining KV pairs are the cold
data, and we further classify the cold data. Depending on the size of the value, HoaKV
categorizes the cold data as the small KV pairs and the large KV pairs. Differentiated
fine-grained key-value management mechanisms are implemented for the different types
of KV pairs. As shown in Algorithm 2, according to the threshold value which we set as
Value_Size, HoaKV classifies the cold data KV pairs. Specifically, all KV pairs whose values
are smaller than Value_Size are classified as the small KV pairs. KV pairs whose value is
larger than Value_Size are classified as the large KV pairs. HoaKV uses different store and
garbage collection mechanisms for different KV pairs. At the same time, HoaKV uses the
heat index table on the disk to index the heat and the key and value for each KV pair.

Algorithm 2: Partial KV separation

Input: Cold KV pairs <key, value>
1: if value > Value_Size then
2: store value in the cold vlog
3: return value location
4: store key and value location in the LSM-tree
5: else
6: store key and value in the LSM-tree
7: end if

For the small KV pairs, HoaKV always stores the keys and values together in the SST
file of the LSM-tree without KV separation. For the small KV pairs, KV separation will not
bring obvious benefits, but will exacerbate issues such as read–write amplification and GC
costs. The core of the key value separation technology is to store the key and the address
of the value in the LSM-tree and store the value alone in the value log. For the garbage
collection of the key value, which uses the key value separation technology, we need to find
the corresponding address from the LSM-tree, find the value from the value log according
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to the address, and then perform the garbage collection. This process increases the garbage
collection cost of the storage system. Therefore, we need to reduce the cost of garbage
collection as much as possible, and the garbage collection of the small key value is in the
compaction process of LSM-tree. At the same time, due to the value of the small key value
being relatively small, it has a small impact on the scale of the LSM-tree. This strategy
reduces the system’s garbage collection cost to a certain extent and retains the advantages
of LSM-tree technology, including excellent insertion and search performance, and at the
same time, alleviates the problem of I/O amplification. Therefore, the key value separation
technology for small key values can lead to reading and writing amplification and GC costs.
For the large KV pairs, HoaKV always performs a KV separation mechanism. HoaKV
stores the value of the large KV pairs in the cold vlog, and the value in the LSM-tree is
the location information of the value in the cold vlog. Therefore, for the large KV pairs,
merging operations between levels on the LSM-tree only need to rewrite keys and metadata
and do not need to move values, greatly reducing the write magnification of the large
KV pairs.

3.5. Dynamic Value Grouping

With the data size growth of HoaKV, if we simply add more levels to large-scale stores
as most existing LSM-tree based KV stores, moving data from a lower level to a higher level
will lead to frequent compaction operations during write process, and trigger multi-level
access during read process. Therefore, HoaKV proposes a dynamic value grouping scheme
to expand the store horizontally. The scheme stores the values of the large KV pairs in
different groups and manages them independently according to different key ranges.

The dynamic value grouping scheme works as follows (shown in Figure 4): Initially,
HoaKV writes the value in a group (i.e., G0). Once the size of the group exceeds the prede-
termined threshold GroupSize, HoaKV will divide the group into two groups according to
the key range and manage them independently (for example, G0 is divided into G0 and
G1). For the value grouping strategy, the main feature is that the keys corresponding to the
values stored in two groups are not overlapping. Therefore, how to split a group is crucial.
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To split the values in the cold vlog, HoaKV first locks them and stops the write request.
Note that the unit of locking is a group, that is, HoaKV locks the entire group and stops
all writes to the group during splitting. Then, it sorts all the keys corresponding to the
values to avoid overlapping between groups. It first reads all the SSTable files related to the
large KV pairs from the LSM-tree, sorts the keys, divides the sorted keys into two parts,
and records the boundary key as K between the two parts. Note that the boundary K acts
as a dividing point, that is, if the key of a large KV pair is less than K, its value is put into
G0, and the remaining values are stored in G1. By dividing the points, HoaKV divides the
values in the cold vlog into two groups whose keys do not overlap. Finally, HoaKV stores
the value position with the corresponding key in the pointer, writes the key and pointer
back to the corresponding SSTable file, and updates the value grouping information in
the index table. HoaKV releases the lock and resumes processing the write request after
splitting the value.
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3.6. Cold KV Indexing

KV pairs in the ColdStore are managed differently by size. For large KV pairs, the
KV separation strategy is implemented by storing the key and the address of the value in
the LSM-tree and the true value in the cold vlog. For small KV pairs, the KV separation
strategy is not implemented, and the key and value are stored directly in the LSM-tree. The
data stored in the ColdStore are the cold data, but the heat of the data is changing. We need
to adjust the store location and key-value management according to the heat of the data.
We use an index structure to index the heat, key, and grouping number of the values.

