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Abstract: Vulnerability identification and assessment is a key process in risk management. While
enumerations of vulnerabilities are available, it is challenging to identify vulnerability sets focused
on the profiles and roles of specific organizations. To this end, we have employed systematized
knowledge and relevant standards (including National Electric Sector Cybersecurity Organization
Resource (NESCOR), ISO/IEC 27005:2018 and National Vulnerability Database (NVD)) to identify a
set of 250 vulnerabilities for operators of energy-related critical infrastructures. We have elaborated a
“double-mapping” scheme to associate (arbitrarily) categorized assets, with the pool of identified
Physical, Cyber and Human/Organizational vulnerabilities. We have designed and implemented an
extensible vulnerability identification and assessment framework, allowing historized assessments,
based on the CVSS (Common Vulnerability Scoring System) scoring mechanism. This framework
has been extended to allow modelling of the vulnerabilities and assessments using the Structured
Threat Information eXpression (STIX) JSON format, as Cyber Threat Intelligence (CTI) information, to
facilitate information sharing between Electrical Power and Energy Systems (EPES) and to promote
collaboration and interoperability scenarios. Vulnerability assessments from the initial analysis
of the project in the context of Research and Technology Development (RTD) projects have been
statistically processed, offering insights in terms of the assessment’s importance and distribution. The
assessments have also been transformed into a dynamic dataset processed to identify and quantify
correlation and start the discussion on the interpretation of the way assessments are performed.

Keywords: vulnerability identification; vulnerability assessment; CVSS assessment; critical
infrastructure; STIX format; CTI; correlation analysis

1. Introduction

Risk management and the selection of protective schemes for critical infrastructure
operators, especially in Electrical Power and Energy Systems (EPES), are challenging
tasks. Vulnerabilities play a central role in the security ecosystem of an organization, as
they relate to the assets, the threats, the countermeasures and the cost–benefit analysis.
Vulnerabilities may belong to different classes, depending on the nature of the assets
they affect. The identification and assessment of vulnerabilities is a key aspect of risk
management. While repositories of vulnerabilities currently exist, they are not easily
oriented towards critical infrastructures, and the level of granularity may not support a
flexible risk assessment. Furthermore, there is a need for integrated environments, allowing
vulnerability identification, association with assets and assessment, with capabilities of
profiling, visualization, and analysis.

In this work, we have identified an extensive set of vulnerabilities, with a focus on the
electrical sector, considering systematized knowledge as reflected upon relevant standards,
acquired experience, and active inspection. The objective of this work is to identify, in a
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structured process, a set of vulnerabilities relevant to EPES infrastructure out of an extensive
and complex set of available vulnerabilities and how this set can be linked with assets of
specific classes. A solid double-mapping scheme of associating vulnerabilities with asset(s)
has been designed, allowing for the semi-automatic characterization of vulnerabilities
into three classes, namely, Physical, Cyber and Human/Organizational. In this respect,
we wanted to equip energy operators with an integrated vulnerability identification and
assessment tool designed to provide historized assessments and support interoperability
scenarios. Furthermore, we aimed to provide some deeper analysis and insights on the
vulnerability types and the assessment scorings.

Having the above as the basis, we also describe the design and development of a
web-based, extensible tool called Cybersecurity Vulnerability Identification and Assess-
ment Tool (CVIAT). CVIAT consolidates a set of vulnerabilities for critical infrastructures
and allows for assessment, employing the Common Vulnerability Scoring System (CVSS)
methodology [1]. The assessment has been applied in the RTD project to retrieve the first
set of results, which have been statistically processed for insights into the vulnerability
types and assessment scorings. These assessments have served as a high-value dataset,
which has been further analysed to better understand correlations and associations between
assessment criteria and selections of the operators.

In addition, the information elements employed in the CVIAT tool have been modelled
using the open, JSON-based, Structured Threat Information eXpression (STIX) format [2] to
serve as reusable and interoperable Cyber Threat Intelligence (CTI) information.

The added value of the work can be summarized as follows:

- Provision of a consolidated and extensible pool of assets and vulnerabilities tailored
to energy-related critical infrastructures.

- Seamless integration of the pool of assets and vulnerabilities, offering vulnerability
identification and assessment functionalities combined with visual, analytical, and
historization capabilities.

- Contribution to collaborative and interoperable scenarios through the modelling and
employment of the STIX language so that assets, vulnerabilities, and assessment
results can be understood and used as CTI information.

- Transformation of the assessments into a dataset and consequent processing, employ-
ing correlation analysis and association rule learning, to better understand and extract
insights on the assessments of the operators.

