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Abstract: The rapid and accurate identification of the opening and closing state of the knife switch in
a gas insulated switchgear (GIS) is very important for the timely detection of equipment faults and
for the reduction of related accidents. However, existing technologies, such as image recognition, are
vulnerable to weather or light intensity, while microswitch, attitude sensing and other methods are
unable to induce equipment power failure with sufficient speed, which brings many new challenges
to the operation and maintenance of a GIS. Therefore, this research designs a GIS shell vibration
detection system for knife switch state discrimination, introduces a deep learning algorithm for
knife switch vibration signal analysis, and proposes a fast convolutional neural network (FCNN)
to identify the knife switch state. For the designed FCNN, a normalization layer and a nonlinear
activation layer are used after each convolution layer to obviously reduce feature quantity and
increase algorithm efficiency. In order to test the recognition performance based on the vibration
detection system, this study carried out two kinds of knife switch opening and closing experiments.
One group with artificial noise was added, the other group did not include artifical noise, and a
corresponding data set was constructed. The experimental results show that the recognition accuracy
for both datasets reaches 100%, and the FCNN algorithm is better than the five classical algorithms in
terms of prediction efficiency. This study shows that the vibration detection technology based on
deep learning can be used to effectively identify the opening and closing state of a GIS knife switch,
and is expected to be promoted and applied.

Keywords: GIS knife switch; opening and closing state discrimination; vibration detection; fast
convolution network

1. Introduction

A Gas Insulated Switchgear (GIS) refers to a type of metal-made enclosed switching
device that partially or completely uses a certain gas as the insulating medium. The gas
is compressed to a pressure higher than the atmospheric pressure. The GIS is composed
of a set of high-voltage electrical components such as a circuit switch, isolating switch,
voltage transformer, lightning arrester, bus, cable terminal box or (and) outlet bushing,
and is assembled according to the bus requirements. Since its invention in the 1960s, GIS
technology has undergone continuous development. It has many advantages, such as a
small footprint, reliable operation, long MTBR and easy maintenance [1]. Therefore, it has
become popular among users and has been widely used in hydropower stations, urban
network substations and nuclear power plants. Today, GIS technology is still rapidly devel-
oping and plays an increasingly important role in modern power systems [2]. However,
it has some technical deficiencies regarding manufacturing, installation, operation and
maintenance, online diagnosis, etc. If effective measures are not taken in time in the event
of a GIS failure, an accident may happen that can cause casualties and asset loss.

As a huge and complex piece of equipment, a GIS is not only an electromechanical
instrument, but is also a complex piece of mechanical equipment. One of the key com-
ponents of a GIS is the switch, which is operated frequently. Therefore, its contacts will
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wear out constantly under the impact of the mechanical forces and the stresses between the
contacts, resulting in a poor connection between the contacts [3]. The change in the contact
status of the isolating switch of a GIS will cause an intense temperature increase and the
generation of abnormal vibration signals inside the GIS [4]. The long-term occurrence of
such problems may eventually lead to an accident. Therefore, it is particularly important to
monitor the operating state of the GIS isolating switch online [5].

To sum up, GIS switches play a very important role in circuit conversion and in
ensuring the safety of power outage maintenance work, and are one of the important
factors affecting the safety of power grid operation. However, given that GIS switches are
prone to faults caused by factors such as environment, operation and quality, it is necessary
to pay attention to the detection and maintenance of the switches, so that they can continue
to play their role effectively and stably, ensuring the safe and stable operation of the
power system.

In order to effectively detect the state of the GIS switch, researchers have proposed
a variety of technologies, including image recognition [6–8], attitude sensing [9], mi-
croswitch [10], magnetic induction [11], current and angular displacement [12], vibration
sensing [13] and so on.

Among the above detection techniques, the image recognition technology used by
some detection methods is influenced by the weather and light intensity, and, therefore, the
image recognition accuracy is not ideal. Devices such as an attitude sensor, a microswitch
and magnetic induction can be used to detect the open/closed state of the isolating switch.
However, the installation and maintenance of such devices require a lengthy down time,
which makes them difficult to check and calibrate. By comparison, a vibration sensor
can be installed without cutting off the power supply. Furthermore, as its operation is
not easily affected by the environmental conditions, it has a great potential for many
applications. Therefore, it is necessary to develop switch state detection methods based
on vibration detection so as to overcome or avoid the problems which arise during the
practical application of the aforementioned methods.