To reduce disk usage, we build a lightweight index with three levels. Its constituent
level: < heat, key, GID >. The heat is the frequency of read–write access to KV pairs per
unit time. The key is the unique identification of the KV pair. The GID is the ID of the
large KV pair in the cold data which is stored in the group. The hash index of the hot
data uses the hash results calculated by the hash function to store the bucket. Unlike this,
although the index structure also contains N buckets, it uses the direct indexing method.
Considering that for large-scale store engines, if the direct indexing method is used purely,
the search efficiency of the system will be reduced. Therefore, in order to speed up the
search efficiency, we have improved the direct indexing method. The value of the cold
data is stored in a dynamic grouping mode, so multiple values are stored in a group and
the keys corresponding to these values are in the same range. Therefore, as shown in
Figure 5, we store relevant information in the index structure according to the grouping
sequence number (GID) of the cold data value, and HoaKV stores the heat information in
the same bucket as the GID. Different values have the same GID, which will cause conflicts
in the index structure. We use the link method to resolve conflicts. Therefore, one or more
overflow index entries may be appended to each bucket due to the conflict of the GID.
When we create an index item for a KV pair, we search the bucket according to the GID
corresponding to the value. Note that in this scheme, if the bucket we find according to
the GID is not empty, we will generate an overflow index entry and attach it to the bucket
located by the GID.
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4. Evaluation

In this section, we evaluate the performance of HoaKV using real-workload-based
benchmarks. In particular, we compare the throughput and scalability of HoaKV with
several state-of-the-art KV stores: LevelDB, RocksDB, PebblesDB, and WiscKey. We also
provide detailed evaluations to demonstrate the effectiveness of the major designs adopted
by HoaKV.

4.1. Setup

We run all experiments on a machine with a 20 core Intel Xeon Silver 4210 2.20 GHz
CPU which made by Intel Corporation from California, USA, 64 GB RAM, and a 4 TB
SSD. The machine runs Ubuntu 20.04.6 LTS, with the 64-bit Linux 5.4 kernel and the ext4
file system.
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For LevelDB, RocksDB, PebblesDB, and WiscKey, we use the same default parameters.
Specifically, we set memtable_size as 64 MB (same as RocksDB by default), bloom_bits as
10 bits, and open_files as 1000. For block_cache_size, HoaKV sets it as 20 MB by default,
while other KV stores set it as 170 MB to match the size of HoaKV’s hash index for fair
comparisons. The remaining memory is used as the page cache of the kernel. For the other
parameters of different KV stores, we use their default values. For other parameters of
HoaKV, by default, to balance write performance and memory costs, we set the group size
to 40 GB. To limit the hash index in the HotStore, we set the size of the HotStore to 4 GB.
For GC operations, HoaKV uses a single GC thread. In each test, if no other specification
is made, we will use the default setting: 32 threads. We allow other KV stores to use all
available capacity in our SSD RAID volume so that their major overheads come from read
and write amplifications in the LSM-tree management. Finally, HoaKV uses YCSB [24] to
generate various types of workloads. Generally, HoaKV sets the size of KV pairs to 1 KB
and the key size to 24-Byte. HoaKV makes a request based on the Zipfian distribution,
where the Zipfian constant defaults to 0.99 in YCSB.

4.2. Micro-Benchmarks

We evaluate the performance of the different KV stores, including the performance
of load, read, update, and scan under the single-thread operations and the size of the KV
stores. Specifically, we use YCSB to generate the workload and set the size of each KV pair
to 1 KB, which consists of 8-Byte metadata (including key/value size fields and retention
information), a 24-Byte key, and a 992-Byte value. We first randomly load 100 M KV pairs
(approximately 100 GB). We then evaluate the performance of 10 M read operations, 100 M
update operations, and 1 M scan operations that scan 50 GB of data. In addition, HoaKV
sets some parameters, such as HotStore Size, Group Size, HeatLimit, and Value_size. During
the evaluation of the micro-benchmarks, HoaKV takes the values of these parameters as:
HotStore Size is 16 GB, Group Size is 20 GB, HeatLimit is 0.95:0.05, and Value_size is 32 KB.