The structure of the document is as follows: In Section 2, we discuss the positioning
of the current work in the broad area of risk assessment and the connection with similar
efforts. Section 3 describes the methodological aspects, including the sources of the identi-
fied vulnerabilities, the assessment methodology, and the dataset-processing framework.
Section 4 discusses the design of the implemented tool, CVIAT, with a focus on the scalable
architecture, the extensible data model, and the STIX-based modelling. Section 5 describes
the results of the vulnerability identification and assessment, including the findings of the
statistical processing and analysis. Finally, Section 6 discusses some concluding remarks
and the direction of future work.

2. Positioning and State of the Art

Confidentiality, integrity, and availability, also known as the CIA triad, are the core
information security properties of communication networks, services, and data. A se-
curity threat may negatively impact those properties by carrying out an attack, which
aims to exploit vulnerabilities potentially present in the underlying assets. As a conse-
quence, the CIA properties are diminished, affecting the economic, social, or human value
of the affected assets. To fight against or mitigate vulnerabilities, countermeasures are
implemented on assets to prevent an attack and eliminate potential threats. The previous
relationships, depicted in Figure 1, give vulnerabilities a central role in information security
and, subsequently, in the risk-management process.
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According to ISO/IEC 27005 [3], determining what can happen to cause a potential
loss and assessing it in terms of applied controls and CIA consequences facilitates risk
identification and assessment, which are two core activities of risk management. Risk
management also involves risk evaluation, which compares the level of assessed risk with
risk acceptance criteria and risk treatment, which focuses on mechanisms to modify/reduce,
retain, avoid or share the risks. Efficient risk management calls for insight into the infras-
tructure and the identification/selection of relevant vulnerabilities (respecting existing
asset categorizations), along with a mechanism to assess them, as well as an integrated
environment, allowing for profiling and historized versions.

The identification of vulnerabilities has attracted research, analytical, and standardiza-
tion work, including the National Vulnerability Database (NVD) and Common Vulnerabili-
ties and Exposures (CVE), which details vulnerabilities found in a wide range of software
and hardware [4].

The Common Vulnerabilities and Exposures—CVE list is maintained by MITRE and
provides a reference method for publicly known information-security vulnerabilities and
exposures [4]. It defines CVE Identifiers (also called “CVE names”, “CVE numbers”, “CVE-
IDs”, and “CVEs”) as unique, common identifiers, for publicly known information-security
vulnerabilities, in publicly released software packages. CVEs are related to software
that has been publicly released. However, custom-built software that is not distributed
would generally not be given a CVE. Additionally, services are not assigned CVEs for
vulnerabilities found in the service, unless the issue exists in an underlying software
product that is publicly distributed.

The National Vulnerability Database—NVD [5,6], is a U.S. government repository of
standards-based vulnerability management data, represented using the Security Content
Automation Protocol (SCAP). These data enable the automation of vulnerability man-
agement, security measurement, and compliance. NVD includes databases of security
checklists, security-related software flaws, misconfigurations, product names, and impact
metrics. SCAP provides the means to collect and assess the state of devices, supporting
vulnerability checking, patch installation verification, security configuration checking, and
assessment for indicators of compromise [7].

The ISO/IEC 27005 [-] is prepared by the Technical Committee of ISO/IEC JTC 1.
The standard focuses on information security, providing guidelines for risk management.
Furthermore, it includes, in its Annex D—Vulnerabilities and methods for vulnerability
assessment, a set of vulnerabilities organized in six areas: hardware, software, network,
personnel, site, and organization.

The identification and assessment of vulnerabilities within specific scopes, and espe-
cially the critical infrastructures, present challenges. Vulnerabilities have been explored
and assessed in critical infrastructure systems based on topological properties, including
degree, betweenness, average path length, network diameter, and clustering coefficients [8].
The characteristics of critical infrastructures, including the heterogeneity of components
and the dimensionality of connectivity, have been associated with vulnerability and risk
analysis [9].
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Vulnerability assessment methodologies, which act as a framework for quantifying the
impact of vulnerabilities, include the Common Vulnerability Scoring System (CVSS) [1] and
the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) [10]. CVSS is
an open-ranking framework used for characterizing the severity of software vulnerabilities.
The OCTAVE methodology has been applied to assess the security risks of smart homes and
identify critical information assets associated with threats [11]. Algorithms for vulnerability
analysis have considered the operational capability, the intent, the activity, and the overall
operational environment [12].

The identification of vulnerabilities typically leads to mitigation techniques. Map-
ping between vulnerabilities and mitigation techniques can take place manually or in a
(semi) automatic way, e.g., through the association of vulnerabilities (from CVE list) with
MITRE ATT&CK mitigation techniques for malicious tactics, using textual descriptions
and natural language processing [13]. The cybersecurity standard IEC 62443 provides in-
structions for designing industrial system cyber defence frameworks to ensure operational
safety [14]. Based on this standard (IEC 62443), a framework has been proposed [15] to
verify the conformity of the objects with security requirements, mainly in the context of IoT
Industrial networks.

