
Citation: Kashmar, N.; Adda, M.;

Ibrahim, H.; Morin, J.-F.; Ducheman,

T. Instantiation and Implementation

of HEAD Metamodel in an Industrial

Environment: Non-IoT and IoT Case

Studies. Electronics 2023, 12, 3216.

https://doi.org/10.3390/

electronics12153216

Academic Editor: Cheonshik Kim

Received: 30 June 2023

Revised: 21 July 2023

Accepted: 21 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Instantiation and Implementation of HEAD Metamodel in an
Industrial Environment: Non-IoT and IoT Case Studies
Nadine Kashmar 1,* , Mehdi Adda 2 , Hussein Ibrahim 1 , Jean-François Morin 3 and Tony Ducheman 3

1 Centre de Recherche et d’Innovation en Intelligence Énergétique, 175 Rue de la Vérendrye,
Sept-Îles, QC G4R 5B7, Canada; hussein.ibrahim@cegepsi.ca

2 Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski,
300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; mehdi_adda@uqar.ca

3 Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada;
jean-francois.morin@itmi.ca (J.-F.M.); tony.ducheman@itmi.ca (T.D.)

* Correspondence: nadine.kashmar@cegepsi.ca

Abstract: Access to resources can take many forms: digital access via an onsite network, through an
external site, website, etc., or physical access to labs, machines, information repositories, etc. Whether
access to resources is digital or physical, it must be allowed, denied, revoked, or disabled using
robust and coherent access control (AC) models. What makes the process of AC more complicated
is the emergence of digital transformation technologies and pervasive systems such as the internet
of things (IoT) and industry 4.0 systems, especially with the growing demand for transparency in
users’ interaction with various applications and services. Controlling access and ensuring security
and cybersecurity in IoT and industry 4.0 environments is a challenging task. This is due to the
increasing distribution of resources and the massive presence of cyber-threats and cyber-attacks. To
ensure the security and privacy of users in industry sectors, we need an advanced AC metamodel
that defines all the required components and attributes to derive various instances of AC models and
follow the new and increasing demand for AC requirements due to continuous technology upgrades.
Due to the several limitations in the existing metamodels and their inability to answer the current
AC requirements, we have developed a Hierarchical, Extensible, Advanced, Dynamic (HEAD) AC
metamodel with significant features that overcome the existing metamodels’ limitations. In this
paper, the HEAD metamodel is employed to specify the needed AC policies for two case studies
inspired by the computing environment of Institut Technologique de Maintenance Industrielle (ITMI)-
Sept-Îles, QC, Canada; the first is for ITMI’s local (non-IoT) environment and the second for ITMI’s
IoT environment. For each case study, the required AC model is derived using the domain-specific
language (DSL) of HEAD metamodel, then Xtend notation (an expressive dialect of Java) is utilized to
generate the needed Java code which represents the concrete instance of the derived AC model. At the
system level, to get the needed AC rules, Cypher statements are generated and then injected into the
Neo4j database to represent the Next Generation Access Control (NGAC) policy as a graph. NGAC
framework is used as an enforcement point for the rules generated by each case study. The results
show that the HEAD metamodel can be adapted and integrated into various local and distributed
environments. It can serve as a unified framework, answer current AC requirements and follow
policy upgrades. To demonstrate that the HEAD metamodel can be implemented on other platforms,
we implement an administrator panel using VB.NET and SQL.

Keywords: access control; metamodel; security and privacy; policy; DSL; cybersecurity; digital
transformation; IoT; industry 4.0; NGAC; Neo4j; graph database; Cypher query language

1. Introduction

Continuous advancement in technology in general and the internet of things (IoT) in
particular has increased the need for security and privacy. This fact imposes organizations
and industry sectors to rethink how to control access to their logical and physical resources

Electronics 2023, 12, 3216. https://doi.org/10.3390/electronics12153216 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153216
https://doi.org/10.3390/electronics12153216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0080-1778
https://orcid.org/0000-0002-5327-1758
https://orcid.org/0000-0002-9177-2967
https://doi.org/10.3390/electronics12153216
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153216?type=check_update&version=1

Electronics 2023, 12, 3216 2 of 35

through modern and enhanced access control (AC) approaches [1–3]. AC is defined as the
process of restricting access to resources based on a predefined set of rules known as AC
policies. It consists of two main stages: authentication and authorization. Authentication
is the process where an unknown subject (or user), after verifying his identity, becomes a
known user. This process is insufficient to protect resources. Authorization is the process of
allowing/denying authenticated users access to a resource after checking the regulations
and policies of an organization or industry sector [4]. It includes the following phases [5,6]:

• defining a security policy (set of AC rules);
• selecting an AC model that matches the defined policy;
• implementing the model and enforcing the defined AC rules.

In any organization or industry sector, one of the essential administrative responsi-
bilities is to set policy rules to control access to objects accessed and administered in a
domain. To mitigate security threats accompanied by information technologies, AC rules
must consider possible threats in a domain. They should be concise and easy to understand
so that everyone can follow the guidelines they set forth. AC rules outline the way a
domain works with information and resources, and once they are created the domain’s AC
policy is customized [7,8]. In today’s digital environment, IoT and industry 4.0, users need
effective protection for their resources distributed everywhere, and their ability to access
information anytime, and from anywhere [9–12]. Consequently, the evolution of AC policy
languages should follow the development of computing environments and information
systems (IS) [13,14]. Developing an effective policy language is increasingly challenging
due to the highly dynamic and heterogeneous structures of the current networking genera-
tion [5,15,16]. AC policy language should respond to the increasing demand for authorizing
and controlling access to resources. It should express the organization’s set of rules derived
from business requirements, plans, guidelines, etc.

There are several common AC models implemented in various centralized and dis-
tributed computing environments to control access to resources. These include discretionary
access control (DAC), mandatory access control (MAC), role-based access control (RBAC),
and attribute-based access control (ABAC) [17–19]. As well, hybrid models, extended mod-
els, and abstracted models are implemented to enhance the features of common models as
well as to enable the definition of a larger set of AC policies. A recent topic in this area is
AC metamodels. They usually describe generic concepts and serve as unifying frameworks.
AC models are instances of AC metamodels that are used to specify, define, and explain
what, how, and when particular objects (resources) can be accessed by given individuals
(subjects) [15,18,20]. Due to the ubiquitous nature of current computing environments,
particularly industry 4.0, it is essential that advanced AC metamodels be developed to meet
the increasing demand for AC requirements. In light of the limitations of the existing AC
metamodels [6,18], we propose a Hierarchical, Extensible, Advanced and Dynamic (HEAD)
AC metamodel [15]. Compared to the other proposed works in this domain, e.g., [21–23],
HEAD metamodel considers the challenging requirements which accompany the various
technology progressions, for example, the need (1) to create hierarchical AC components
that fit the diverse hierarchical organizational structures, (2) to define and upgrade a larger
set of AC policies, (3) to have several AC solutions within the same organization (e.g., local
network, IoT, and cloud), and many other challenges [20]. The domain-specific language
(DSL) [24] of the HEAD metamodel—which is defined using Eclipse (xtext) [25,26]—is
generic enough to include the heterogeneity of AC models, this allows defining larger sets
of AC policies. It supports the hierarchy of all components to conform to organizational
hierarchy. The derived models of the HEAD metamodel can be extended to follow policy
updates. Also, it is dynamic since various components/attributes can be added to follow
technology progressions and include several AC solutions in an organization.

In this paper, for the validation of the HEAD metamodel, we propose two case studies
that include different conditions (e.g., static and dynamic AC policies, different contexts,
etc.), and technical aspects (e.g., local and distributed devices, sensors, etc.) to show how
our proposed metamodel can provide the necessary AC requirements and how it can be

Electronics 2023, 12, 3216 3 of 35

adapted to different computing environments. The existing case studies are extremely
limited and barely contain the necessary elements we need to demonstrate our solution. In
two case studies, we demonstrate our solution in the computing environment of Institut
technologique de maintenance Industrielle (ITMI) of Sept-Îles, Quebec. The first case
study deals with ITMI’s local computing environment (in this paper, we refer to it as
a non-IoT environment), while the second case study deals with their IoT environment.
The first case study deals with ITMI’s local computing environment (in this paper, we
refer to it as a non-IoT environment), while the second case study deals with their IoT
environment. Hence, we use the DSL of HEAD metamodel presented and explained in [15]
to derive the AC models required for each case study. The derived models of each case
are encoded using Eclipse Xtend notation (an expressive dialect of Java) to represent the
concrete instance of AC policies and generate the needed Java code to express the AC rules
as Cypher queries. As an enforcement point and to verify the accuracy and the coherence
of the concrete instances of AC policies, Cypher queries are injected into the Neo4j database
to represent the generated rules in the form of Next Generation Access Control (NGAC)
which is developed by National Institute of Standards and Technology (NIST) [27,28] policy
graph—the objects, the relationships between them, and the subjects that interact with the
system in a form that adheres to the semantics of ITMI. NGAC policy graph is constructed
with the basic policy elements and a fixed set of relationships [27,29]. The NGAC policy
elements represented in the NGAC policy graph are illustrated in Figure 1:

• the authenticated users (U), and their user attributes (UA).
• the objects (O) that need to be accessed, and their attributes (OA).
• the policy class(es) (PC).
• the assignment relationships between U–UA, UA–UA, O–OA, OA–OA, UA–OA, and

UA–OA to the appropriate PC(s).
• the association relationships to define the access rights associated with some UAs to

perform operations on some objects specified by OAs.

U2U1

UA1

U3

UA2

UA11 UA12

Users (U)

User Attributes

(UA)

O1

OA1

O2

OA2

OA11

PC1

Policy Class

Objects (O)

Object

Attributes (OA)

AssignmentAssignment

Associations

Figure 1. The NGAC policy Graph

Both case studies show that the HEAD AC metamodel can be adapted to meet AC
requirements in non-IoT and IoT environments. However, compared to already published
works in this domain, this paper’s contribution can be summarized as follows:

• Presents two industrial case studies illustrating the implementation of a new and
advanced metamodel (named HEAD metamodel) from the definition of AC rules to
the enforcement of policies. None of the existing works in this domain present a real
case study or address all the needed phases to enforce the defined AC rules.

• Provides modern AC tools and shows how they can be adapted to different computing
environments, especially industrial environments. Others in this field have only
provided some explanations for manually illustrating some simple examples. They
lack a detailed illustration of the tools available and how to enforce AC rules.

• It helps researchers in the domain to understand how AC metamodels work in real
industrial contexts (or any computing environment), from the definition of informal

Electronics 2023, 12, 3216 4 of 35

policies to their enforcement. Compared to other works they only focus on one phase
and confuse issues that cut across multiple phases. The originality of our work is
demonstrated through the validation of two case studies on a real subject and related
explanations. Also, it can be used as a centerpiece for researchers to tackle other
industrial case studies in the domain.

The remainder of this paper is organized as follows: Section 2 reviews some of the
related work in this domain. A summary of the HEAD metamodel and its characteristics
is explained in Section 3. To illustrate the relevance of our metamodel, the subject of
study is described in detail in Section 4, then the first case study—ITMI’s local (non-
IoT) environment—is presented in Section 5, and the second case study—ITMI’s IoT
environment—is presented in Section 6. In Section 7, we show another example of how
the HEAD metamodel can be implemented using VB.NET and SQL databases to generate
AC rules. In Section 8 we explain the evaluation and validation of the HEAD metamodel.
Section 9 concludes this paper with future perspectives.