The GIS switch will experience vibrations due to the actions of the electric and mechan-
ical forces on it during operation of the GIS. Based on these phenomena, some researchers
devised a method to evaluate the contact status of switch contacts by measuring and an-
alyzing the vibration signals on the switch case, and demonstrated the feasibility of this
method [14,15]. Most of the existing vibration-based detection methods evaluate the state
of a switch by analyzing the frequency spectrum features of vibration signals in different
switch states [16]. When the switch contacts are in the contact state, the signal spectrum
is dominated by the fundamental frequency of 100 Hz. When the switch contacts are in
a poor contact state, the signal amplitude will increase. In addition, a higher number of
signal components whose frequencies are multiples of the fundamental frequency (200 Hz,
300 Hz, 600 Hz and so on) will appear [17–19]. However, this kind of feature needs to be
extracted manually, and the number of usable features is considerably limited. Therefore, it
is necessary to explore more usable features.

In order to overcome the disadvantages of the existing methods, we introduce and
devise a pattern recognition method to identify the switch state, i.e., the Fast Convolutional
Neural Network (FCNN) recognition algorithm. The main contributions of this study
include: (1) A vibration detection system for GIS switch state detection is designed and
built; (2) A vibration dataset for testing the algorithms is constructed; (3) A FCNN deep
learning network is proposed, and its performance is verified for switch state detection.
This network effectively reduces the time needed for feature extraction, network training
and model convergence, while maintaining a high detection accuracy.

2. Related Works

In the past, several technologies including image recognition, attitude sensing, mi-
croswitch, magnetic induction and current and angular displacement have been commonly
used for the detection of switch opening and closing status. For example, Wang et al. [6]



Electronics 2023, 12, 3204 3 of 14

devised a method of detecting the open/closed position of an isolation switch disk based
on a technique that used deep convolution to generate a countermeasure network. This
method improved the accuracy of detection of the open/closed position of the isolation
switch based on the images. Chen et al. [9] designed an intelligent isolating switch position
monitoring system based on attitude sensing, with the aim of achieving high accuracy
for the detection of the open/closed position of the isolating switch. For monitoring the
working conditions of the GIS high-voltage isolating switch operating mechanism online,
an online monitoring method for the working status of the operating mechanism of dis-
connector, according to the double analysis method of current and angular displacement,
was proposed to realize online monitoring of the GIS disconnector by Wang et al. [12].
With practicality in mind, Luo et al. [10] proposed a “double-confirmation” method that
combined a microswitch with auxiliary contacts to improve the accuracy of detecting the
open/closed position of the isolation switch. The method provided strong support for
promoting the implementation of one-key sequential control of intelligent substations.

Although the aforementioned technologies have demonstrated promising results
regarding the detection of switch opening and closing status, they are either susceptible
to weather or difficult to install and maintain. In recent years, vibration-based methods,
which can overcome the shortcomings of the above methods, have gradually received
increased attention. For instance, experimental results by Zhong et al. [20] show that
vibration analysis can detect mechanical defects such as poor contact in GIS switches. Qi
et al. [21] used finite element analysis software to simulate GIS vibration, verifying the
feasibility of the simulation. In addition to being used for detecting the opening and closing
status of the switch, vibration signals are widely used in other fields. Ye et al. [22] proposed
a deep morphological convolutional network for feature learning of vibration signals and
applied it to gearbox fault diagnosis. Jia et al. [23] designed a novel denoising method
for vibration signals of a hob spindle, based on EEMD and grey theory. Lim et al. [24]
developed a deep learning-based detection technology for vortex-induced vibration of a
ship’s propeller.

