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Abstract: In the operation site of power grid construction, it is crucial to comprehensively and
efficiently detect violations of regulations for the personal safety of the workers with a safety mon-
itoring system based on object detection technology. However, common general-purpose object
detection algorithms are difficult to deploy on low-computational-power embedded platforms sit-
uated at the edge due to their high model complexity. These algorithms suffer from drawbacks
such as low operational efficiency, slow detection speed, and high energy consumption. To address
this issue, a lightweight violation detection algorithm based on the SP (Segmentation-and-Product)
attention mechanism, named SP-YOLO-Lite, is proposed to improve the YOLOv5s detection algo-
rithm and achieve low-cost deployment and efficient operation of object detection algorithms on
low-computational-power monitoring platforms. First, to address the issue of excessive complexity
in backbone networks built with conventional convolutional modules, a Lightweight Convolutional
Block was employed to construct the backbone network, significantly reducing computational and
parameter costs while maintaining high detection model accuracy. Second, in response to the problem
of existing attention mechanisms overlooking spatial local information, we introduced an image
segmentation operation and proposed a novel attention mechanism called Segmentation-and-Product
(SP) attention. It enables the model to effectively capture local informative features of the image,
thereby enhancing model accuracy. Furthermore, a Neck network that is both lightweight and feature-
rich is proposed by introducing Depthwise Separable Convolution and Segmentation-and-Product
attention module to Path Aggregation Network, thus addressing the issue of high computation and
parameter volume in the Neck network of YOLOv5s. Experimental results show that compared with
the baseline network YOLOVv5s, the proposed SP-YOLO-Lite model reduces the computation and
parameter volume by approximately 70%, achieving similar detection accuracy on both the VOC
dataset and our self-built SMPC dataset.

Keywords: violation detection; deep learning; lightweight object detection algorithm; attention mechanism

1. Introduction

In recent years, with the rapid development of the power grid industry, the task of
power grid construction has become increasingly heavy, and there has been an increase
in the number of on-site work points, leading to frequent accidents at the work site. The
direct causes of these accidents are mostly due to workers not wearing complete safety
equipment, entering restricted areas, and other habitual violations [1]. In response to this
issue, an increasing number of power grid construction sites are deploying on-site safety
monitoring systems based on object detection technology to automatically supervise and
control workers’ violations. Furthermore, in order to meet the real-time requirements of
detecting violations, these systems have started to decentralize the automatic detection
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process to embedded platforms situated at the edge. This involves deploying object
detection models in close proximity to the sensing devices. However, it is challenging
to directly deploy common general-purpose object detection models on the embedded
platforms of safety monitoring systems.

The challenge of deploying general-purpose object detection models on embedded
platforms stems from several factors. Firstly, general-purpose object detection models
are typically based on deep learning neural networks, which require high computational
and memory resources for deployment [2]. This makes them unsuitable for embedded
platforms with limited computing power, storage capacity, and memory size. Secondly, in
the field of on-site safety monitoring, the rapid identification and processing of violations
are of utmost importance. However, general-purpose object detection models have limited
detection speed due to their high computation and parameter volume, making it difficult to
meet the real-time demands of violation detection tasks [3]. Thirdly, embedded platforms
typically possess unique hardware architecture and software frameworks that differ from
conventional computing systems. Consequently, general-purpose object detection models
may lack compatibility with these platforms, necessitating substantial modifications or
adaptations to ensure optimal performance. Such endeavors can consume considerable
time and resources, while also introducing additional complexities into the deployment
process [4]. Lastly, general-purpose object detection models often consume a significant
amount of energy to support their complex computational needs. This poses a challenge for
embedded platforms with limited resources, as they require low power consumption. To
address these challenges, a lightweight object detection algorithm for embedded platforms
that can be tailored to actual application scenarios and balance accuracy, energy consump-
tion, and speed is urgently needed in the on-site safety monitoring field. The deployment
of lightweight detection models on embedded platforms can greatly enhance the safety
monitoring capabilities at power grid construction sites.