2. Related Works

In the field of information security, the main concern for organizations and industry sec-
tors is to keep the secrecy of their information and prevent illegal access to their logical and
physical resources, especially in the presence of cyber-criminals and cyber-attacks [30,31].
Currently, resources are no longer located within local areas, they are distributed on differ-
ent sites and need to be accessed via various private and public networks. The emergence
of evolving technologies and digital transformation urges organizations to protect their
private and public networks, especially with the evolution of Industry 4.0 and the IoT
concept [32–34]. In this context, various AC models and metamodels are implemented in
different computing environments to protect resources and information from unauthorized
access. Unfortunately, they have limited features and are insufficient to meet the current
AC requirements and follow the needed technology upgrades [17,20]. In this section, we
review some of the proposed AC methods in this domain. We summarize the existing AC
metamodels [17,18,20] proposed to instantiate different AC models.

To prevent insider threats in organizations a function-based AC method inspired
by functional encryption is proposed in [35]. It stores access authorizations as a three-
dimensional tensor where users can invoke authorized commands at different levels such
as data segments. They are authorized to use a command on an object and forbidden to
use it on another object. In [36], Qi et al. propose a scalable industry data AC system
for the RFID-enabled supply chain to provide an item-level data AC mechanism that
defines and enforces AC policies based on both the participants’ role attributes and the
products’ RFID tag attributes. For industrial automation and control systems (IACS)
and similar automation systems of the smart energy grid, an eXtended Access Control
Markup Language (XACML)-based AC system is described by Ruland et al. [37] to protect
connected devices and associated safety-relevant settings from unauthorized access. Their
proposed AC method is composed of a two-stage AC schema. They first evaluate policies
based on XACML, then use information about the system’s behavior to prevent malicious
or accidental operations from having a negative impact on system stability. The system
design and implementation consider safety requirements (e.g., timing requirements, the
availability. . .) to enable integration in safety-critical environments.

For secure information sharing in an IIoT, in [13], Ulltveit-Moe et al. investigate how to
secure information sharing with external vendors, and they identify the necessary security
requirements in this domain. Also, they propose a roadmap to improve security in IIoT
which investigates short-term and long-term solutions for IIoT devices. The former is
mainly based on integrating existing appropriate practices such as firewalls, intrusion
detection systems, etc. The latter outlines a long-term solution with fine-grained AC for
sharing data between external entities that supports cloud-based data storage. Ray et al. [29]
show how AC can be specified using an ABAC model for remote healthcare monitoring
(RHM). They present healthcare AC requirements using an example, then explain how

Electronics 2023, 12, 3216 5 of 35

NGAC can be used for specifying AC policies. Alagar et al. [38] propose a context-sensitive
RBAC (CRABC) scheme for securing the environment of the healthcare IoT industry which
is composed of large-scale connectivity of medical devices, patients, physicians, etc., with
the vastness of information collection and sharing. CRBAC combines roles, attributes, and
context to formulate context constraints to enforce access and flow controls. Another AC
model for the IoT in healthcare, named Enhanced Context-aware Capability based AC
(ECCAPAC), is proposed by Ahamed et al. [39] to make the medical network resilient
against crypto attacks by taking into account the trust value of the object based on relevance
and node importance.

Despite that the proposed AC models in various industrial computing environments
come up with solutions for dedicated scenarios or case studies, they have limited features
compared to the increasing demand for security and privacy in the current computing
environments. The current reality of networking environments imposes the need to define
new components/attributes for the existing AC models in order to upgrade the existing AC
policies and allow specifying and enforcing a larger set of static and dynamic AC policies.
As with this feature, the proposed models do not consider hierarchy defining multiple
levels of components (e.g., role hierarchy).

The evolution of pervasive ISs and intelligent manufacturing has had a substantial
influence on the future of the industry. Industry 4.0 (or IIoT) is the modernization of con-
ventional manufacturing through modern technology. In smart industries, several physical
and cyber technologies are integrated to improve productivity, quality, performance, and
management in the age of IIoT [40]. All of this raises the challenge to develop AC meta-
models that serve as unifying frameworks for deriving advanced AC models able to follow
technology upgrades. This would allow for defining and enforcing a larger set of static
and dynamic AC policies. In [20], we summarize the development stages of AC methods
starting from common AC models, hybrid models, extending AC models, abstracting AC
models, and reaching AC metamodels which is the recent research issue in this domain.
As described in [17,18] some metamodels are proposed as generic by using AC features
of some common models, some other metamodels are proposed as hybrid metamodels
by combining features of some AC models, and some other metamodels are proposed as
metamodel extensions for some existing metamodels. The proposed metamodels provide
some development approaches in the field, but they have several limitations since (1) they
are not generic enough to derive the needed AC models (common models, hybrid models,
and other models); (2) they are not flexible and not dynamic enough to follow technology
upgrades; (3) they are not extensible where the derived models and the defined policies
cannot be extended; (4) they do not support the hierarchy feature for all components (e.g.,
role, action, context, etc.); (5) collaboration and interoperability between AC models are
not addressed; and (6) they do not consider the concept of migrating AC policies from one
model to another. To address these limitations, we have designed and developed the HEAD
metamodel [15] where its advanced features allow deriving different models (existing and
even non-existent models). In this paper, we use the HEAD metamodel to derive the needed
AC models for two case studies inspired by ITMI’s environment in order to show how it can
be adapted to various industrial and organizational computing environments. We also show
how various components and attributes for static and dynamic AC policies can be defined in
addition to the common ones, and to illustrate how it supports the component hierarchy.

3. HEAD Metamodel

In [15], we propose a hierarchical, extensible, advanced, and dynamic AC metamodel,
named HEAD metamodel. This metamodel has advanced features compared to other
AC metamodels proposed in the literature. Its distinct design and the new opportunities
it opens in the domain are described in [20]. In this section, we briefly explain its meta-
components (or meta-classes) and features to show how it can be employed to derive the
needed AC models for two case studies (explained in Sections 5 and 6) inspired by ITMI’s
non-IoT and IoT computing environments, then generate the needed AC rules to enforce

Electronics 2023, 12, 3216 6 of 35

them. The meta-components (or meta-classes) of HEAD metamodel are the EXPLICIT (Ex),
IMPLICIT (Im), and SETTING (St). As shown in Figure 2 [15], Ex represents entities/classes
within an organization or industry sector, such as subjects and objects. Im represents the
described entities/classes. Im includes AUTHORIZATION UNIT (AU) entities/classes
such as roles, security levels, etc., and PROCEDURAL UNIT (PU) entities/classes such
as actions, permissions, etc. St represents the concepts needed to have more regulated
access to resources, such as entities/classes of context, contextual conditions, etc. The
relationships between HEAD metamodel components can be described as follows:

• between Ex and AU is to allow assigning zero or many (0..*), for example, subjects to
roles, groups, etc.;

• between AU and PU, and PU and Ex is to describe which AUs (e.g., groups) can
perform zero or many (0..*) PUs (e.g., actions) on some other Ex (e.g., objects);

• Ex and Im could have zero or many (0..*) St (e.g., condition) to fulfill access requests;
• the self-association edge on each meta-class is to allow formulating hybrid models by

associating, for example, AUs with other AUs, PUs with other PUs, etc.;
• the aggregation association for each meta-class allows the creation of hierarchies of

the derived component(s).

Implicit

attributes

accesstype

0..*

0..*

0..*

0..* 0..*
Setting

attributes

ProceduralUnit

attributes

AuthorizationUnit

attributes 0..*

ExHierarchy0..*

StHierarchy0..*

auHierarchy0..* puHierarchy0..*

assign perform

settings has

0..*

0..* 0..*

0..*

0..*

0..*

0..*

Explicit

attributes

Figure 2. The HEAD Metamodel [15].

The DSL of the HEAD metamodel is explained with examples in [15], it can be used to
derive various AC models (common AC, hybrid AC, and other models). For example, to
derive the MAC model, subject and object classes must be instantiated from Ex, security
level must be instantiated from AU, and operation class must be instantiated from PU.
Another example, is the RBAC model where subject and object classes must be derived
from Ex, role class from AU, and permission and action classes from PU. Using the HEAD
metamodel, access to resources is determined by the attributes of the defined entities in the
access request including subject, object, action, context, etc. It allows enforcing complex
AC policies that involve an arbitrary combination of attributes with static, dynamic, and
relationship values. Also, it allows deriving models of high granularity for access policies,
fitting the various needs of AC requirements. This extends beyond the proposed AC
metamodels in the literature [15,20].

4. The Subject of Study: Technological Institute for Industrial Maintenance (ITMI)

ITMI is a technology transfer center affiliated with the Cégep de Sept-Îles, QC, Canada
specializing in industrial maintenance. In an industrial field where machines/devices
reliability is of strategic importance, ITMI offers tailor-made support to North Shore and
Quebec industries and provides technical services to reduce downtime, minimize mainte-
nance costs, optimize productivity, lessen training costs, and increase success rates. Since

Electronics 2023, 12, 3216 7 of 35

its creation in 2008, ITMI has continued to grow and expand its fields of expertise. This has
been done to adapt to industries’ needs on the one hand and to technological changes on
the other. Research efforts are centered on industry 4.0, IoT, embedded systems, artificial
intelligence, energy intelligence, computer-aided design, and others. ITMI has laboratories
with extensive research infrastructure and regularly updated machines/devices including
industrial machinery, hydraulic and pneumatic, prototyping and 3D printing, and drones.
A variety of projects are accomplished in these laboratories, which are accessed by workers
in the departments of design and maintenance, digital audit, IoT and embedded systems,
and information technology (IT). About 35 employees work in different departments at
ITMI with expertise in artificial intelligence, informatics, machine learning, and other fields.

ITMI is a sub-division of the Department of Research and Innovation (DRI) at Sept-Îles
and is directed by the main director of DRI. In addition to the main director, there are four
types of workers (users) in each department: manager, adviser, specialist, and technician.
Figure 3 illustrates the hierarchy of roles at ITMI. Each department manager, who is directed
by the DRI director, supervises the advisers of each department. Advisers direct specialists
and technicians. Experts, specialists, and technicians can share their expertise among
departments based on ongoing projects. Ensuring the privacy of users and the security of
resources is essential for ITMI since any exposure or intrusion to logical (e.g., the local and
public databases) or physical (e.g., labs, machines, etc.) resources could result in serious
consequences such as financial loss, and loss of reputation. Considering that ITMI’s main
role is to follow up, handle, and find solutions related to projects for other institutions, any
intervention creates the possibility of ITMI’s entire data being compromised by a single
action. Hence, ITMI needs an AC method that answers all the needed requirements based
on different situations and conditions. Also, AC methods must always be updated due to
the nature of the given projects which are related to recent and different technologies.

Manager

Adviser

SpecialistTechnician

Director

Figure 3. ITMI - Role heirarchy

In Sections 5 and 6, we present two case studies to show how the HEAD metamodel
can be implemented to derive the required models that fit ITMI’s AC requirements in its
non-IoT (local) and IoT environments, generate the needed AC policies, then enforce them.
Figure 4 summarizes the implementation phases of the HEAD metamodel, and the used
tools to write and generate the necessary code for each phase. However:

• The HEAD metamodel: as illustrated in the figure below, the HEAD metamodel
development steps are: unifying the heterogeneous components, meta-classes and
their relationships, the DSL grammar definition of HEAD metamodel using Eclipse
Xtext, and the meta-policy expression are explained in detail in [15].

• Phase 1: after investigating and identifying the AC policy parameters of each case
study, in this phase we run the Runtime-Eclipse (xtext) then use the defined DSL
grammar of the HEAD metamodel (of the previous phase) to specify and derive the
required AC model(s) and express the AC policy(s).