For machine learning or neural network methods [25–27], through literature research,
we found that there are relatively few algorithms used for GIS switch opening and closing
state recognition based on vibration signals. Consequently, this section mainly reviews
algorithms used for vibration signal analysis in various fields. Wang et al. [28] proposed
an attention-guided joint learning CNN method for bearing fault diagnosis and vibration
signal denoising. Wang et al. [29] designed a multi-input and multi-task convolutional
neural network for fault diagnosis based on bearing vibration signals. Four distinct clas-
sifiers: k-nearest-neighbor (k-NN), support vector machine (SVM), random forest and
one-dimensional convolutional neural network were experimentally compared, under
gradually increasingly difficult generalization tasks, using the proposed evaluation frame-
work by Rauber et al. [30]. An extensive literature review suggested that most vibration-
based research papers, particularly for the Case Western Reserve University Bearing Data,
use similar patterns for training and testing, making their classification an easy task [30].
Inspired by this, we use vibration detection technology and propose the FCNN method for
discrimination of the switch opening and closing status.

3. Experimental Details
3.1. Vibration Detection System

The experiment in this study was carried out at the 110 kV Yungui Substation, and the
GIS used in the experiment was ZF12B-126(L), supplied by Henan Pinggao Electric Co.,
Ltd. Figure 1 shows some photos of the vibration detection system, and Figure 2 shows
its block diagram. The detection system built during the experiment mainly consisted of
vibration sensors, including signal cables with BNC connectors, a constant current source,
a data acquisition card and a PC. The constant current source supplied power to other
devices in the system. The VK702 data acquisition card had eight vibration signal channels
(six channels were actually used to collect vibration signals, one channel was used to collect



Electronics 2023, 12, 3204 4 of 14

acoustic signals), where the maximum sampling frequency could reach up to 500 KHz. The
input of the acquisition card was the vibration signals with 6 channels, where the sampling
accuracy up to 24 bits and the data was output to Excel table in floating point format. Then,
the collected data were transmitted to a PC through a USB data cable. The models of all 6
of the vibration sensors are 393B12 (The corresponding parameters are shown as follows)
and the sampling frequency of each sensor was set to 100 kHz (Figure 3). For vibration
detection, potential noise sources include the interferences of vehicles on the road, thunder
and on-site construction noise. These noises may interfere with vibration signals, which
will be investigated in the next stage.
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• Sensitivity: (±10%) 10,000 mV/g (1019.4 mV/(m/s2))
• Broadband resolution: 0.000008 g rms (0.00008 m/s2 rms)
• Measurement range: 0.5 g pk (4.9 m/s2 pk)
• Frequency range: (±5%) 0.15 to 1000 Hz
• Electrical connector: 2-pin MIL-C-5015
• Weight: 7.4 ounces (210 g)

3.2. Construction of GIS Switch Open/Closed State Dataset

During the experiment in this study, the switching of the open/closed state of the
switch was manually controlled by the experimenter on the control cabinet. In order to
ensure that the vibration sensors could acquire the vibration signal during the course of the
switch closing/opening operation, the sampling was set to start before each switch action
and to stop about 2 s after each switch action. The steps for acquiring the vibration signal
are as follows:

• Clean up the experimental site and fix the sensor bases onto the GIS shell, as shown
in Figure 1;

• Connect components of the vibration detection system and make sure that all devices
are intact and in working condition;

• Perform signal pre-collection to check whether the sensors experience a signal over-
load, and wait for the sensors to enter the stable working state;

• Collect data according to the preset experimental targets and sample number. Sub-
sequently, record the information including the time of data acquisition, type of the
acquired signal, etc., and check the validity of the acquired signal using the computer;

• Dismantle the devices after the experiment is completed.

Two datasets were constructed that contained open/closed state data of the GIS switch
obtained in the experiment. The data in first dataset were obtained with the presence of
artificial noise, while the data in the second dataset were obtained without any artificial
noise. The dataset with artificial noise contained 40 [=20 (number of samples/switch state)
× 2 (number of switch states)] samples, while the dataset without artificial noise contained
200 [=100 (number of samples/switch state) × 2 (number of switch states)] samples.

4. FCNN Algorithm

During vibration signal detection, sensors may be affected by environmental noise
or other mechanical vibrations, which cause instability of the sensor signals. Therefore,
it is necessary to pre-process the original data before feature extraction. In order to elim-
inate interference, improve the reliability of sampling and reduce the influence of false
information, we used the Savitzky–Golay smoothing filter to process the original data.