To enhance their security capabilities, organizations need to collaborate with peers
or other entities. One of the ways to achieve this is through the extraction and sharing of
structured CTI (Cyber Threat Intelligence) information. STIX [2], developed by MITRE and
currently maintained by the Organization for the Advancement of Structured Information
Standards (OASIS), is a standardized language and format. It models CTI information in a
human-understandable way, enabling the exchange and sharing of intelligence information
between different organizations and tools. It is a machine-readable, semi-structured, JSON-
based format for structuring and exchanging CTI information using STIX Domain and
Relationship Objects (SDOs and SROs, respectively). CTI information has been assessed
in terms of quality at attribute, object, and report levels [16]. Contextualized filtering of
CTI info for actionable threat information has been elaborated, measuring the equivalence
(i.e., estimating the similarity above a threshold) between the context of the shared threat
information and the organizational context [17].

In terms of tools, the electricity subsector cybersecurity Risk Management Process
(RMP) guidelines [18] and Cybersecurity Risk Management Framework (CRMF) [19] ad-
dress an organization’s risk posture evaluation and situational awareness. The Cyber
Security Evaluation Tool (CSET), version v11.5, is a desktop software tool for asset owners
and operators to evaluate industrial control system (ICS) and information technology (IT)
network security practices [20].

At the same time, as machine-learning technologies swiftly advance, their application
finds their way into security-related areas. In this direction, datasets from intrusion de-
tection systems (IDS) can be explored, through machine learning, to proactively indicate
signals of potentially upcoming or already ongoing attacks [21]. The work converts a classic
IDS dataset into a time-series format and uses predictive models to forecast the future
(forthcoming malign packets).

According to the previous analysis, although there is an increasing pool of vulnerabili-
ties offered for various thematic areas, there is still room for a consolidated and manageable
set of vulnerabilities tailored for EPES critical infrastructure, combined with assessment
functionalities and analytical, visual, and historization capabilities, seamlessly integrated
with a pool of EPES critical assets. Furthermore, vulnerability assessments can be trans-
formed into valuable CTI information, enabling collaboration and interoperability scenarios.
In addition, transforming the assessments into datasets and processing them using sta-
tistical tools can offer insight into the ways the vulnerabilities are perceived, connected,
and assessed. Such interoperability capabilities are largely missed or partially available in
current tools.
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3. Methodology

The methodological steps are depicted in Figure 2. The first phase includes the
identification of vulnerabilities potentially related to energy-critical infrastructures and
their characterization into three types. The second phase includes the association of the
vulnerabilities with asset classes and instances and their assessment, in terms of criticality,
using the CVSS scoring. The information elements employed in the process, including the
assessments, are modelled and exported using the interoperable STIX format.
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In the third phase, the assessment results are statistically processed to sketch an approx-
imation of the vulnerability profile of the organization while correlation and association
rules are applied to the CVSS fields to extract insight in the assessment approach.

3.1. Vulnerability Identification

To produce a representative domain of vulnerabilities, different sources can be explored:

- Systematized knowledge in the form of standards relevant to energy sector security,
which identify vulnerabilities.

- Acquired experience based on existing knowledge of the energy organization operator.
- Inspection involving active analysis of the energy infrastructure to discover vulnera-

bilities, e.g., through penetration testing.

The first considers an external source, as opposed to the other two, which exploit
internal knowledge or experience of the energy organization. Additionally, the first two
sources, namely, systematized knowledge and acquired experience, are static in the sense
that vulnerabilities are determined through a stationary process. On the contrary, the
vulnerabilities determined through inspection presuppose an active investigation, making
the third source a dynamic one.

In the following paragraphs, we focus on the first category, which is applicable to all
infrastructures and has been used for the initialization of the platform. Three contributing
sources of standards are identified and used: the National Electric Sector Cybersecurity
Organization Resource (NESCOR), the National Institute of Standards and Technology
(NIST), and the ISO/IEC 27005.

NESCOR has documented in [22] a total of 127 failure scenarios for the electric sector.
They are organized according to the functional domains discussed in [23], namely, Ad-
vanced Metering Infrastructure (AMI); Distributed Energy Resources (DER); Wide Area
Monitoring, Protection and Control (WAMPAC); Electric Transportation (ET); Demand
Response (DR) and Distribution Grid Management (DGM); Generation (GEN); and Generic.
The analysis of a failure scenario considers the relevant vulnerabilities, a description of the
impact, as well as potential mitigations. NESCOR determined 82 common vulnerabilities,
which, when considered in different contexts, can result in more than 250 unique vulnera-
bilities. To have a more generic approach, in our work, we have considered the 82 common
vulnerabilities from NESCOR [22].