Experiment 1 (the Performance of Load). We evaluate the load throughput for different
KV stores and HoaKV. Figure 6a shows the load throughput of each KV store. Compared
to other KV stores, it shows that HoaKV’s load performance is 9.6 times that of LevelDB,
6.2 times that of RocksDB, 1.8 times that of PebblesDB, and 0.8 times that of WiscKey. It is
important to note that HoaKV is implemented based on LevelDB, but its performance is
higher than other specifically optimized KV stores except WiscKey. This is because WiscKey
separates each KV pair, so the LSM-tree has the least amount of data and therefore has
a higher load throughput than HoaKV. The load throughput of HoaKV is much greater
than LevelDB because HoaKV uses partial KV separation. There are more KV pairs in the
same layer, which also makes HoaKV have more I/O resources to service user requests, so
HoaKV has a much higher load performance than LevelDB. Load performance is mainly
affected by write amplification, so the comparison results of load performance are similar
to those of write amplification.
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Experiment 2 (the Performance of Read). We then evaluate the performance of 10 M
read operations on various KV stores. Figure 6b shows the throughput of each KV store
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performing read operations. As can be seen, HoaKV has the best-read performance. The
read performance of HoaKV is better than WiscKey, mainly because for HoaKV, the small
KV pairs in the cold data do not perform KV separation, and there is no need to issue
another I/O request during reading. The read throughput of HoaKV increases by nearly
five times compared to LevelDB, which is also because HoaKV’s differentiated key-value
management strategy allows the LSM-tree to store more KV pairs per layer than LevelDB,
with an average of fewer layers to search for a KV pair.

Experiment 3 (the Performance of Update). We evaluate the performance of 100 M
update operations for different KV stores and HoaKV. As shown in Figure 6c, WiscKey has
the highest update performance because it directly writes KV pairs to the value log without
the need to update them to WAL files and memory tables. It also has the lowest update I/O
volume and performs the best. HoaKV has a lower update performance than WiscKey, but
its update throughput is 7.5 times higher than LevelDB. This is mainly because LevelDB’s
severe write amplification affects its update performance, while the write amplification
problem of HoaKV is much better because it stores the value of the hot data in the hot vlog
and stores the value of the large KV pairs in the cold data into the cold vlog.

Experiment 4 (the Performance of Scan). We also test the scan performance of various
store systems. Figure 6d shows the scanning throughput of each store system. According
to the results, LevelDB performs the best for scan operations as it stores all KV pairs in
an orderly manner in the LSM-tree without performing KV separation. Compared with
WiscKey which fully implements KV separation, HoaKV has a 12.5% improvement in scan
performance. This is because most of the data in the LSM-tree is stored in the bottom two
layers, while in the LSM-tree of HoaKV, small KV pairs do not perform KV separation,
greatly improving scan performance.

Experiment 5 (the Usage of Space). Figure 6e shows the total KV store size for different
KV stores after all load and update requests are issued. In addition, they have very similar
KV store sizes, meaning that all systems consume similar store space during the loading
phase. HoaKV incurs a slight additional store overhead, mainly used to store and record
pointers to the value positions of the hot data and the large KV pairs in the cold data.

4.3. YCSB Evaluation

Experiment 6 (YCSB performance). Next, we evaluate the performance of various KV
stores using the default workload of YCSB, which is an industry standard for evaluating KV
stores. As shown in Table 1, YCSB provides four different core workloads (Workloads A-D),
each representing a read–write mode in a real-world application scenario. Specifically,
Workloads A and B are read–write mixed with 50% and 95% reads, respectively. Workload
C is a read-only workload with 100% reads. Workload D also includes 95% reads, but reads
queries for the latest values.

Table 1. YCSB Read/Update ratio.