The Savitzky–Golay filter (abbreviated as the S–G filter) was first proposed by Savitzky
and Golay in 1964, and has been widely used in data stream smoothing and denoising
since then. It is a filtering method based on local polynomial least square fitting in the
time domain. The most prominent feature of this filter is that it can keep the shape and
width of the signal unchanged while filtering out noise. The core idea behind this filter is
that it can perform k-order polynomial fitting on the data points in a window of a certain
length and obtain the fitted result. After discretization, the filter is actually a weighted
average algorithm based on a moving window. However, the weighting coefficient is not a
simple constant window; rather, it is obtained by performing least square fitting on a given
high-order polynomial in the sliding window.

On the basis of signal filtering and feature extraction, the next step identified signal
features. In this study, we introduce deep learning for the state detection of the GIS switch.
The idea behind deep learning is to establish a certain model based on the abstraction of
the neural network of the human brain from the perspective of information processing,
and then form different networks according to different connection modes. Consider a
CNN as an example. The network is an operational model composed of a large number of
interconnected nodes (or neurons). Each node represents a specific output function called
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the activation function. The connection between each node pair represents a weighted
value of the signal passing through the connection, which is called a weight. This weight
is equivalent to the CNN’s memory. The output of the network is jointly determined by
the connection mode, weight value and incentive function of the network. The network
itself is usually an approximation of an algorithm or a function in nature, or it may be an
expression of a logical strategy.

In this study, an FCNN detection algorithm was designed based on a traditional
CNN, as shown in Figure 4. The input variables of the FCNN were the features, obtained
after normalization, and kernel principal component analysis (KPCA) for the frequency
spectra signals of the sensor output signals. In order to fully extract different feature
information from different types of training samples, we increased the number of neurons
in the convolution layer. Specifically, the measures included: (1) The KPCA was performed
on the experimental dataset to reduce the computational load and improve the detection
efficiency; (2) The gradient optimization algorithm was applied with a multi-convolution
kernel and batch normalization in order to improve the loss function of FCNN; (3) The exit
mechanism was executed after the operation of each convolution layer to avoid or reduce
over-fitting, and the retention rate was set to 0.8. When training the FCNN, a cross-entropy
loss function was defined to measure the performance of the model. Then, the gradient
descent optimization algorithm with backpropagation was used to automatically calculate
the gradient of the loss function and to update each weight of the convolution kernel, so
that the loss function is minimized. This process requires a great number of iterations until
the performance of the model converges.
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By using local connections and weight sharing mechanisms, the number of network
parameters was reduced in order to decrease the network complexity. This is shown by
Equation (1), as follows:

Yl
j = δ(Conv(Xl−1

i−1 , Wk + bl
i)), (1)

where i and j represent the input and output positions of the convolution, respectively, l
represents the number of convolution layers, δ(·) represents the activation function, Wk
represents the convolution kernel, b represents the offset value and X and Y represent the
input and output features, respectively.

The main function of the pooling layer is to perform dimensionality reduction, which
can also effectively prevent or reduce over-fitting. This operation is shown by Equation (2),
as follows:

Zl
m = f (ωl

jdown(Yl−1
j ) + bl

j), (2)

where m is the input position, down(·) represents the sub-sampling function, ω represents
the weight and Z represents the output feature of the pooling layer.
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During the training process of FCNN, the cross-entropy loss function shown by
Equation (3) was used to calculate the errors in the forward and backward propagation
processes, as given below:

L = − 1
N ∑n

Q

∑
c=1

ync log(pnc), (3)

where ync represents the symbolic function (0 or 1). If the true class of sample n is equal
to c, its value is 1; otherwise, its value is 0. The number of classes is represented by Q, pnc
represents the probability that the observed sample n is predicted to belong to class c, and
N represents the number of samples.

In summary, the overall signal processing workflow is shown as follows: signal
acquisition—feature extraction—FCNN algorithm recognition (Figure 4)—algorithm
training—algorithm testing, providing the predicted results of the switch opening and
closing status.