NIST in [24] presents four vulnerability classes that can impact the electric grid. The
classes of potential vulnerabilities focus on (a) people, policy, and procedure, (b) platform
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software/firmware, (c) the platform, and (d) the network. Each of those classes comprises
two additional levels of vulnerability classes. The common vulnerabilities of NESCOR,
discussed before, are already linked with a NIST vulnerability class from [24]. For the rest
of the NIST vulnerability classes (i.e., those not associated with a NESCOR vulnerabil-
ity) in [24], we researched to find relevant vulnerabilities. In this regard, we considered
two interlinked sources of vulnerabilities: (a) the Common Vulnerabilities and Exposures
(CVE) Dictionary for publicly known vulnerabilities [4] and (b) the National Vulnerabil-
ity Database ([5,6]). In this respect, we have considered the NIST vulnerability classes
from [24]—relevant for the electric grid—and used them as pivots to identify vulnerabilities
from MITRE and the national vulnerability DB of NIST that can be relevant for or fit in
those classes.

3.2. Vulnerability Classification

Vulnerability assessment requires the association with assets, and, given their large
numbers, as well as the potentially different categorization of assets and vulnerabilities,
there is a need for a (semi-automatic) mapping between assets and vulnerabilities. Specifi-
cally, assets and vulnerabilities are grouped into asset and vulnerability classes, respectively,
and we need to determine which vulnerability classes are relevant to the asset classes
through a mapping. Such mapping must be flexible and configurable, as the initial asset
categorizations can be standard-based or arbitrary, depending on the specificities of the
infrastructure.

In terms of asset categorization, we have considered SGAM ([25,26]), which classifies
EPES assets into Power and Energy Systems (PES) Components, IM Components, Com-
munications, Information, Functional, Business and Human. At the same time, ISO/IEC
27005 [3] proposes classifying the vulnerabilities according to the class of the affected
asset into Hardware, Site, Network, Software, Organization Structure and Personnel. In
this respect, an asset class corresponds to a vulnerability class and vice versa, according
to [3]. The vulnerabilities are grouped into three classes, namely, Physical, Cyber, and
Human/Organizational.

The mapping between the assets and vulnerabilities can be achieved using an in-
terconnector, the ISO/IEC 27005, which can enable double mapping between asset and
vulnerability classes. This is depicted in Figure 3, where the asset classes (depicted in the
left column) are mapped to the ISO/IEC 27005 asset/vulnerability classes (middle column)
and, subsequently, to the vulnerability classes (right column). The first mapping has been
performed considering each of the asset types belonging to an asset class. For example,
the PES Component class includes, among others, (a) the generators and (b) the EV fleet
charging infrastructure. The former belongs to hardware, while the latter to site. This
way, the PES Component class can be associated with both Hardware and Site. A similar
analysis has been performed for the other asset classes. For the second mapping, both
hardware and site correspond to the physical vulnerability class.
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3.3. Vulnerability Assessment

The assessment of the identified vulnerabilities has been based on the Base metric
group of the Common Vulnerability Scoring System (CVSS version 3.1) [1]. CVSS is
composed of three metric groups: Base, Temporal, and Environmental. The Base group
consists of the Scope metric and two additional sets of metrics: the Exploitability metrics
and the Impact metrics, and produces a score ranging from 0 to 10.

The Scope metric explores whether a vulnerability may have an impact on resources or
components different from those that are vulnerable. The exploitability metrics capture how
easily a vulnerability can be exploited. It is expressed through the attack vector (the context
by which vulnerability exploitation is possible), the attack complexity (the conditions
beyond the attacker’s control that must exist to exploit the vulnerability), the required
privileges, and the user interaction (separate user, other than the attacker, involvement
is required).

The Impact metrics reflect the direct consequence of a successful exploit and represent
the consequence to the related asset (impacted component). They include the dimensions
of confidentiality (unauthorized access), integrity (accuracy and consistency of data), and
availability (access when needed) of the information.

The Base group is also accompanied by (a) the Temporal metric group, which refers to
“the characteristics of a vulnerability that change over time”, and (b) the Environmental
metric group, which refers to “the characteristics of a vulnerability that are unique to a
use’s environment”. The Temporal and Environmental group rankings can modify the
score of the Base metric group if needed. The exact formulas and parameters for the Base
Score Calculation can be found in [1].

3.4. Analysis Methodology

Vulnerability assessments have formulated a dataset, which has been analysed using
statistical processing, as well as correlation analysis and association rule learning. Corre-
lation analysis determines the degree of association between two nominal variables—in
our case, the CVSS metrics of the assessed vulnerabilities. Association rule learning is a
rule-based machine-learning method for discovering relations between variables in large
databases, enabling, in this manner, educated, data-driven decisions.