• Phase 2: to represent the concrete instance of the derived AC model, Xtend notation is
used to generate the required Java code at the system level. A case study’s AC policy
details are configured at this level (e.g., the existing resources in an organization, the
constraints to access some resources, etc.). Since our aim in this paper is to use NGAC
as an enforcement point and get NGAC authorization responses, we generate Cypher
statements as Java output. We inject them into the Neo4j database to represent the
NGAC policy graph.

Electronics 2023, 12, 3216 8 of 35

• Phase 3: this phase enforces AC policy through Cypher queries written in Neo4j as
NGAC inputs and NGAC authorization responses.

Note that all of the above phases are applied and presented in detail in each case study.

Metamodel Development

Unify AC components

of heterogeneous

models

Verification of the

generated AC Policies

Generation of AC

policies from models

Policy enforcement

Generating Policies Policy Enforcement

AC Metamodel (Meta

classes & relationships)

DSL definition of the

AC Metamodel

Meta-policy expression

Specification of AC

models (classes &

relationships)

Deriving Models

Formalization of the

specified AC models

(instances)

Policy expression

Eclipse (xtext)Tools: Runtime- Eclipse (xtext)
Xtend

Generator
Java Code

Cypher

statements

Neo4j NGAC Graph

Cypher

Queries

NGAC

authorization

Responses

Written

generated

Industrial Case

Studies

Phase 1 Phase 2 Phase 3HEAD metamodel

Figure 4. The Case studies: The implementation phases and the used tools.

5. Case Study 1—ITMI: Non-IoT

In this case study, a rail robot needs to be implemented for a North Quebec Rail
(NQR) project. To achieve it a set of tasks required to be implemented by a team. Figure 5
illustrates ITMI’s local environment system architecture. To complete project tasks within
the start and end dates, all users must be authenticated using passwords, fingerprints, or
PIN codes to access the database or labs. Authenticated users are authorized, after checking
the defined AC rules in the policy database, to access resources and perform operations
according to their roles, groups, and other attributes of users.

Policy
database

Security administrator

Users

Authentication Authorization
(AC model(s))

manager

advisers

specialists

technicians

NG
AC

 en
fo

rc
em

en
t p

oin
t Digital resources

Physical resources
Labs

Lab 1
Machine 1,
Machine 2

Lab 2
Machine 3

Lab n
Device x
Machine M

director

Figure 5. The system architecture of ITMI: non-IoT environment.

According to the project requirements, some users might be assigned to a certain role,
while others may also be assigned to different groups, and some may share some tasks with
each other. Access rights grant access to users with a certain role/group to some resources
and allow them to perform some actions on the database (read, write, update . . .), and on
machines (switching on/off, monitoring, modifying settings . . .). Access decisions could
be allowed or denied based on the defined policy. However, in the following we describe
the guidelines to perform the project tasks:

Electronics 2023, 12, 3216 9 of 35

• The NQR project is administered by Roy, ITMI’s director, who has full access to
databases and labs. He manages the priority of project tasks and directs the manager
in setting up the appropriate methodologies to implement them. Before running the
project, he must confirm all details and tasks.

• According to the director’s guidelines, Thomas, the manager who supervises advisers
and has access to the database tables Projects and Tasks, creates the project record and
sets the necessary tasks. Also, he updates the status of each project task (in progress,
completed, on hold . . .) depending on the project’s performance.

• The advisers, John and Sophia, choose groups of specialists and technicians based
on their expertise. Then they assign to each group the necessary tasks, and deter-
mine which machines or equipment are required. They have full access to both the
GroupTasks and Requirements tables in the database.

• Specialists are researchers with specialized knowledge in a particular field who work
with technicians to complete projects. Technicians perform technical tasks such as
maintenance, machines/devices installation, etc. For the NQR project, specialists and
technicians have access to the AI lab where the Rail Robot machine is located, and to
the 3D lab where the 3D printing device exists. To perform some of the required tasks
we have the following groups:

– GroupA: The specialists, Bob and Cathy, test the robot, then assess and write
the obtained results into table Results. The technician, Peter, assists them in
troubleshooting the robot and hardware/software problems.

– GroupB: The specialists, Bob and Marc, read/analyze the results to check if any
flaw(s) exist and might affect the rail robot’s performance. The technician, Eva,
operates the robot to match the analyzed results to the robot’s performance.

– GroupC: The specialists, Marc and Cathy, redesign and implement another proto-
type for the flawed part(s). The needed part(s) are created using a 3D printer. The
technicians, Peter and Eva, help them replace damaged or flawed part(s), then
verify robot system compatibility.

Advisers, specialists, and technicians are allowed to access resources during the work
hours via private network. Their access rights must be revoked once the project is over.

5.1. The Challenge

ITMI frequently has ongoing projects with unexpected AC requirements. In this
context, ITMI needs to ensure the rights to access data, device(s), etc., are provided to right
user(s), especially since users assigned to the same role might have different tasks since they
might also be assigned to different groups. Users’ permissions need to be specified based
on user-role, and user-group assignments. The solution must be scalable to accommodate
ITMI’s future growth.

5.2. The Solution: HEAD Metamodel

As described in Figure 4, the DSL grammar of HEAD metamodel is used to derive
various instances of Ex, Im (AUs and PUs), and St entities and answer the AC requirements
of each case study. By investigating the above case study, we can find that:

• Ex = {subject (name, . . .); object (title, . . .)}.
• Im are AUs = {role (type, . . .); group (number, . . .)}, and PUs = {permission (ptype, . . .);

action (type, . . .)}
• St = {context-constraint (date, time . . .); constraint (projconfirm, task_status . . .)}.

5.2.1. Phase 1: Deriving Models

In this section, we investigate the best AC model that fits the AC requirements of this
case study. Due to the above Ex, Im, and St entities, we have the possibilities:

• RBAC model: RBAC entities are subject, object, role, permission, and action. Users
are assigned to roles and groups, and in some situations we have attributes and

Electronics 2023, 12, 3216 10 of 35

environmental conditions. Hence, the RBAC model is not enough to satisfy the AC
requirements, since we cannot find all the necessary entities.

• ABAC model: ABAC entities are subject, object, action, and environmental (context)
attributes. ITMI users are assigned to roles and groups. Therefore, with the ABAC
model, the RBAC model should be considered, in addition to the group entity since
users are assigned to roles and/or groups.

• Hybrid model: the notion of role reflects the importance of considering the RBAC
model; the notion of attributes and the need to express dynamic AC rules reflect the
importance of taking into account the ABAC model; also the group entity with its
attributes imposes the need not to restrict the solution to RBAC or ABAC models only.
Hence, the solution should consider future entities that need to be created/added due
to upgrades.

Therefore, our solution in this case is to derive a hybrid model based on user-groups,
RBAC, and ABAC. Using the DSL of the HEAD metamodel the formal user-groups, RBAC,
and ABAC hybrid model can be derived by first instantiating the needed entities of Ex, AU,
PU, and St, then expressing the rules as shown in Figure 6. In Figure 6a:

• line 1: the specification of policy model/class.
• lines 2 to 10: the block of creating Ex entities, starts and ends with the keywords

explicit and end. Line 3: the creation of subject entity with the attribute(s). Lines 4 to
9: four levels of objects are created to represent the hierarchy of resources. We actually
have three levels of object hierarchy, but since we use NGAC as an enforcement
framework we create additional level to have four levels. ‘object1’ level expresses
the main objects assigned to different object containers, and the other three levels are
defined to represent the hierarchy object containers.

• lines 12 to 21: the block of creating AU entities, starts and ends with the keywords
authorization and end. Line 13: the creation of group entity with the attribute(s). Lines
14 to 20: four levels of role hierarchy are created. For example, role1 refers to the
director, role2 refers to the manager, etc.

• Lines 23 to 26: the block of creating PU entities, starts and ends with the keywords
procedural and end. Line 24: the creation of permission entity with the needed
attribute(s). Line 25: the creation of action entity with the attribute(s).

• Lines 28 to 33: the block of creating St entities, starts and ends with the keywords
setting and end. Lines 29 and 30: the creation of context entity with the context
attribute(s). Lines 31 and 32: the creation of constraint entity with the attribute(s).

Moreover, in Figure 6b we provide examples of three possible rule expressions:

• Lines 39 to 47: this rule expression is, for example, to express access rights for users
who are assigned to the first-level of role hierarchy (e.g., director) and implicitly
connected with the actions associated with their role (e.g., manager) without the
administrator having to explicitly list the manager actions on objects, and this is also
applied at the lower levels of hierarchy.

• Lines 48 to 58: to express, for example, the rule for users designated as assigned to
the second-level of role hierarchy who are implicitly associated with their role(s) and
perform some actions on objects with some constraints.

• Lines 59 to 73: the rule is expressed, for example, for users with lower-level roles, and
who are also assigned to a specific group, to perform certain actions on certain objects
of a certain level in a particular context under certain constraints.

Electronics 2023, 12, 3216 11 of 35

Figure 6. Case Study 1: (a) A hybrid model based on user-groups, RBAC and ABAC entities/attributes;
(b) rule expressions.

Electronics 2023, 12, 3216 12 of 35

5.2.2. Phase 2: Generating Policies

The meta-policy is expressed in terms of the meta-components Ex, Im, and St [15,20]:

Metapolicy = 〈Ex, AU, PU, St〉

Before expressing the formal policy, we need to describe the policy elements:

• Users: a set of entities who have accounts in the IS. Users = {Roy, Thomas, John,
Sophia, Marc, Bob, Cathy, Peter, Eva}

• User Attributes: each user is associated with a set of attributes (e.g., Id, name . . .).
• Roles: specifies user’s role. Role = {director, manager, adviser, specialist, technician}.
• Groups: specifies user’s group. Group = {groupA, groupB, groupC}.
• Objects: a set of logical/physical objects that need protection. For example, database

entities (projects, tasks . . .), labs, machines, devices, etc.
• Object attributes: object attributes include the project name, machine#, etc.
• Actions: a set of actions on logical objects (e.g., read, write, update, delete, etc.), and

on physical objects (e.g., operate machines, test, troubleshoot, etc.).
• Permissions: users’ permissions to perform actions on objects based on their roles (or

groups), and if constraints and contextual constraints are true.
• Context: for a given context—for example, log in via private/public network, machine

malfunction, system failure, etc.— context attributes include datetime, login location,
failed password attempts, etc., contextual constraint expressions include context
attributes which are important for authorization decisions.

• Constraints: expressions include the other various types of attributes, for example,
subject attributes, object attributes, etc.

Based on the meta-policy expression, we express the policy of this case study as follows:

Policy = 〈subject(name, . . .); object(title, . . .); role(type, . . .); group(number, . . .);

permission(ptype, . . .); action(type, . . .); context(date, . . .);

constraints(roletype, title, . . .)〉

To represent the concrete instance of the derived model, we use Xtend notation to
transform the user-groups, RBAC, and ABAC model into Java code. Hereafter, we need to
generate Cypher statements as Java output to be injected into the Neo4j database to represent
NGAC policy (as illustrated in Figure 4). In Figure 7a, we show an example of the written
Xtend code to transform the Ex entities into subjects, the Cypher statement is expressed in line
13 to create users (U) nodes. Cypher statements are expressed and added to the array list of
‘rules’. The same concept is also applied to transform the AU, PU, and St entities. Moreover,
the sample code in Figure 7a generates the sample Java code in Figure 7b to define subject
entities. A Cypher statement to create U nodes is generated in line 10.