5. Results and Discussion
5.1. Evaluation Indicators

In this study, detection accuracy, precision, recall, F1 and calculation time are used to
evaluate the algorithm performance. The detection results of the open/closed state of the
switch can be grouped into opening (P) samples and closing (N) samples. If the detection
result is p and the real value is also p, it is called a true positive (TP). If the detection result
is p and the real value is n, it is called a false positive. Conversely, if the detection result
and the real value are both n, it is called a true negative. If the recognition result is n and
the true value is p, it is a false negative (FN).

A =
1
I

I

∑
i=1

Ai, (4)

Ai =
TPi

TPi + FNi
, (5)

In the above equations, A represents the detection accuracy, TPi represents the number
of TP samples, FNi represents the number of FN samples and Ai represents the detection
accuracy of class i.

The F1 value is a comprehensive evaluation indicator, which is defined as the weighted
harmonic mean of precision C and recall R.

F =
(a2 + 1)× C × R

a2(C + R)
, (6)

where a is a parameter. When a is given a value of 1, the corresponding F1 value can
be obtained.

5.2. Analysis of Results

The proposed FCNN model was verified using the experimental data. The model
was tested separately on the datasets with and without artificial noise, and then further
tested on the combination of the two datasets. Subsequently, the test results were analyzed.
Details of the analysis and the conclusions obtained are provided below:

5.2.1. Feature Distribution

Taking vibration sensor 3 (393B12) as an example, Figures 5 and 6 show the frequency
spectra of the sensor output signals obtained without background noise and in the pres-
ence of thunderstorm noise, respectively. It can be seen that irrespective of whether the
thunderstorm noise is added or not, there is a salient difference (e.g., the signals in red box)
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between the frequency domain information of the opening and closing states of the switch,
which is conducive to the accurate detection of the two states.
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The data acquired in feature extraction normally have high dimensionality, which
can reach thousands or even tens of thousands of dimensions, making it impossible to
classify and identify features. Therefore, it is necessary to reduce the number of feature
dimensions or the dimensions of the acquired data. We performed KPCA on the vibration
signals obtained under all possible combinations of the GIS switch state, i.e., open and
closed, and noise conditions, i.e., thunderstorm noise and no noise. Figure 7 shows the
feature distributions of the four vibration sensors obtained from the KPCA analysis. The
following observations can be made:

• When there is no thunderstorm noise (Figure 7a), the KPCA feature distributions of
the closed and open states of the switch exhibit a low level of overlapping. When the
thunderstorm noise is introduced (Figure 7b), the overlapping level increases significantly,
which presents a considerable challenge to the subsequent detection algorithm.

• It can be observed from Figure 7c,d,g,h that irrespective of the presence of noise, the
feature distribution overlapping levels of some vibration sensors are not very high.
This behavior indicates that thunderstorm noise has a minor influence on the vibration
signals at some sensing points.
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• The feature distribution overlapping level of sensor 3 (Figure 7e,f) is relatively high;
therefore, the data acquired by this sensor can be discarded when evaluating the
switch state.
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5.2.2. Detection Result Analysis

Pattern recognition is a type of signal processing following signal preprocessing or
feature extraction. In this study, the proposed FCNN algorithm is compared with five
classical algorithms, namely, SVM, decision tree (DT), naive Bayes (NB), k-NN and extreme
learning machine (ELM), in order to study the detection problems for each switch state.

We took some steps to make it easy for the algorithms to simultaneously deal with
the dataset with noise, the dataset without noise and the mixed dataset. We selected
40 samples from the dataset with noise and 40 samples from the dataset without noise,
where each sample group contained 20 samples from the closed switch state and 20 samples
from the open switch state. We also made sure that the ratio of the data volume of the
training samples to that of the test samples was 1:1. Table 1 (average result of 20 runs)
compares the performance levels of the selected algorithms for detecting the closed/open
state of switch. It can be observed that the proposed FCNN algorithm achieved 100%
detection accuracy on all datasets. It is worth noting that the proposed FCNN algorithm
required 21 ms to process the dataset with noise and the dataset without noise, and 26 ms to
process the mixed dataset, which is obviously superior to other detection algorithms. This
test result proves that the proposed FCNN algorithm can achieve high detection accuracy
and efficiency on different datasets, and is adaptive to various datasets.