Workload Workload A Workload B Workload C Workload D

Read 0.5 0.95 1 0.95
Update 0.5 0.05 0 0.05

We present the performance results of LevelDB, RocksDB, PePePebblesDB, WiscKey,
and HoaKV under the default YCSB core workload. Figure 7 shows the total throughput of
each KV store area under each YCSB workload. In both read–write-dominated workloads,
HoaKV always performs better than other KV stores. In Workload A, compared to other
KV stores, HoaKV is 4.7 times that of LevelDB, 1.2 times that of RocksDB, 3.2 times that of
PebblesDB, and 2.2 times that of WiscKey, respectively. The performance of HoaKV and
RocksDB is similar, mainly because under workloads with fewer updates, RocksDB no
longer delays write operations to refresh the MemTable. It can better provide reads and
updates through multi-threading optimization. Next, we consider Workload B, Workload C,
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and Workload D, all of which are read-intensive. HoaKV is 4.4–11.4 times that of LevelDB,
1.2–3.0 times that of RocksDB, 2.3–7.4 times that of PebblesDB, and 1.0–2.5 times that of
WiscKey, respectively.
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4.4. Performance Impact

Experiment 7 (Impact of the HotStore size). We investigate the effect of the HotStore
size on HoaKV. We randomly load 100 M KV pairs and issue a 10 M read operation.
Figure 8a shows the result of modifying the size of the HotStore from 1 GB to 16 GB when
the fixed group size is 40 GB. As the size of the HotStore increases, the load throughput also
increases, while the read performance remains almost unchanged. However, the memory
cost of hash indexing for the HotStore will increase. Therefore, the size of the HotStore
should be limited to balance performance and memory overhead.
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Experiment 8 (Impact of the Group size). We analyze the impact of the group size on
HoaKV. We randomly load 100 M KV pairs again and issue a 10 M read. Figure 8b shows
the result of changing the group size from 20 GB to 60 GB while fixing the store area size of
the HotStore to 4 GB. The impact of group size on write performance is minimal, while it
has almost no impact on read performance. The reason is that GC operates independently
within each group. Therefore, the smaller the grouping, the more effective the GC operation.
However, group size can affect memory costs, as HoaKV needs to allocate a MemTable for
each group. Therefore, smaller groups may occupy more memory, so group size should
be limited.

Experiment 9 (Impact of HeatLimit). We evaluate the impact of HeatLimit on HoaKV’s
update performance. The size of the heat threshold HeatLimit also represents the proportion
of the hot data and the cold data in HoaKV, so we consider five different proportions of
the hot data and the cold data, including 0.05:0.95, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 0.95:0.05.
Figure 8c shows the update throughput for the different ratios in the hot data and the cold
data. Thus, as the proportion of the hot data becomes heavier, the update performance of
HoaKV becomes higher. As the hot data indexes the keyTag, vTableID, and heat through
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a hash index table in memory, HoaKV can quickly find the corresponding KV pairs and
update them.

Experiment 10 (Impact of Value_Size). We investigate the effect of KV size ranging from
256 B to 32 KB and maintained other parameter settings. Figure 9 shows the throughput
of randomly loading 100 GB KV pairs, reading 10 GB, and updating 100 GB KV pairs. To
better illustrate the performance trend of data access, the throughput shown in this graph
is in MB/s. As the size of KV pairs increase, both HoaKV and PebblesDB have higher
throughput due to their efficient sequential I/Os. HoaKV always outperforms PebblesDB
in terms of load, read, and update performance. When the KV pair becomes larger, the
improvement of HoaKV reduces the throughput of loading the KV store and increases
the throughput of reads and updates. The reason is that as the size of KV pairs increase,
PebblesDB maintains more SSTables in the first level. This reduces compression overhead
but can cause read operations to check these SSTables one by one, resulting in a decrease in
read performance.
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5. Conclusions

In this paper, we propose HoaKV, which divides KV pairs into the hot data and
the cold data, and further divides them into the large KV pairs and the small KV pairs
according to the size of the cold data to achieve the differential management of KV pairs. It
supports efficient read and write through the hash index and the normal index. The data
classification is adjusted through the dynamic change of the key value to the heat, to realize
the dynamic scalable and high-performance KV store. In HoaKV, the differentiated GC
method is used for the two log files. Due to the unique characteristics of the hot data, the
GC of the hot data requires timeliness. In order to reduce GC overhead, HoaKV proposes a
delay method based on the number of invalid values in each packet of the cold vlog. The
test experiment shows that HoaKV achieves efficient read, write, and scan performance
and has low store cost. HoaKV achieves a balance of performance in all aspects.

Future research directions are as follows: the optimization of distributed KV storage
systems. This article mainly focuses on optimizing KV storage systems on a single machine.
For distributed KV storage systems, more issues need to be considered. In a distributed
system, there may be load imbalance among nodes, which affects the overall performance
of the distributed KV storage system. Therefore, we hope to conduct more in-depth research
on data consistency and load balancing in distributed KV storage systems.
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