In this case study we use three types of assignment relationships. The first is ‘as-
signed_to’ where some Us are assigned to some UA containers, Os are assigned to some OA
containers, and some OAs are assigned to some some other OA containers. The second is
‘include’ to represent the hierarchy of objects (Os and OAs). The third is ‘has_child_content’
to represent the hierarchy of roles (UAs). In Figure 8a, an example of Xtend notation is
illustrated expressing the Cypher statements to create the ‘assigned_to’ relationship for
object O at root level with OA container (lines 2–4), and ‘include’ relationship to represent
the hierarchy of objects, for example, O–OA or OA–OA containers (lines 6–8). In line 2, of
t he generated Java expressions in Figure 8b, r_object1 refers to objects at the root level and
h_object2 in line 7 refers to the second level of object hierarchy.

Electronics 2023, 12, 3216 13 of 35

Figure 7. Case Study 1: (a) A sample of Xtend notation for Explicit entities; (b) the generated Java
code for the subject entities.

Figure 8. Case Study 1: A sample of (a) Xtend notation to express the assignment relationships
between O–OA nodes; (b) The generate the Java code expressing the Cypher statements.

As mentioned earlier, to illustrate the NGAC policy graph, we need to generate the
needed Cypher statements as Java output. To obtain the required Cypher statements,
the system administrator (or the authorized user) must be aware of how to configure the
NGAC policy by specifying the users, resources, relationships, conditions, etc., based on the
computing environment of the case study. Figure 9 illustrates the schema of NGAC policy
configuration of this case study. In Figure 9a, we show user containers that represent the
assignment of U–UA. For example, John (U) and Sophia (U) are assigned to Adviser (UA),
and Roy (U) is assigned to Director (UA), etc. In (b), we show object containers with the
representation of relational database tables with some distinguished rows/columns where
they are represented as containers of data objects corresponding to the row/column fields.
For example, a container named ProjectDetails includes the fields prjName, startDate,
endDate, and prjConfirmation. Furthermore, (c) Lists thirteen association relations in terms
of the user and object attributes/containers expressed in (a,b). In (c), users’ access rights to
perform operations are formulated through associations. For example, in (1) and (2) the
director is allowed to {r:read, w:write/ insert, u:update, d:delete} the data in FinancialDe-
tails container. He is also allowed to {d: delete, c: confirm} data of ProjectDetails container;
in (3) the manager is allowed to {r, w, u} data of ProjectDetails; etc. Note that the operations
‘s’ and ‘o’ in 6 and 9 mean select and operate. In (d), we have two prohibition relations
which express user attribute-deny (ua_deny) to deny the technicians ‘Peter’ and ‘Eva’
from performing {w, u, d} on GrpATskRslt/GrpCTskRslt and GrpBTskRslt/GrpCTskRslt
respectively. In (e), we represent six obligations defined as event–response relations to

Electronics 2023, 12, 3216 14 of 35

define constraints under which policy state data are obligated to change. For example,
in (1) when the director confirms the ProjectDetails information, the manager would not be
able to {u, d} this information; another example in (3) expresses an obligation due to some
context where the adviser is not allowed to {u, d} information in Requirements container if
he logged into the system via a public network or if the current date is greater than the end
date of NQR project; also in (4, 5, and 6) users of Groups A, B, and C are not allowed to {w,
u, d} information of containers GrpATskRslt, GrpBTskRslt, and GrpCTskRslt during the
non-business hours and before and after the start and end of project dates.

Thomas

Director

Manager

Adviser

Specialist

Technician

Roy

John

Sophia

Bob

Cathy

Marc

Peter

Eva

(a) User containers:

Bob

Cathy

Peter

GrpA

Bob

Marc

Eva

GrpB

Marc Cathy

Peter

GrpC

Eva

(b) Object containers:

FinancialDetails estGM estCost estGPestValue

Requirements
prjName machine mNotes

RailRobot
3Dprinter

ProjectTasks prjName tskName tskDescr task_Status

1- Director -------- r, w, u, d -------FinancialDetails
2- Director -------- d, c ----------- ProjectDetails
3- Manager -------- r, w, u -------- ProjectDetails
4- Manager -------- w, u, d -------- ProjectTasks
5- Adviser ----------r, s, u, d -------Requirements

(c) Associations:

6- Adviser --------- s -------------ProjectTasks
7- Specialist -------- r -------------ProjectTasks
8- Technician ------- r ------------ProjectTasks

11- GroupA --------- r, w, u, d-------GrpATskRslt
12- GroupB ----------r, w, u, d-------GrpBTskRslt
13- GroupC ----------r, w, u, d------ GrpCTskRslt

Results GrpATskRslt
GrpBTskRslt
GrpCTskRslt

tskName tskName destails

(d) Prohibitions:
ua_deny(Peter, {w, u, d}, {GrpATskRslt, GrpCTskRslt})
ua_deny(Eva, {w, u, d}, {GrpBTskRslt, GrpCTskRslt})

9- Specialist -------- o -------------Machines
10- Technician -------o ------------ Machines

prjNme sDate eDate prjConfirmProjectDetails

(e) Obligations:
1-When: prjConfirm=true, do: create ua_deny(Manager, {u, d}, ProjectDetails)
2-When: task_status !=“onhold”, do: create ua_deny(Manager, {u, d}, ProjectTasks)
3-When: eDate < Date() OR loginLocation=‘public’,
 do: create ua_deny(Adviser, {u, d}, Requirements)
4-When: (sDate > Date() AND eDate < Date()) AND time>17h00,
 do: create ua_deny(GroupA, {w, u, d}, GrpATskRslt)
5-When: (sDate > Date() AND eDate < Date()) AND time>17h00,
 do: create ua_deny(GroupB, {w, u, d}, GrpBTskRslt)
6-When: (sDate > Date() AND eDate < Date()) AND time>17h00,
 do: create ua_deny(GroupC, {w, u, d}, GrpCTskRslt)

Figure 9. Case Study 1: NGAC Policy Configuration.

Figure 10 shows a sample of Java output to configure the required AC policy. The
green text demonstrates the configuration of the subject and object entities and attributes
that is performed by a system administrator based on the schema from Figure 9, indicat-
ing the hierarchical relationship between the object containers. For example, the object
‘nqrDuration’ is assigned_to ‘ProjectDetails’ container, the object ‘Labs’ has a hierarchical
relation with (or includes) the ’Machines’ container, and so on. After configuring the policy
elements, Figure 11a shows a sample of the generated Cypher statements to create policy
class (PC), e.g., create (:PC {industry: ‘ITMI’}); users (U), e.g., create (:U {sname: ‘Roy’});
objects (O), e.g., create (:O {oname: ‘Labs’}), etc. Figure 11b shows examples of Cypher
statements representing O–OA and OA–OA assignments, and OA hierarchies. For example,
the first statement is to create ‘ProjectDetails’ node, then assign ‘nqrDuration’ node to the
created node. The second and third statements means that the object ‘ProjectDetails’ at the
root level ‘include’ the ‘Requirements’ and ‘ProjectTasks’ nodes which are at the second
level of object hierarchy. The remaining statements mean that ‘ProjectTasks’ node at level 2
‘include’ the nodes ‘GrpATskRslt’, ‘GrpBTskRslt’, and ‘GrpCTskRslt’ which are at the third
level. Note that the semicolon ‘;’ indicates the end of a statement.

Electronics 2023, 12, 3216 15 of 35

Figure 10. Case Study 1: A sample of Java output with the configuration of subjects, objects, etc.

The Cypher statements in Figure 11c expresses the association relationships that
define the access rights for some UAs (e.g., Director, Manager . . .) over some OAs (e.g.,
FinancialDetails, ProjectDetails . . .). For example, lines 1–3 and lines 7–9 match the UAs
‘Director’ and ‘Manager’, and the OAs ‘FinancialDetails’, ‘ProjectDetails’, and ‘ProjectTasks’.
Then, lines 5–6 express that the director with DirPermission is able to perform {r, w, u, d}
operations on ‘FinancialDetails’ and {d, c} on ‘ProjectDetails’, and lines 11–12 express that
the manager with ManPermission is able to perform {r, w, u} operations on ‘ProjectDetails’
as long as the information is not confirmed by the director (prjConfirm = ‘false’). Since
the basic elements of NGAC are U, O, UA, OA, and assignment/association relationships,
we configure the constraints and contextual constraints as properties in the association
relationship. As a result of configuring the NGAC policy and injecting the generated
Cypher statements into Neo4j, we can display the NGAC policy graph in Figure 12.

Figure 11. Case Study 1: sample of Cypher statements for (a) PC, U, and O nodes; (b) O–OA
assignments and object hierarchies; (c) access rights as AU–OA associations.

Electronics 2023, 12, 3216 16 of 35

5.2.3. Phase 3: NGAC—The Policy Enforcement Point

In this section, we explain how the AC policy is enforced over Cypher queries issued
from a system that uses Cypher statements as NGAC inputs (we use Neo4j) and can
generate NGAC authorization responses based on those queries. In Figure 12, in the left
section the nodes shown in light and dark green color illustrate the assignment of users
(Us) to their roles/groups (UAs), in addition to the role hierarchy which is indicated by
the red arrows and ‘has_child_content’ relationship. The nodes indicated in light and dark
blue color in the right section of the graph represent the assignment of objects (Os) to object
containers (OAs) (and OAs-OAs), in addition to object hierarchy where the hierarchy of
object containers is represented by the red arrows and ‘include’ relationship. The association
relationships, the yellow arrows, represent users’ permissions based on their roles/groups.
Note that in this paper we use the term ‘has_child_content’ to indicate the hierarchy of
roles, and the term ‘include‘ to represent the hierarchy of objects.

Figure 12. Case Study 1: The NGAC policy graph.

By assigning a user to a role (with the inheritance relation between roles), the user is
indirectly associated with the access rights of that role’s lower roles. Figure 13 illustrates
permissions associated for some users on some objects such as in (a) Roy is assigned to the
role of director and also has the permission of the lower roles (manager, adviser . . .). In
(b) Thomas is assigned to role manager also has the permission of the lower roles (adviser,
technician . . .). In (c), Sophia is assigned to role adviser and also has the permission of
the lower roles. In (d), Marc is assigned to role specialist in addition to the permissions of
groups B and C. For example, the user Roy has the permission DirPermission to confirm
and delete {c, d} ProjectDetails data through the Roy–Director assignment, Roy also has
the permission ManPermission to {r, w, u} ProjectDetails through the Director–Manager
assignment which is expressed as ‘has_child_content’ relationship in Figure 12 to represent
role hierarchy. Consequently, a manager with ManPermission also has AdvPermission,
SpePermission, TecPermission, and so on. Note that, to simplify and minimize the number
of association relationships between UAs and OAs in the graph of Figure 12, we use single
association relationship instead of two or three. For example, in the association between

Electronics 2023, 12, 3216 17 of 35

Manager(UA)–ProjectDetails(OA) which represents ManPermission with {r,w,u} operations,
the operation {r} on ProjectDetails can unconditionally be performed by the manager, and
the manager cannot perform {w,u} if the (non-contextual constraint) PrjConfirm value is true.
In our illustration, we use a single association relationship, instead of two, and apply the
constraints on all operations. In Figure 14 we illustrate an example for AdvPermission with
its properties which include actions/operations and the contextual constraints. The adviser
is able to perform {r, s, u, d} on project Requirements when the context LoginLocation=‘local‘
and the current date is before the endDate of the project.

Figure 13. Case Study 1: Examples of some Cypher query results to show users access right based on
the Permissions of (a) Director; (b) Manager; (c) Adviser; and (d) Specialist and groups B & C.

In Figure 15 we run some Cypher queries with some constraints using context, user,
and object attributes to show NGAC authorization responses to Cypher statements. In
(a) we show that the manager is able to perform the needed operations on ProjectDetails,
(b) when the value of prjConfirm is updated (by the director) to ‘true’, (c) he would not be
able to perform any operation on ProjectDetails. In (d) and (e) we show that an adviser is
able to {r, w, u, d} project Requirements if the current date is less than the end project date.