As shown in this study, the proposed FCNN algorithm could quickly reduce the data
feature dimensions and effectively extract useful information automatically at the same
time, which improved the accuracy of vibration-based detection of the switch state. Com-
pared with the classical SVM, DT, NB, k-NN and ELM networks, the FCNN algorithm could
recognize the switch state faster, improving the identification speed without sacrificing
detection accuracy. In summary, the preliminary research in this study demonstrates that it
is feasible to realize fast and accurate detection of the open/closed state of the GIS switch
by introducing deep learning methods to analyze the vibration signal of the GIS shell.

5.3. Discussion
5.3.1. Discussion of Potential Limitations or Challenges in Implementing This Method in
Real-World GIS Systems

Compared to technologies such as images and microswitches, vibration detection
technology does not require the GIS to cooperate with power outages, which does not
affect the normal operation and maintenance of GIS equipment and is not easily affected
by environmental factors such as weather. In addition, the installation difficulty of the
vibration detection system is relatively small. Therefore, it is our preliminary belief that
vibration detection technology has relatively good scalability or robustness to different
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operating conditions. However, the limitations of the vibration detection system include
the large volume of the equipment and the need for sufficient installation space.

Moreover, for vibration detection, potential noise sources include the interferences of
vehicles on the road, thunder and on-site construction noise. Such noise may interfere with
the vibration signals, which will be investigated in the next stage.

Table 1. Comparison of various methods for detecting closed/open switch state.

Dataset Detection
Methods

Detection
Accuracy (%)

Precision
(%) Recall (%) F1(%) Calculation

Time (ms)

Dataset without noise

FCNN 100 100 100 100 21
SVM 100 100 100 100 192
DT 100 100 100 100 1489
NB 100 100 100 100 38

k-NN 100 100 100 100 25
ELM 100 100 100 100 138

Dataset with thunderstorm
noise background

FCNN 100 100 100 100 21
SVM 100 100 100 100 192
DT 100 100 100 100 1489
NB 95 95 95.5 95.2 38

k-NN 80.6 80.9 80.3 80.6 25
ELM 90 90 90 90 138

Mixed vibration dataset

FCNN 100 100 100 100 26
SVM 100 100 100 100 227
DT 100 100 100 100 1649
NB 95 94.83 95.5 95.2 41

k-NN 100 100 100 100 29
ELM 100 100 100 100 159

5.3.2. Discussion of Appling the Proposed Method in Real-World Applications

In order to apply the vibration detection system and the proposed method towards
real-world applications, the following tasks need to be completed: (1) Building a vibration
detection software and hardware system; (2) Embedding the designed recognition algo-
rithm into the vibration detection system to achieve online detection and processing of
vibration signals; (3) Developing an online debugging system, including software, hard-
ware, and algorithm parameters; (4) Uploading the recognition results in real-time to the
server. Note: the above operations do not require GIS equipment to be powered off.

6. Conclusions

In this study, a method for detecting the closed/open state of a GIS switch based on
deep-learning-assisted analysis of the vibration signal of a GIS shell was introduced. An
FCNN algorithm was proposed and verified. Compared with the traditional methods that
relied on extracted signal features to determine the switch state, the proposed method could
automatically extract the signal features and effectively reduce the feature dimensions. This
improved the efficiency and accuracy of the switch state detection. An experimental dataset
was constructed using experimental data obtained in the presence and absence of artificial
noise. The proposed FCNN method was tested on the experimental dataset along with
several other comparison methods. The experimental results showed that the proposed
neural network outperformed the SVM, DT, NB, k-NN and ELM methods in terms of
detection efficiency and accuracy, which verified its excellent performance in detecting the
switch state. The high performance in detection accuracy and efficiency signified that the
proposed FCNN method could be used in embedded vibration detection systems.

In the future, we will (1) further improve the FCNN algorithm and compare it with
existing deep learning methods; (2) increase noise to verify the proposed method and
promote the designed vibration detection system in practice.
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