To examine the association between two or more variables, we employ Cramer’s V [27],
which measures association for nominal variables. It ranges from 0 to 1, where 0 indicates
no association, while 1 indicates a perfect association. Cramer’s V is based on the chi-
squared statistic and considers the sample size (n) and the number of categories of each
variable. Mathematically, Cramer’s V can be expressed as

V =

√
x2

n
min(k− 1, r− 1)

(1)

where x2 is the chi-squared statistic, n is the sample size, k is the number of categories of
one variable, and r is the number of categories of the other variable. The use of Cramer’s
V in correlation analysis provides a quantitative tool to investigate the intercorrelation of
discrete variables.

Association rule learning is a machine-learning technique that uses mathematical
measures to discover relationships between variables in large datasets. The technique
involves finding frequent item sets in a dataset and then generating rules that indicate the
likelihood of one itemset leading to another. The support and confidence measures are
commonly used in association rule learning to evaluate the interestingness of rules.

Mathematically, support (supp) is defined as the proportion of transactions in the
dataset that contains a given itemset X, as shown in the equation below:

supp(x) =
number of transactions containing X

total number of transactions
(2)
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Confidence (conf) is defined as the conditional probability of the consequent itemset Y
given the antecedent itemset X, as shown in the equation below:

conf(X→ Y) =
supp(X ∪ Y)

supp(X)
(3)

Association rule-learning algorithms, such as Apriori [28] and FP-Growth [29], use
these measures to generate rules that meet certain thresholds of support and confidence. For
example, a rule with a support of 0.5 and a confidence of 0.8 indicates that the consequent
itemset is present in 80% of transactions that contain the antecedent itemset and that the
antecedent itemset is present in 50% of all transactions.

4. Cybersecurity Vulnerability Identification and Assessment Tool—CVIAT

As a first result of our methodology, the CVIAT tool has been designed and imple-
mented. In this section, we present the design, the data, the model, and the STIX-based
interoperability feature.

4.1. Architecture

CVIAT supports (a) the creation of assets relevant for energy operators, selected from
the pool of asset classes; (b) the correlation of assets with vulnerabilities, taken from the pool
of available and EPES-relevant vulnerabilities; (c) the interactive scoring of vulnerabilities,
together with historical preservation of the evolution of the scores, through successive
assessments; and (d) the logical segregation of customer data, so that assets, vulnerabilities,
and respective scores are made available only to the users of the specific energy operator.

It is designed in a modular manner, consisting of components grouped in two func-
tional areas, namely Core Services and Support Services, as well as a database. These
components are responsible for materializing the business logic, while the database pro-
vides the structural organization of the data. The overall architecture of CVIAT is depicted
in Figure 4 and consists of the following components:

1. Assessment Manager, in charge of the workflow required for performing an assess-
ment. It links together an asset, a vulnerability, and the respective score, implementing
necessary controls.

2. Assets and Vulnerabilities Manager, responsible for maintaining Assets and Vulner-
abilities, both as part of the available pool offered by CVIAT for selection, as well
as part of the collection of Assets and Vulnerabilities pertaining to specific energy
operators.

3. Customer and Users Manager, which undertakes the registration and management of
energy operators (organization) and their respective users.

4. Scoring Engine, which calculates the scoring of a vulnerability according to provided
criteria, utilizing the base metrics of CVSS version 3.1 [1]. However, the Scoring
Engine is flexible enough to accommodate additional scoring methodologies.

5. Admin Service, which takes care of any administrative related functionality, like control-
ling configuration parameters, importing/exporting data, or performing parametrization
of the application.

6. Reporting Service, responsible for creating reports required for the end-user. It
combines the necessary data and produces reports for end-users.

7. Database (DB), which provides the structural organization of the information.

4.2. Data Model

The data model is depicted in Figure 5 as an entity relationship diagram. The boxes
represent the basic data elements considered in CVIAT, while the arrows represent the
relationship—indicated above the arrow—between the data elements, with the cardinality
of the relationship mentioned below the arrows.
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The Asset Class data element represents the Asset Categories, namely, PES Component,
IM Component, Communication, Information, Functional, Business, and Human. The
Asset data element represents the different assets that can be considered. It serves as a
repository of possible assets that can be instantiated (in the sense of being present) in the
operational environment of a specific energy operator.

The Asset Instance data element is used to represent all the actual assets (instances
of the Asset data element) that have been identified as relevant for the vulnerability
assessment process and for which at least one vulnerability is present. A record of the Asset
Instance is associated with one or more records of the Vulnerability Instance data element.
Additionally, a record of the Asset Instance is associated with only one record from the
Customer data element, indicating the owner of the specific Asset Instance record.

Similarly, the Vulnerability Class represents the Vulnerability Classes, namely, Physical,
Cyber and Human/Organizational. The Vulnerability data element represents the different
vulnerabilities that can be considered. It serves as a repository of possible vulnerabilities
that can be instantiated (in the sense of recognized as being present) in the operational
environment of a specific energy operator.