Electronics 2023, 12, 3216 18 of 35

Figure 14. Case Study 1: Examples of association relationship properties for role permissions.

Figure 15. Case Study 1: Examples of NGAC authorization responses to Cypher statements.

Controlling access to resources in industrial organizations is often managed at the
application level, which is sufficient in static computing environments where changes in
the data sources or system are not expected. On the other hand, industry 4.0 applications
are generally dynamic, which means that new machines, devices, sensors, users, etc.,
are frequently added or changed, and the AC policies need to be frequently added and
updated. Accordingly, industry 4.0 environment, and other highly dynamic environments,
need flexible and frequently upgradable AC models to answer the frequent changes in AC
requirements. In the following section, we propose a simplified case study for the industry
4.0 environment.

6. Case Study 2— ITMI: IoT

Due to the immense value IoT brings to every organization, ITMI refers to the use of
IoT in improving existing systems and processes. This enables it to increase operational
efficiency, create better experiences, and unlock additional value for the running projects.
For ITMI, the IoT and industry 4.0 reflect a growing focus on driving results using sensor-
based data and creating analytically rich data sets.

Figure 16 illustrates ITMI’s IoT system architecture. Note that this case study continues
the previous case study. One of the significant IoT projects maintained by ITMI, is the
Inspection of the Railways of Quebec (IRQ) in Canada to detect any unrevealed cracks in
railway tracks to avoid accidents. To achieve this, a rail robot (which is accomplished in
case study 1) and a drone are connected or paired together so that they are synchronized
and well geolocated. Both are connected to the internet via cellular or satellite networks
depending on where the inspection is taking place. The sensor nodes attached to the rail

Electronics 2023, 12, 3216 19 of 35

robot are used to inspect the railways and take images of cracks and technical problems.
Synchronously, the drone also captures images of locations where cracks in railway tracks
exist. All data and captured images are sent to ITMI’s cloud server. In this case study,
AC is based on users’ roles, in addition to other attributes of subjects, objects, and the
environment. Those who have access to the labs 24/7 can take out the Rail Robot and the
Drone and operate them on site. This is when the status of this task is in progress and within
the start and end date of the running project. Onsite, users must log into the machines
using PIN codes, they have three possible attempts to use the correct PIN code to operate
and control the machines. Otherwise, the machines, using a GPS tracking system, send
alert messages with the geographical coordinates of the location to the manager, specialists,
and technicians. In the following we describe the guidelines to perform the project tasks:

Policy
database

Security
administrator

Application layer

Users

manager

specialists

director

advisers

technicians

user device

Middle layer Object layer

Storage device
Server

Network

AC model(s)

Authentication

Ga
tew

ay

IoT devices

AC model(s) AC model(s)

drone

Rail robot

Local Public

NG
AC

 en
fo

rc
em

en
t p

oin
t

NG
AC

 en
fo

rc
em

en
t p

oin
t

Figure 16. The system architecture of ITMI: IoT environment.

• The specialists Bob and Cathy with the technician Peter can operate the Rail Robot
and the Drone using the IoT device controller to control the machines and read the
collected data and images.

• The adviser John has full access to database tables at the ITMI cloud server where
the collected data and images from the site are received from the Rail Robot and the
Drone. He analyzes the obtained information, then writes/inserts the needed report
information to the table Results.

• Before emailing the reports to the company maintaining the railways, the manager
Thomas must read (and modify if needed), and confirm the report(s).

All users are allowed to perform the specified actions if the task status is in progress
and within the project start and end dates.

6.1. Challenge

The rail robot and the drone could generate privacy-sensitive information, for example,
for some logistic locations. Hence, it is critical to provide an efficient AC model considers
all the needed factors to avoid operating the devices for any illegal use by any illegal user.
With a set of physical identities (ITMI workers, company employees, and others) at some
of the sites where the railway inspection process is assumed to take place, operating the
rail robot and the drone must be carried out by trusted users. Moreover, the machines are
objects that need to be controlled by authorized users, but they are also users when they
send and insert data into the public database on ITMI’s cloud server. In other words, they
are objects in some context and subjects in another context.

6.2. The Solution: HEAD Metamodel

As shown in Figure 16, to protect the resources there are various AC models need to
be implemented. To provide the desired solution for this case study, we will also follow the
same steps explained in Figure 4. The DSL grammar of HEAD metamodel is used to derive

Electronics 2023, 12, 3216 20 of 35

the model(s) needed to protect the resources of ITMI’s public environment. The solution
should consider that the physical objects are also subjects (users)—for example, although
the RailRobot and the Drone are objects need to be protected from any illegal access, they
are also subjects when they connect to ITMI’s public database to insert/write the collected
data. Hence, we have to derive a hybrid model with two PCs, PC1 considers the machines
as objects and PC2 considers them as subjects. However, the DSL of HEAD metamodel
allows instantiating different PCs with Ex, Im, and St entities.

- PC1: Ex = {subject (sname, . . .); object (oname, . . .)}.
Im: AUs = {role (type . . .)} and PUs = {permission (perm . . .); action (type . . .)}
St = {contextual-constraint (loginLocation, time, pw-attempts . . .); constraint

(inspectionState, confirmation . . .)}.
- PC2: Ex = {subject (sname, . . .); object (oname, . . .)}.

Im: PU = {action (type, . . .)}
St = {contextual-constraint (Location, pwAttmpts . . .)}.

6.2.1. Phase 1: Deriving Models

In this section, we investigate the best AC model that fits the AC requirements of this
case study. Due to the above Ex, Im, and St entities, we have the possibilities:

• Hybrid RBAC/ABAC model: due to the above entities for PC1, the notion of role
reflects the importance of considering the RBAC model, and the need to express static
and dynamic AC rules based on subject, object, and context attributes reflect the
importance of considering the ABAC model.

• ABAC model: the above entities for PC2 match the entities of ABAC.

Accordingly, our solution is to derive a hybrid model with two PCs (the first is hybrid
RBAC/ABAC, and the second is ABAC). Using the DSL grammar of HEAD metamodel,
we derive the required model in Figure 17. In Figure 17a we define the following:

• Lines 1 to 22: the block of specifying PC1.
• Lines 2 to 8: the block of creating Ex entities (subject and object), it starts and ends with

explicit and end keywords. Three levels of object hierarchy are created to represent
objects. We actually have two levels of object hierarchy, but since we use NGAC we
add an additional level. In object1 level, objects are described. In the other two levels,
the hierarchy of objects containers is represented.

• Lines 9 to 12: the block of AU entities is created with the keywords authorization and
end. Managers and advertisers have two levels of role hierarchy.

• Lines 13 to 16: the block of PU entities is created with procedural and end keywords.
• Lines 17 to 21: the block of creating St entities (context and constraint).
• Lines 23 to 37: the block of specifying PC2.
• Lines 24 to 29: the block of creating Ex entities (subject and object).
• Lines 30 to 32: the block of creating PU entity (action entity and its attributes).
• Lines 33 to 36: the block of creating St entities (context and constraint).

In Figure 17b we express some AC rules based on the defined entities/attributes:

• lines 40 to 51: the rule expression of the hybrid RBAC/ABAC model. It expresses
access rights for users using PC1 components/attributes.

• lines 52 to 61: the rule expression of ABAC model. It expresses access rights for users
using PC2 components/attributes.

• lines 62 to 71: hybrid rule expression using PC1 and PC2 components/attributes.

For each PC the names of the components must be unique. For example, we create
two different names for the subject (for PC1 we create ‘subject’ entity and for PC2 we create
‘subject’ entity). Among the many advantages of the DSL for the HEAD metamodel is that
it allows for the specification of an unlimited number of PCs, as well as the definition of
entities and attributes for each PC.

Electronics 2023, 12, 3216 21 of 35

Figure 17. Case Study 2: (a) A hybrid model with two PCs; (b) rule expressions.

6.2.2. Phase 2: Generating Policies

In this section we describe the policy elements for each PC:

• PC1: Hybrid RBAC/ABAC

– Users = {Thomas, John, Bob, Cathy, Peter}

Electronics 2023, 12, 3216 22 of 35

– User Attributes: each user is associated with a set of attributes (e.g., name . . .).
– Role = {manager, adviser}.
– Objects: set of logical (e.g., tables rows/columns at the cloud server) and physical

(e.g., rail robot and drone) objects need protection.
– Object attributes: object attributes include inspection_status, confirmation, etc.
– Actions: a set of actions on logical objects in the database include read, write,

update, delete, etc.; and on physical objects include control, operate, etc.
– Permissions: are granted based on users‘ roles to perform actions on objects.
– Context attributes: for a given context—for example, log in via private/public

network, machine failure, etc.,—context attributes include the date, time, location,
password attempts, etc. Contextual constraint expressions are significant for
authorization decisions.

– Constraints: expressions include the other various types of attributes, for example,
subject attributes, object attributes, etc.

The policy expression for PC1 can be expressed as follows:

Policy = 〈subject(name . . .); object(title . . .); role(type . . .); permission(ptype . . .);

action(type . . .); context(date . . .); constraints(con f irm . . .)〉

• PC2: ABAC

– Users = {RailRobot, Drone}, and users’ attributes (e.g., machineName).
– Objects: the logical resources (e.g., tables rows/columns at the cloud server), with

their attributes, e.g., coordinates, image, etc.
– Actions: set of actions on logical objects in the database, e.g., write.
– Contextual and non-contextual constraint expressions with the attributes of con-

text, subject, and object.

The policy expression for PC2 can be expressed as follows:

Policy = 〈subject(name . . .); object(title . . .); action(type . . .); context(time . . .)〉

At the system level, Xtend notation is used to generate the Java code for the concrete
instance of the hybrid model. Then, Java output (Cypher statements) is injected into the
Neo4j database to represent the NGAC policy graph. In this case study we have two PCs
(as defined in Figure 17 RBAC/ABAC for PC1, and ABAC for PC2). To specify the PCs,
the sample of Xtend code in Figure 18a generates the Java code in Figure 18b based on the
derived model. In Figure 18a, plist1 in line 2 is an ArrayList where PCs are added (in the
Xtend notation code). Since in this case study we have two PCs, in Figure 18b two sets of
Java code (lines 2–4 and lines 6–8) are generated to define the attribute name of each PC,
with the Cypher expression to create each PC node.

Figure 18. Case Study 2: (a) Xtend notation to specify PCs; (b) the generated Java code.

Electronics 2023, 12, 3216 23 of 35

For each PC, sets of Ex, AU, PU, and St entities/attributes are created. In Figure 19a we
show a sample of Xtend notation to define the hierarchy of AUs (e.g., roles). The ArrayList
‘auroot1’ for the root entities, and ‘auhrchy’ for the lower level entities (child nodes). In
lines 4–8, if the node is at the root level and has children, then specify its children (lines
18–20). In lines 9–15, if the node level is ≥1 and it has children, then specify its children
(lines 21–23). Figure 19a generates the Java code in Figure 19b which is used to configure
the hierarchy of roles. In line 1, ‘r_role1’ refers to the ArrayList where root nodes of roles
are defined, and in line 10 ‘h_role2’ refers to the ArrayList where nodes at level 2 of the role
hierarchy are defined.

Figure 19. Case Study 2: Xtend notation to generate Java code to define (a) hierarchy AUs; (b) the
generated Java code to configure hierarchy of roles.

To output the required Cypher statements and represent the NGAC policy graph,
the system administrator must be aware how to configure the policy by specifying the
users, resources, relationships, conditions, etc., based on the computing environment of
this case study. However, in Figure 20a, we show the configuration of user containers. Red
containers represent the assignment of Us to UAs of the first PC1, and blue ones represent
the assignment of Us to UAs of the second PC2. In PC1, U stands for Thomas, John, etc.,
and UA for the role (Manager, Adviser, etc.). In PC2, U stands for Rail Robot and Drone,
and UA for the first and second IoT devices. In Figure 20b, we show object containers
for physical resources (Rail Robot and Drone) are indicated in red for PC1, and logical
resources (database tables at ITMI’s cloud server) with the representation of tables with
some distinguished rows/columns are indicated in red for PC1, and in blue for PC2. In
Figure 20c, access rights of users to perform operations are determined through associations.
For example, in (1) and (2) the workers are allowed to {o: operate, ct: control} the Rail
Robot and Drone objects, in (5) the manager should confirm that the inspection process

Electronics 2023, 12, 3216 24 of 35

is carried out before allowing the adviser in (7) to {r:read, cp:copy} the collected data in
order to analyze them. Moreover, in (10) and (11) the subjects of PC2, the Rail Robot and
the Drone which are assigned to IoTM1 and IoTM2 as UAs, need permission to connect the
cloud server to {w:write/insert} data and images into RailwayData and GeolocationData
containers. In Figure 20d we present three prohibition relations which express ua_deny to
deny all users performing {w, u} on IoTData. In Figure 20e, four obligations are defined as
event–response relations to define constraints under which policy state data are obligated
to change. For example, workers onsite are allowed to access the cloud server and delete
the collected IoTData due to unexpected events, e.g., machine malfunction or system error,
to repeat the inspection process. In (1), they are not allowed to {d} IoTData if they are
logged into the system locally, if the InspectionStatus= “in progress”, and if they are not
within the start and end dates of the IRQ project.

Thomas

Manager

Adviser

John

Bob

Cathy

Peter

(a) User containers: (b) Object containers:

8- Adviser --------- r, w, u, d ----- Results

1- Workers --------- o, ct -------- RailRobot
(c) Associations:

7- Adviser ---------- r, cp -------- IoTData

10- IoTM1 ----------- w ------ RailwayData

4- Workers --------- d ----------- IoTData

(d) Prohibitions:
1- ua_deny(Manager, {w, u}, IoTData)

11- IoTM2 ----------- w ----- GeolocationData

3- Workers --------- r ----------- IoTData
(e) Obligations:
1-When: loginlocation =“local” AND InspectionStatus!=“inprogress” AND
 (sDate>currentDate() AND eDate< currentDate()),
 do: create ua_deny(workers, d, IoTData)

Workers

RailRobot

Drone

IoTM1

IoTM2

5- Manager ---------cn ---------- IoTData

IoTData
timestamp coordinates

RailWayData
GeolocationData

M#

IoTMachines RailRobot
Drone

image inspection

3- ua_deny(Workers, {w, u}, IoTData)
2- ua_deny(Adviser, {w, u}, IoTData)2- Workers --------- o, ct -------- Drone

Results prjName tskName Descr Confirm

2-When: confirm=“true” OR (sDate>currentDate() AND eDate< currentDate()),
 do: create ua_deny(Adviser, {w, u, d}, Results)

M# Descr Notes

6- Manager ---------cn ---------- Results

3-When: pwAttmpts>3, do: create ua_deny(Workers, {o, ct}, RailRobot)
4-When: pwAttmpts>3, do: create ua_deny(Workers, {o, ct}, Drone)

9- Adviser --------- r ------------ Results

Figure 20. Case Study 2: NGAC Policy Configuration.

At the system level, a sample of the Java output with the policy configuration is
presented in Figure 21. In (a), the system administrator specifies the PCs (ITMIiot1 and
ITMIiot2) and configures the entities/attributes for each PC, along with setting up relation-
ships between objects. In (b), the creation of instances of role entities and their hierarchies
is presented, in addition to the assignment relationship of Ex-AUs which represent in this
case user-role relationship. For example, the name of PC2 is ITMIiot2, the subject names
are MRailRobot and MDrone, the object names are Machine1Data and Machine2Data,
Machine1Data has OA and it is ‘assigned_to’ RailwayData, and Machine2Data has OA and
it is ‘assigned_to’ GeolocationData.

After policy configuration by the system administrator, Cypher statements are gen-
erated as Java output that matches the NGAC policy graph. Different output samples
of Cypher statements are presented in Figure 22a to create PCs, Us, and Os. Figure 22b
show some examples of Cypher statements for PC1 to create UAs with the needed assign-
ment and hierarchies. Also, Figure 22c shows some statements to create UA nodes (e.g.,
IoTM1) of PC2 and assign the appropriate Us (e.g., MRailRobot) to them. For example, the
‘MRailRobot’ (U node) is assigned to ‘IoTM1’ (UA container).

Electronics 2023, 12, 3216 25 of 35

Figure 21. Case Study 2: Java output sample (a) to configure PC1/PC2; (b) user-role assignment.

Figure 22. Case Study 2: A sample of Cypher statements (a) PC, U, and O nodes; (b) UAs of roles
with U–UA assignment; and (c) a sample U–UA assignment of PC2.

6.2.3. Phase 3: NGAC—The Policy Enforcement Point

The generated Cypher statements, which are Java outputs, are used as inputs for
NGAC authorization responses. However, they are injected into the Neo4j database to
represent the AC policy as an NGAC policy graph in Figure 23. The dark brown, green,
and blue nodes refer to PC1, and the light brown, green, and blue nodes refer to PC2. As
shown in the graph on the left, the dark/light brown nodes represent the assignment of
users (Us) to their UA containers, in addition to the role hierarchy, which is indicated by
the red arrow, and ‘has_child_content‘ relationship. In the left section of the graph, the
dark/light brown with the dark/light blue nodes show the assignment of objects (Os) to
their OA containers, in addition to object hierarchy which is depicted by the red arrow and
‘include’ relationship. The association relationships, the yellow arrows for PC1 and the
dark brown arrows for PC2, indicate users’ access rights.

Due to the inheritance relationship between the manager and the adviser roles, in
Figure 24 we show some access rights examples associated with the manager Thomas and
the users who are assigned to the Workers (UA) container. In Figure 24a, Thomas has
ManPermission to {cn: confirm} data in Results and IoTData containers. He also has the
permission AdvPermission to {w, u, d} Results and {r, cp} IoTData through the Manager–
Adviser assignment which is expressed as ‘has_child_content’ relationship to represent role
hierarchy. In Figure 24b, we show the access rights associated to the workers Bob, Cathy,
and Peter to {d} IoTData in a certain context and {o:operate, ct:control} the RailRobot and
the Drone. In Figure 24c, we show the set of permissions associated with users to perform
operations on the IoTData object container.

Electronics 2023, 12, 3216 26 of 35

Figure 23. Case Study 2: NGAC graph.

Figure 24. Case Study 2: Examples of Users’ access rights (a) for Manager; (b) for Workers; (c) for
users to access IoTData object.

Similar to case study 1, to avoid multiple association relationships between UA and
OA containers we use single association relationship, for example between Adviser and
Results. In Figure 25 we show an example with double association relationships between
Adviser and Results. The first association is to express the {w, u, d} operations and the

Electronics 2023, 12, 3216 27 of 35

second association is to express the {r} operation and express the constraints with each
association.

Figure 25. Case Study 2: Example of association relationship properties for Advisers permission.

The Neo4j platform is used to run some Cypher queries with some contextual and
non-contextual constraints to present NGAC authorization responses. In Figure 26a, the
Workers are able to {d} IoTData when the value of InspectionStatus = ’inprogress’, which
means the inspection process is not completed and more data need to be collected, but
when the value of InspectionStatus is updated (by the manager) to ’complete’ as illustrated
in (b), the workers would not be allowed to delete the IoTData even if they are logged into
the system via the public network as shown in (c). In Figure 26d we show that a Worker can
{o, ct} the Rail Robot or the Drone if the pwAttpmts are less than or equal to three attempts,
otherwise (e) he would not.

Figure 26. Case Study 2: Examples of NGAC authorization responses to Cypher statements.

7. HEAD Administrative Panel

Based on the case study in Section 5, we provide another example of the HEAD
metamodel implementation using VB.net and SQL. As well, the AC decision is based on
the user’s role/group, contextual information (location, time, etc.), and subject/object

Electronics 2023, 12, 3216 28 of 35

attributes. An example of an administrative panel can be found in Figure 27, which shows
how to create the AC model using entities and attributes such as Ex, AU, PU, and St. In
Figure 28 we show the steps to create AC model and its components (in this case we show
the Hybrid model of case study 1). As shown in Figure 28a, after defining the needed
model (1), the administrator is able to edit the model to update, delete, or (2) create/define
and (3) add model entities (e.g., object). In Figure 28b, the needed entity (e.g., object) is
(1) selected to (2) define the number of hierarchy levels, and the administrator (3) sets and
(4) confirms the hierarchical levels of an entity. In Figure 28c, the root node object (1) has
three levels of the object hierarchy, also the nodes can be deleted and their names can be
updated (Figure 28d). The same steps can be applied to create the other entities.

Figure 27. HEAD metamodel: Administrative Panel example.

(a) (b)

(c) (d)

Figure 28. HEAD Administrative Panel: Instantiation of AC model.

Thereafter, in Figure 29 we show how the model entities/attributes can be instantiated.
In step (1), we show the defined entities (and hierarchies), of Figure 28. In step (2), we

Electronics 2023, 12, 3216 29 of 35

configure a hybrid model for ITMI. To create the required instances of each entity, for
example, (3) object entity (at the root level) we define objects names (4) separated by ‘;’
instead of defining each object individually, then (5) we confirm the creation. In step (6), all
other elements of subjects, roles, etc., are created in the same way.

1

2
3

4

5

6

Figure 29. HEAD Administrative Panel: Instantiation of model entities.

In Figure 30, (1) we show how a child node can be created for each a specific node. For
example, (2) a child node Manager is created for the root node Director, and (3) shows the
hierarchy of roles of case study 1.

1 2 3

Figure 30. HEAD Administrative Panel: hierarchy of entities.

Note that, by default, each entity has a name attribute. In Figure 31, we show how
additional attributes can be created. By selecting and right-clicking on a specific element,
then choosing ‘Add/Modify Attributes’ where a popup window opens to define and create
various types of attributes (with their values). In our example, we define context attributes
to specify if the user needs to access resources within business hours. We also specify the
user’s login location, and if the current date is between the start/end dates of the project.
Moreover, the selected nodes can be updated or deleted.

Electronics 2023, 12, 3216 30 of 35

Figure 31. HEAD Administrative Panel: adding attributes to entities.

In Figure 32 we show the steps of defining AC rules. In Figure 32a, (1) the system
security administrator selects the policy model, which is in case ‘Hybrid‘, to configure
the AC rules. Then, he assigns Ex to AUs, in our example, (2) subjects to roles/groups.
The administrator (3) associates AUs with PUs, in our example, the role permission. Af-
ter assigning subjects to roles/groups and specifying their permission(s), in Figure 32b,
(1) based on the permission type, (2) the administrator selects which objects may be ac-
cessed, then (3) associates the actions that can be performed on each of the selected objects
(FinancialDetails and ProjectDetails). To apply constraints, (4) the administrator should
select the row (permission, object, and action), then (5) selects the needed attributes to
(6) include them with the rule definition. Finally, (7) the rules can be exported as Cypher,
json, or any other format of code. In this example, we also generate Cypher statements as
explained in Section 5.

(a)

1

2

3

(b)

1

2

3 4

5 6

7

Figure 32. HEAD Administrative Panel: Definition of AC Rules.