The Vulnerability Instance data element represents the actual vulnerabilities identified
as being present in the operational environment—as part of (in the sense of affecting) a
specific Asset Instance. A record from the Vulnerability Instance data element might be
associated with one or more records from the Score data element, each one referring to a
different assessment in time. Additionally, each record of the Vulnerability Instance data
element is associated with only one record from the Asset Instance data element, indicating,
in this way, the specific asset within the operational environment that is affected by the
specific Vulnerability Instance.

The Score data element is used to store the CVSS score of a vulnerability. Considering
that a vulnerability can be assessed in different time periods, many scores can be present
for each record of the Vulnerability Instance data element. In this manner, the history of
assessments is maintained, while the latest score in time represents the current score.

The Customer data element is used to represent the different energy providers (or-
ganizations) that are registered in the tool. A Customer can have many different Asset
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Instances, which are part of its operational environment, as well as many different Users,
which are authorized to handle the data of the specific Customer. Additionally, the User
data element maintains information about the specific Users of the tool. A record of the
User data element can be associated with only one record of the Customer data element.

4.3. CTI Interoperability

STIX semantic models facilitate informed decisions on behalf of operators in the
context of collaborative scenarios for cybersecurity [30]. To support such collaboration
and interoperability features, we adapted and extended STIX vocabulary to model and
represent the main information entities of CVIAT, namely, Organizations, Assets, and
assessed Vulnerabilities (which correspond, respectively, to the Customer, Asset Instance,
and Vulnerability Instance data elements, as discussed in Section 4.2) as CTI information.

More particularly, the Organization (Customer data element) is represented by the
Identity STIX Domain Object (SDO), while for the respective assets (Asset Instance data
element) of an Organization, we have used the Infrastructure SDO. Within the Infrastructure
SDO, we also captured the relevant asset class (namely, the PES Component, IM Component,
Communication, Information, Functional, Business, and Human) and the exact type of the
asset, using the custom properties feature of STIX, as well as the status of the asset, being
active or inactive, through the revoked property of STIX. To represent the relationship
between an Asset and the Organization to which it belongs, the created_by_ref STIX
property (from the Infrastructure SDO to the respective Identity SDO) was used.

Furthermore, for the assessed Vulnerabilities (Vulnerability Instance data element), the
Vulnerability SDO was used, augmented by a custom vulnerability_class property, to repre-
sent the different vulnerability classes, namely, Physical, Cyber and Human/Organizational.
Additionally, we introduced in the Vulnerability SDO a custom property called x_cvss,
which captures the CVSS scores of the vulnerability. x_cvss is defined as a list of score
objects, having as sub-properties the basic metrics used to calculate the CVSS Score.

To represent the relationship between an Asset and a Vulnerability, we utilized the
STIX predefined relationship “has” from the Infrastructure SDO to the Vulnerability SDO.
The relationship consists of the source_ref and a target_ref that correlate the Infrastructure
and the Vulnerability SDOs. Figure 6 below provides an indicative sample of a Vulnerability
SDO, modelling an assessed Vulnerability, including the CVSS fields, exported from CVIAT.
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5. Results

This section discusses the results of our work, focusing on vulnerability identification
and assessment analysis, as well as the statistical processing and analysis of those results.

5.1. Identified Vulnerabilities

Following the vulnerability identification methodology, we created a pool of 250 unique
vulnerabilities relevant for operators of energy-related infrastructures. Most of those vul-
nerabilities, 197 (or 79%), are derived from systematized knowledge, namely, NESCOR,
CVE/NVD with a NIST vulnerability class, and ISO/IEC 27005, while the rest are based
upon previous knowledge, including inspections, accounting for 53 vulnerabilities (or 21%).
A graphical summary of the source of origination is shown in Figure 7.
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Considering the vulnerability classes discussed in Section 3.2, the largest portion of
identified vulnerabilities, 141 (or 56%), belong to the Cyber class, while more than 1 out
of 3 vulnerabilities (88 or 35%) are from the Human/Organizational class. Finally, the
remaining 21 vulnerabilities (or 8%) belong to the Physical class. Figure 8 provides a
cumulative representation of the identified vulnerabilities according to their classes.
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The 2 types of vulnerability sources contribute to identifying vulnerabilities that
belong to the different vulnerability classes, as depicted in Figure 9. More particularly, for
systematized-knowledge-originated vulnerabilities, the majority, 103 (or 52%), belong to
the Cyber class, followed by 76 vulnerabilities (or 39%) from the Human/Organizational
class, while the remaining 18 vulnerabilities (or 9%) belong to the Physical class. Regarding
acquired experience originated vulnerabilities, including inspections, the majority belong
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to the Cyber class, 38 vulnerabilities (or 72%), followed by 12 vulnerabilities (or 23%) from
the Human/Organizational class, while the remaining 3 vulnerabilities (or 6%) belong to
the Physical class.
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Considering the vulnerabilities identified through the source of systematized knowl-
edge, we present in Figure 10 how they are distributed over the three vulnerability classes.
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More particularly, in the case of NESCOR vulnerabilities, the majority of them, 46 (or
56%), belong to the Cyber class, while 32 vulnerabilities (or 39%) are Human/Organizational,
with the rest of them, 4 (or 5%), belonging to the Physical class. As far as the NIST vul-
nerabilities are concerned, they are either Cyber, 25 (or 81%), or Human/Organizational,
6 (or 19%). Regarding vulnerabilities from ISO/IEC 27005 source, the majority of them,
38 (or 45%), belong in the Human/Organizational class, while 32 vulnerabilities (or 38%)
are Cyber, with the rest of them, 14 (or 17%), belonging to the Physical class. Overall,
the source of systematized knowledge provided a total of 197 vulnerabilities, with the
majority of them, 103 (or 52%), belonging to the Cyber class, followed by 76 (or 39%)
vulnerabilities from the Human/Organizational class, with the rest, 18 (or 9%), belonging
to the Physical class.
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5.2. Assessment Results