8. Evaluation and Validation of HEAD Metamodel

After presenting the above case studies and showing how the HEAD metamodel can
derive different AC models, and how it can be adapted to different computing environ-
ments. In this section, we present the comparison and evaluation and validation of the
HEAD metamodel with the proposed AC metamodels in the literature.

8.1. Comparison

In Table 1 we summarize the features of the HEAD metamodel compared to the other
proposed metamodels in the literature [17,18,20].

Electronics 2023, 12, 3216 31 of 35

Table 1. Comparison between HEAD Metamodel and the other AC metamodels.

Metamodel Access Control Metamodels

Features HEAD Metamodel Other Metamodels

Unify components Unify all heterogeneous components of different AC mod-
els.

Some metamodels unify some heterogeneous components
under the notion of ‘category’ which includes roles, groups,
security levels, etc.

Generality Include all features and components of common AC models
and allow deriving various instances of various models.

Hybrid structures to derive some AC models rather than
generic metamodels

Dynamism Allows defining and adding any type of components and
attributes for existing models and non-existing ones.

None of the existing metamodels support this feature, and
they are not dynamic enough to define static and dynamic
AC policies.

Extensibility
New components can be defined and integrated with
already-derived models to support new AC features in ad-
dition to the previous ones.

Some metamodels are extended but not extensible, and
none of the existing metamodels support this feature.

Hierarchical
Allows defining multi-levels of all components (e.g., role,
context) to conform to hierarchical organizational struc-
tures.

Some metamodels support hierarchy for some components,
but none of them consider context hierarchy which is crucial
feature in complex and dynamic environments.

Flexibility Allows creating existing and non existing AC models (new
models) and expressing various static and dynamic rules

Only derive some common models. They are limited to the
features employed in their structures.

Upgradability Able to follow technology upgrades and update any policy. None of the existing metamodels support this feature.

Unified framework
Allows the creation of any model, in addition to any hybrid
model with different policy classes (e.g., case study 2), and
hybrid models with hybrid components (e.g., case study 1)

Allows the creation of some models based on features em-
ployed in their hybrid structures.

Adaptability Can be adapted to different centralized and distributed
environments, especially IoT. They provide solutions for specific cases and scenarios.

Novelty A new development in the domain with advanced features. The last AC metamodel was proposed in 2015 [21].

Overall, the derived models of the HEAD metamodel are flexible and can be easily
extended, updated, and defined to follow the technology upgrades and enforce larger sets
of static/dynamic policies. Compared to the existing metamodels, system designers and
security experts need to redesign a model and rethink how it could be enhanced. This is
instead of extending/upgrading it, which means additional time and cost.

8.2. Evaluation and Validation

Comparatively to the proposed metamodels in the literature, HEAD contributes to
several essential advancements in the domain. HEAD metamodel allows the specification,
formalization, generation, and verification of AC policies. In contrast to tackling each issue
separately, the HEAD metamodel draws up a complete strategy. In our experience so far,
AC research and practice focus on one phase and confuse issues that cut across multiple
phases. However, (1) as for the specification, HEAD metamodel is flexible enough to allow
identifying the Ex, Im, and St entities (with their attributes) based on the AC requirements
of a system. Using the HEAD metamodel, system administrators and security experts are
not restricted to defining some entities for some models. Instead, they can create any entity
(and attribute) for any model whether it is an existing AC model or a non-existent model.
(2) For formalization, after specifying the needed AC entities, the DSL language of HEAD
metamodel allows formalizing the specified AC models (common AC models, hybrid
models, and other models) with the ability to follow technology upgrades by allowing the
definition of new entities and attributes. The power of the DSL language of the HEAD
metamodel is simple and flexible to appropriately express any AC policy requirements, it
overcomes the complication of existing language expressions, and also it is independent of
specific AC models. (3) For the generation of AC policies, the nature of meta-components
of HEAD metamodel which allows deriving any model, can also be adapted to represent
the concrete instance of any AC model and generate the needed AC policies. In this paper,
we use Eclipse Xtend notation to depict the concrete instances of the derived models. The
AC rules are expressed and generated in a format of Cypher queries. Another generator

Electronics 2023, 12, 3216 32 of 35

could be used, for example, to represent the needed models and then generate AC rules in
as ‘json’ format. (4) For the formal verification of the generated AC policies, it is necessary to
formally verify the accuracy and coherence of the concrete instance of the AC policy before
policy enforcement. For example, using Cypher queries as NGAC inputs to represent the AC
rules of a system in a graph, then verifying the objects, the relationships between them, and
the subjects that interact with the system in a way that adheres to an organization’s semantics.

Likewise, the HEAD metamodel serves as a unifying framework and it is the only
metamodel that provides to the literature all the design phases and steps starting from the
conception [6,15,41–43] to policy enforcement which is addressed in this paper, through
the implementation of two case studies, in addition to the new research opportunities this
metamodel opens in the domain [20]. The effectiveness of HEAD metamodel is reflected in
the proof of concept since we show that the metamodel idea with theoretical foundations
can be implemented and applied using different tools. Additionally, if the above case
studies are implemented using one of the proposed metamodels, the solution would not
meet ITMI’s AC requirements, as the existing metamodels only incorporate DAC, MAC,
and RBAC features, so attributes cannot be defined nor new components added. Moreover,
they are not flexible enough to define different PCs. Moreover, the HEAD metamodel is an
essential development in the field since the last proposed metamodel was in 2015 [20], and
it is a hybrid metamodel that only includes DAC, MAC, and RBAC, not dynamic, does not
support the hierarchy of all components, and the derived models cannot be extended.

It is evident from the above that the HEAD metamodel represents a significant ad-
vancement over the other proposed metamodels in the literature, and thus should be
viewed as a centerpiece for enhancing other essential characteristics, as well as establishing
different research directions in the domain (see [20]).

9. Conclusions and Future Perspectives

Although over the past decade security researchers have proposed a variety of policy
models and metamodels to address real-world security problems, the limited ability of
the existing AC methods to generically specify, upgrade, and enforce policy persists.
With the IoT and industry 4.0, along with the digital transformation, where resources are
widely distributed and must be accessed from anywhere, at any time, the need for secure
information sharing has increased dramatically. Moreover, the evolution of pervasive ISs
and intelligent manufacturing has had a significant impact on different directions, such as
the industry’s future. Smart industries combine various physical and cyber technologies to
enhance productivity, performance, quality, and management. In this context, controlling
access to protect resources from unauthorized use is a complicated and challenging task,
especially with cybercriminals and cyberattacks. All this has motivated us to design
and implement a new and advanced AC metamodel, named HEAD metamodel, that
addresses the limitations of the existing metamodels—for example, generality, the hierarchy
of components, dynamism, and extensibility of AC models—and works as a base to
develop other essential features—for example policy migration, and collaboration and
interoperability between AC models.

The AC policy concerns what AC rules need to be enforced, while the AC mechanism
concerns how AC rules are enforced. In this paper, we present two case studies inspired by
ITMI’s local (non-IoT) and IoT computing environments to show that our metamodel can be
adapted to different computing environments, and various AC models can be instantiated
with the needed components/attributes to fit the AC needs of an organization (or industry
sector). For the AC policy, we apply the DSL grammar of HEAD metamodel to derive the
needed model for each case study. We use Xtend notation to represent the concert instance
of the derived model. The AC rules are generated as Cypher statements which are then
injected into Neo4j to represent the NGAC policy as a graph. NGAC framework is used as
an enforcement point for the rules generated for each case study. The results show that the
HEAD metamodel:

Electronics 2023, 12, 3216 33 of 35

• Overcomes the limitations of the existing AC metamodels and can serve as a basis for
other essential features.

• Is a unified framework, and encompasses heterogeneous models.
• Can be adapted into various local and distributed computing environments.
• Can meet current AC requirements and follow policy upgrades.
• Can generate different AC rules formats (e.g., Cypher statements, json. . .).

Consequently, by applying the HEAD metamodel to the presented case studies, we
demonstrate that it can be applied to more complex computing environments that include
more users, machines, contexts, dynamic devices, and other variables. For example, highly
dynamic IIoT environment with various static and dynamic AC rules.

Moreover, the HEAD metamodel reveals some limitations of the NGAC framework.
In theory, the NGAC graph includes obligations and prohibitions that express context and
constraint elements, but in practice, they are not included. Hence, during implementation,
this would make it difficult to make accurate access control decisions. As described in the
case studies, we have to create multiple association relationships between UA nodes and
OA nodes if some operations need to be performed without constraints by UA, and some
other operations can be performed if some contextual (or non-contextual) constraints are
true/false depending on the defined rule.

Policies with minimum quality may lead to unacceptable situations and decisions,
for example preventing users from accessing resources they are allowed to, or allowing
some users to access resources they are not allowed to. As future perspectives, we aim to
develop the needed methods to analyze and assess the obtained policies at run-time before
enforcing them to avoid uncertainties concerning the obtained AC decision. Policy analysis
and assessment are intended to ensure the quality of the generated AC policies. They are
for ensuring they are consistent, relevant, minimal, complete, and correct with respect
to the required actions by subjects on some objects. This process is of major importance
while implementing AC policies in highly dynamic and heterogeneous environments,
especially IoT. Moreover, we also aim to support the HEAD metamodel with additional
features and services. For example, developing the needed algorithms (with theoretical
foundations) and methods to migrate AC policies from one model to another. Providing
packages of predefined AC models (e.g., common models) as support for the metamodel.
This would lessen technical implementation efforts and facilitate administrative efforts to
specify models and define policies. Further, we plan to extend the NGAC framework to
adapt context and constraint in addition to policy.

Author Contributions: Conceptualization, N.K. and M.A.; methodology, N.K., M.A. and H.I.; soft-
ware, N.K.; validation, N.K., M.A., H.I., J.-F.M. and T.D.; formal analysis, N.K. and M.A.; investigation,
N.K., M.A., H.I., J.-F.M. and T.D.; resources, N.K., M.A., H.I., J.-F.M. and T.D.; data curation, N.K. and
J.-F.M.; writing—original draft preparation, N.K.; writing—review and editing, N.K., M.A. and H.I.;
visualization, N.K., M.A. and H.I.; supervision, M.A. and H.I.; project administration, M.A. and H.I.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC), grant number 06351.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Acknowledgments: We acknowledge the support of Fonds Québécois de la Recherche sur la Na-
ture et les Technologies (FRQNT), Réseau Québécois sur l’Énergie Intelligente (RQEI), and Centre
d’Entrepreneuriat et de Valorisation des Innovations (CEVI).

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 3216 34 of 35

References
1. Ravidas, S.; Lekidis, A.; Paci, F.; Zannone, N. Access control in Internet-of-Things: A survey. J. Netw. Comput. Appl. 2019,

144, 79–101. [CrossRef]
2. Zhang, Y.; Li, B.; Liu, B.; Wu, J.; Wang, Y.; Yang, X. An Attribute-Based Collaborative Access Control Scheme Using Blockchain for

IoT Devices. Electronics 2020, 9, 285. [CrossRef]
3. Ndibanje, B.; Lee, H.J.; Lee, S.G. Security Analysis and Improvements of Authentication and Access Control in the Internet of

Things. Sensors 2014, 14, 14786–14805. [CrossRef] [PubMed]
4. Antunes, M.; Maximiano, M.; Gomes, R.; Pinto, D. Information Security and Cybersecurity Management: A Case Study with

SMEs in Portugal. J. Cybersecur. Priv. 2021, 1, 219–238. [CrossRef]
5. Jaïdi, F.; Labbene Ayachi, F.; Bouhoula, A. A methodology and toolkit for deploying reliable security policies in critical

infrastructures. Secur. Commun. Netw. 2018, 2018, 7142170. [CrossRef]
6. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access control metamodel for policy specification and enforcement: From

conception to formalization. Procedia Comput. Sci. 2021, 184, 887–892. [CrossRef]
7. Mishra, A.; Alzoubi, Y.I.; Gill, A.Q.; Anwar, M.J. Cybersecurity Enterprises Policies: A Comparative Study. Sensors 2022, 22, 538.