Through a joint analysis of the identified vulnerabilities, following the assessment
principles of CVSS scoring, we managed to populate the system with scored vulnerabilities.
The scorings were mapped to four qualitative rating groups, Low (from 0 to 4), Medium
(from 4 to 7), High (from 7 to 9), and Critical (from 9 to 10). Figure 11 provides the
distribution of assessed vulnerabilities according to their qualitative severity class.
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Almost 6 out of 10 (57%) vulnerabilities were scored as Medium, and 4 out of 10 (38%)
vulnerabilities were scored as High. Only 3% of the vulnerabilities were scored as Low,
while the class Critical contained 2% of the assessed vulnerabilities.

The distribution of assessed vulnerabilities per vulnerability class, together with the
average value of the vulnerability assessment scores, are depicted in Figure 12. In principle,
Cyber and Human/Organizational were assessed to have higher criticality than Physical
vulnerabilities.
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The top five vulnerabilities per class, based on their average score in the context of
the CyberSEAS project, as well as their source and the asset class and assets affected, are
depicted in Tables 1–3.
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Table 1. Top 5 vulnerabilities of Physical class.

Vulnerability Asset Class and Indicative Asset

Failure in real-time monitoring PES component (smart sensor)
Lack of periodic replacement schemes IM component (network routing infrastructure)

Insufficient maintenance PES component (generators, LV and MV Bus
bars, sensors/actuators, solar panels)

Physical access to serial port (enable logical
access by unauthorized entities) PES components (substations)

Lack of physical protection of the building PES component (substations)

Table 2. Top 5 vulnerabilities of Cyber class.

Vulnerability Asset Class and Indicative Asset

Unauthenticated IEC 104 interface access IM component (Customer Premise Display)

Inadequate network segregation Functional (security/network/system
management)

Inadequate continuity of operations (Disaster
Recovery Plan) Transmission system operator

Inadequate risk assessment process Functional (security/network/system
management)

Alarm processing capability is overwhelmed
by unnecessary alarms Customer energy management system

Table 3. Top 5 vulnerabilities of Human/Organizational class.

Vulnerability Asset Class and Indicative Asset

Vandalism, terrorism Human (transmission system operator)
Insufficient logging and log management IM component (enterprise integration bus)

Insufficiently trained personnel Human (transmission system operator)
Disgruntled employee Human (transmission system operator)

Communication between different
stakeholders/teams Human (transmission system operator)

5.3. Correlation Analysis

The vulnerability assessments, considering the Base group metrics from CVSS [1],
coming from independent (anonymized) organizations, were processed using correlation
analysis on the input features with Cramer’s V statistic. This way, a numerical value
(correlation index) was obtained for each feature pair and a heatmap was produced, as
displayed in Figure 13.

We observed a high correlation between privileges required and attack complexity,
namely, 0.7. This is to be expected since a system that enforces stricter privilege require-
ments needs a more complex pattern to carry out an attack against it. The attack complexity
also has a strong correlation (0.6) with the Access vector metric. If the Attack Vector is
remote (i.e., the vulnerability can be exploited over a network connection), it usually means
that the attack complexity is lower because an attacker can remotely exploit the vulnerabil-
ity without needing to gain physical access to the targeted system. In contrast, if the Attack
Vector is local (i.e., the vulnerability can only be exploited by an attacker who has physical
access to the targeted system), it usually means that the attack complexity is higher because
an attacker needs to gain physical access to the targeted system before being able to exploit
the vulnerability.

On the other hand, the Scope metric and the Required Privileges have no correlation.
The reason is that they assess different aspects of a vulnerability. The Scope metric evaluates
the possible reach of the vulnerability and its impact on the overall system, while the Attack
Complexity metric gauges the level of difficulty that an attacker would encounter when
exploiting the vulnerability.
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The Scope metric and Attack Complexity metric do not have a direct correlation
because they measure different aspects of the vulnerability. The Scope metric measures the
potential impact of the vulnerability on the overall system while the Attack Complexity
metric measures how difficult it is for an attacker to exploit the vulnerability. For example,
a vulnerability may have a “Change” Scope metric, which means that the vulnerability can
affect other components of the system beyond the one that is being attacked. However,
the Attack Complexity metric may be “Lo”, which means that the vulnerability is easy to
exploit. In this case, the vulnerability can have a significant impact on the overall security
of the system, even though it is easy to exploit.

5.4. Association Rule Learning

In this section, we present the results of an association rule analysis conducted on a
dataset related to computer security. Table 4 summarizes the key association rules identified
in our analysis, along with their corresponding support, confidence, and lift metrics. The
antecedents and consequents of each rule are presented in separate columns, where the
antecedent refers to the condition or pattern that precedes the arrow, and the consequent
refers to the outcome or event that follows the arrow.

Table 4. Table displaying the statistical measures for different association rules.

Antecedents Consequences Support Confidence Lift

Access Vector Network Privileges Required High 0.47 0.74 1.40
Privileges Required High Access Vector Network 0.47 0.89 1.40
Access Vector Network Confidentiality Low 0.50 0.79 1.31

Confidentiality Low Access Vector Network 0.50 0.83 1.31
Availability Low Confidentiality Low 0.47 0.91 1.51

Confidentiality Low Availability Low 0.47 0.77 1.51

One interesting pattern that emerged is the strong association between the Access
vector “Network” and the requirement for high privileges. This association has a support
value of 0.47, indicating that the pattern is present in nearly half of the dataset. The
confidence value of 0.74 suggests that the rule is accurate in 74% of the cases where the
pattern is present, while the lift value of 1.4 indicates that the association between the access
vector and high privileges is 1.4 times stronger than would be expected by chance.
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Another notable finding is the association between low confidentiality and low avail-
ability, which has a support value of 0.47 and a lift value of 1.51. This suggests that there is
a strong relationship between these two metrics.

6. Conclusions

The identification and assessment of vulnerabilities is a critical step in the risk-
assessment process. In this work, we are confronted with three main challenges: (a) a
methodological one regarding how to identify, in a structured way, a set of vulnerabilities
relevant to EPES infrastructure from an extensive and complex set of available vulnerabili-
ties and, subsequently, associate them with asset classes; (b) a technological one related to
the design and implementation of a holistic environment, to support the historized and
interoperable identification and assessment of vulnerabilities; and (c) an analysis and inter-
pretation one related to the findings from assessment on behalf of EU EPES infrastructure
and the consolidation of a pool of statistics for the processing and understanding of the
assessments.

Although there are multiple pools of vulnerabilities, a consolidated and manageable
set, which is also tailored for and linked to EPES critical infrastructure, is a valid need.
Additionally, the results of vulnerability assessments can be further utilized for statistical
analysis and as valuable CTI information, enabling collaboration and interoperability
scenarios. In this respect, transforming the assessments into datasets and processing them
using statistical tools offered insights into the ways vulnerabilities are perceived, connected,
and assessed.

The methodological framework employs three types of vulnerability sources, resulting
in a pool of 250 unique and characterized vulnerabilities. The vulnerability classification
scheme (Physical, Cyber, and Human/Organizational) has been adequate for characterizing
all vulnerabilities. The challenge of mapping vulnerability and asset classes has been
confronted with the double-mapping mechanism, using the ISO/IEC 27005 as a pivot
classification.

The CVSS scoring mechanism has allowed interactive and coherent scoring and as-
sessment of vulnerabilities after their association with assets. The set of assessments has
allowed for statistics related to the types of vulnerabilities and their criticality in typical
infrastructures.

The CVIAT environment allows for interoperability capabilities using the STIX format
for reusable CTI. Historical preservation of score evolution through successive scorings
contributes to a better understanding of the levels of exposure for the Energy operator
over time. Furthermore, the extension of the historized vulnerability assessment scorings
as a dataset allowed for correlation and association rule analysis. These have provided
insights into the patterns and relationships. By identifying these associations, we can better
understand the factors that contribute to computer security vulnerabilities and develop
more effective strategies for mitigating them.

In terms of future work, we expect to expand the framework with further vulnerability
sources, such as [31], and consolidate the vulnerabilities coming from internal organization
sources into new libraries. Furthermore, the interoperability capabilities can extend the
processing of the results as the assessments can serve as datasets. This can be processed
by third-party tools to identify more complex patterns and correlations between (a) the
evolution of the scoring of a vulnerability in subsequent assessments and (b) the external
conditions for proactive notifications.
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