[CrossRef]
8. Narouei, M.; Khanpour, H.; Takabi, H. Identification of access control policy sentences from natural language policy documents. In

Proceedings of the IFIP Annual Conference on Data and Applications Security and Privacy, Philadelphia, PA, USA, 19–21 July 2017;
Springer: Cham, Switzerland, 2017; pp. 82–100.

9. Chaudhry, S.A.; Yahya, K.; Al-Turjman, F.; Yang, M.H. A secure and reliable device access control scheme for IoT based sensor
cloud systems. IEEE Access 2020, 8, 139244–139254. [CrossRef]

10. Neisse, R.; Steri, G.; Fovino, I.N.; Baldini, G. SecKit: A model-based security toolkit for the internet of things. Comput. Secur. 2015,
54, 60–76. [CrossRef]

11. Cruz-Piris, L.; Rivera, D.; Marsa-Maestre, I.; De La Hoz, E.; Velasco, J.R. Access control mechanism for IoT environments based
on modelling communication procedures as resources. Sensors 2018, 18, 917. [CrossRef]

12. Kukhun, D.A. Steps towards Adaptive Situation and Context-Aware Access: A Contribution to the Extension of Access Control
Mechanisms within Pervasive Information Systems. Ph.D. Thesis, Toulouse 3, Toulouse, France, 2012.

13. Ulltveit-Moe, N.; Nergaard, H.; Erdödi, L.; Gjøsæter, T.; Kolstad, E.; Berg, P. Secure information sharing in an industrial Internet
of Things. arXiv 2016, arXiv:1601.04301.

14. Salonikias, S.; Gouglidis, A.; Mavridis, I.; Gritzalis, D. Access control in the industrial internet of things. In Security and Privacy
Trends in the Industrial Internet of Things; Springer: Berlin/Heidelberg, Germany, 2019; pp. 95–114. [CrossRef]

15. Kashmar, N.; Adda, M.; Ibrahim, H. HEAD Metamodel: Hierarchical, Extensible, Advanced, and Dynamic Access Control
Metamodel for Dynamic and Heterogeneous Structures. Sensors 2021, 21, 6507. [CrossRef]

16. Wang, H.; Sun, L.; Bertino, E. Building access control policy model for privacy preserving and testing policy conflicting problems.
J. Comput. Syst. Sci. 2014, 80, 1493–1503. [CrossRef]

17. Kashmar, N.; Adda, M.; Ibrahim, H. Access Control Metamodels: Review, Critical Analysis, and Research Issues. J. Ubiquitous
Syst. Pervasive Netw. 2021, 3. [CrossRef]

18. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A review of access control metamodels. Procedia Comput. Sci. 2021, 184, 445–452.
[CrossRef]

19. Yang, Q.; Zhang, M.; Zhou, Y.; Wang, T.; Xia, Z.; Yang, B. A Non-Interactive Attribute-Based Access Control Scheme by Blockchain
for IoT. Electronics 2021, 10, 1855. [CrossRef]

20. Kashmar, N.; Adda, M.; Ibrahim, H. HEAD Access Control Metamodel: Distinct Design, Advanced Features, and New
Opportunities. J. Cybersecur. Priv. 2022, 2, 42–64. [CrossRef]

21. Abd-Ali, J.; El Guemhioui, K.; Logrippo, L. A Metamodel for Hybrid Access Control Policies. J. Softw. 2015, 10, 784–797.
[CrossRef]

22. Slimani, N.; Khambhammettu, H.; Adi, K.; Logrippo, L. UACML: Unified access control modeling language. In Proceedings
of the 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 7–10 February 2011;
pp. 1–8. [CrossRef]

23. Korman, M.; Lagerström, R.; Ekstedt, M. Modeling Enterprise Authorization: A Unified Metamodel and Initial Validation.
Complex Syst. Inform. Model. Q. 2016, 7, 1–24. [CrossRef]

24. Paige, R.F.; Kolovos, D.S.; Polack, F.A. A tutorial on metamodelling for grammar researchers. Sci. Comput. Program. 2014,
96, 396–416. [CrossRef]

25. Bettini, L. Implementing Domain-Specific Languages with Xtext and Xtend; Packt Publishing Ltd.: Birmingham, UK, 2016.
26. Kovacevic, D.; Krunic, M.; Cetic, N.; Kovacevic, J. Xtext-based eclipse editor for linker configuration file. In Proceedings of the

2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 862–865.
27. Ferraiolo, D.; Chandramouli, R.; Kuhn, R.; Hu, V. Extensible access control markup language (XACML) and next generation

access control (NGAC). In Proceedings of the 2016 ACM International Workshop on Attribute Based Access Control, New Orleans,
LA, USA, 11 March 2016; pp. 13–24.

http://doi.org/10.1016/j.jnca.2019.06.017
http://dx.doi.org/10.3390/electronics9020285
http://dx.doi.org/10.3390/s140814786
http://www.ncbi.nlm.nih.gov/pubmed/25123464
http://dx.doi.org/10.3390/jcp1020012
http://dx.doi.org/10.1155/2018/7142170
http://dx.doi.org/10.1016/j.procs.2021.03.111
http://dx.doi.org/10.3390/s22020538
http://dx.doi.org/10.1109/ACCESS.2020.3012121
http://dx.doi.org/10.1016/j.cose.2015.06.002
http://dx.doi.org/10.3390/s18030917
http://dx.doi.org/10.1007/978-3-030-12330-7_5
http://dx.doi.org/10.3390/s21196507
http://dx.doi.org/10.1016/j.jcss.2014.04.017
http://dx.doi.org/10.5383/JUSPN.03.01.000
http://dx.doi.org/10.1016/j.procs.2021.03.056
http://dx.doi.org/10.3390/electronics10151855
http://dx.doi.org/10.3390/jcp2010004
http://dx.doi.org/10.17706//jsw.10.7.784-797
http://dx.doi.org/10.1109/NTMS.2011.5721143
http://dx.doi.org/10.7250/csimq.2016-7.01
http://dx.doi.org/10.1016/j.scico.2014.05.007

Electronics 2023, 12, 3216 35 of 35

28. Basnet, R.; Mukherjee, S.; Pagadala, V.M.; Ray, I. An efficient implementation of next generation access control for the mobile
health cloud. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona,
Spain, 23–26 April 2018; pp. 131–138.

29. Ray, I.; Alangot, B.; Nair, S.; Achuthan, K. Using attribute-based access control for remote healthcare monitoring. In Proceedings
of the 2017 Fourth International Conference on Software Defined Systems (SDS), Valencia, Spain, 8–11 May 2017; pp. 137–142.

30. Abdullahi, M.; Baashar, Y.; Alhussian, H.; Alwadain, A.; Aziz, N.; Capretz, L.F.; Abdulkadir, S.J. Detecting Cybersecurity Attacks
in Internet of Things Using Artificial Intelligence Methods: A Systematic Literature Review. Electronics 2022, 11, 198. [CrossRef]

31. Quader, F.; Janeja, V.P. Insights into Organizational Security Readiness: Lessons Learned from Cyber-Attack Case Studies.
J. Cybersecur. Priv. 2021, 1, 638–659. [CrossRef]

32. Leander, B.; Čaušević, A.; Hansson, H.; Lindström, T. Toward an ideal access control strategy for industry 4.0 manufacturing
systems. IEEE Access 2021, 9, 114037–114050. [CrossRef]

33. Andaloussi, Y.; El Ouadghiri, M.D.; Maurel, Y.; Bonnin, J.M.; Chaoui, H. Access control in IoT environments: Feasible scenarios.
Procedia Comput. Sci. 2018, 130, 1031–1036. [CrossRef]

34. Kayes, A.S.M.; Kalaria, R.; Sarker, I.H.; Islam, M.S.; Watters, P.A.; Ng, A.; Hammoudeh, M.; Badsha, S.; Kumara, I. A Survey of
Context-Aware Access Control Mechanisms for Cloud and Fog Networks: Taxonomy and Open Research Issues. Sensors 2020, 20, 2464.
[CrossRef]

35. Desmedt, Y.; Shaghaghi, A. Function-Based Access Control (FBAC): Towards Preventing Insider Threats in Organizations. In
From Database to Cyber Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 143–165.

36. Qi, S.; Zheng, Y.; Li, M.; Liu, Y.; Qiu, J. Scalable industry data access control in RFID-enabled supply chain. IEEE/ACM Trans.
Netw. 2016, 24, 3551–3564. [CrossRef]

37. Ruland, C.; Sassmannshausen, J. Access control in safety critical environments. In Proceedings of the 2018 12th International
Conference on Reliability, Maintainability, and Safety (ICRMS), Shanghai, China, 17–19 October 2018; pp. 223–229.

38. Alagar, V.; Alsaig, A.; Ormandjiva, O.; Wan, K. Context-based security and privacy for healthcare IoT. In Proceedings of the 2018
IEEE International Conference on Smart Internet of Things (SmartIoT), Xi’an, China, 17–19 August 2018; pp. 122–128.

39. Ahamed, J.; Khan, F. An enhanced context-aware capability-based access control model for the internet of things in health-
care. In Proceedings of the 2019 Sixth HCT Information Technology Trends (ITT), Ras Al Khaimah, United Arab Emirates,
20–21 November 2019; pp. 126–131.

40. Mrabet, H.; Alhomoud, A.; Jemai, A.; Trentesaux, D. A Secured Industrial Internet-of-Things Architecture Based on Blockchain
Technology and Machine Learning for Sensor Access Control Systems in Smart Manufacturing. Appl. Sci. 2022, 12, 4641.
[CrossRef]

41. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A new dynamic smart-AC model methodology to enforce access control policy in
IoT layers. In Proceedings of the 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for
the Internet of Things (SERP4IoT), Montreal, QC, Canada, 27 May 2019; pp. 21–24.

42. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Smart-ac: A new framework concept for modeling access control policy. Procedia
Comput. Sci. 2019, 155, 417–424. [CrossRef]

43. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Deriving access control models based on generic and dynamic metamodel
architecture: Industrial use case. Procedia Comput. Sci. 2020, 177, 162–169. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics11020198
http://dx.doi.org/10.3390/jcp1040032
http://dx.doi.org/10.1109/ACCESS.2021.3104649
http://dx.doi.org/10.1016/j.procs.2018.04.144
http://dx.doi.org/10.3390/s20092464
http://dx.doi.org/10.1109/TNET.2016.2536626
http://dx.doi.org/10.3390/app12094641
http://dx.doi.org/10.1016/j.procs.2019.08.058
http://dx.doi.org/10.1016/j.procs.2020.10.024

	Introduction
	Related Works
	HEAD Metamodel
	The Subject of Study: Technological Institute for Industrial Maintenance (ITMI)
	Case Study 1—ITMI: Non-IoT
	The Challenge
	The Solution: HEAD Metamodel
	Phase 1: Deriving Models
	Phase 2: Generating Policies
	Phase 3: NGAC—The Policy Enforcement Point

	Case Study 2— ITMI: IoT
	Challenge
	The Solution: HEAD Metamodel
	Phase 1: Deriving Models
	Phase 2: Generating Policies
	Phase 3: NGAC—The Policy Enforcement Point

	HEAD Administrative Panel
	Evaluation and Validation of HEAD Metamodel
	Comparison
	Evaluation and Validation

	Conclusions and Future Perspectives
	References