This paper proposes a lightweight violation detection algorithm based on the SP
attention mechanism, called SP-YOLO-Lite. It is an improved YOLOV5s algorithm with
lower deployment costs and can realize comprehensive and effective violation detection.
The main contributions of this paper are as follows:

e  Designing a lightweight Backbone network based on the Lightweight Convolutional
Block (LC-Block). The network is constructed by directly stacking LC-Blocks based on
Depthwise Separable Convolutions, maintaining a single path from input to output.
It has lower network fragmentation and no additional computational costs such as
kernel startup. Compared to backbone networks built with conventional convolutional
modules in general-purpose object detection algorithms, the proposed network signif-
icantly reduces computational and parameter requirements while greatly improving
inference efficiency.

e Proposing a novel attention mechanism called Segmentation-and-Product (SP) atten-
tion mechanism. This mechanism is designed to address the characteristic of violation
detection tasks where the detection targets are concentrated in local regions. It inno-
vatively incorporates image segmentation operations to divide the input image into
regions and applies attention operations to each region separately. This effectively
captures the local features of the image, thereby improving the accuracy of the detec-
tion model. Compared to existing attention mechanisms, this attention mechanism
focuses more on capturing local spatial feature information, making it more suitable
for violation detection tasks.

e  Proposing a Neck network that is both lightweight and feature-rich. For this network,
we use Depthwise Separable Convolution to replace complex CSP modules and con-
ventional convolutional modules as the upsampling operator, significantly reducing
the computational and parameter complexity. Additionally, we insert SP attention
modules into the network to effectively enhance the model’s ability to extract mean-
ingful features from the targets. Furthermore, we optimize the channel configuration
of each layer in the Neck network, reducing the memory access cost. Compared to
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the feature fusion networks used in general-purpose object detection algorithms, this
Neck network achieves a better balance between accuracy, speed, and complexity.

e  Collecting and processing monitoring images from different power operation scenes
to construct a Security Monitor for Power Construction (SMPC) dataset that includes
multiple detection targets such as a safety belt, fence, and seine, and is suitable for
violation detection tasks.

2. Related Work
2.1. Violation Behavior Detection

Currently, research on violation behavior detection mostly focuses on detecting the
wearing of safety helmets. The detection methods of safety helmets can be divided into
traditional machine learning methods and deep learning methods. Traditional machine
learning methods use manually extracted image features of safety helmets to train clas-
sifiers for automatic detection. Man-Woo et al. [5] extracted the HOG features of safety
helmets and used supervised learning to train support vector machines for the automatic
detection of safety helmets in indoor scenes. However, such methods cannot handle high-
dimensional data in complex scenes due to the shallow models constructed. In contrast,
deep learning methods adopt deep models to overcome the shortcomings of machine
learning methods and have a stronger ability to extract image features. Wang et al. [6]
proposed an improved YOLOv5-based object detection method for detecting the wearing
of safety helmets in complex environments, achieving a mean Average Precision (mAP) of
95.9%. Similarly, Zhang et al. [7] proposed a workshop safety helmet-wearing detection
model, SCM-YOLO, to meet the demand for real-time and accurate detection of safety
helmets in complex scenarios. The model incorporates the Spatial Pyramid Pooling (SPP)
structure and the Convolutional Block Attention Module (CBAM) into the YOLOv4-tiny
model, achieving a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm.
The inference speed of the model reaches 22.9 FPS. In 2023, Wang et al. [8] proposed a
helmet-wearing detection model called YOLO-M. The model employed MobileNetv3 as
the backbone network, effectively reducing model complexity. Additionally, residual edges
were introduced in feature fusion, enhancing the detection capability for small targets. Ex-
perimental results demonstrated that YOLO-M achieved a 2.22% improvement in detection
accuracy compared to the baseline network YOLOv5s while using only three-quarters of
its parameter count. However, existing approaches have difficulty meeting the practical
requirements of violation detection tasks. Firstly, they are limited in the types of detectable
targets, mostly applicable only for detecting the wearing of safety helmets. Secondly, they
lack targeted design and optimization for deployment on embedded platforms. In contrast,
the proposed SP-YOLO-Lite in this paper effectively addresses these issues. It not only has
a wider range of applications, capable of detecting multiple target types such as safety belts,
fences, and seines but also incorporates an extensive lightweight design and optimization
specifically for deployment on embedded platforms. As a result, it exhibits better practical
performance on embedded platforms.

2.2. Lightweight Object Detection Algorithms

In order to meet the requirements of resource-limited platforms such as embedded
systems [9], researchers have proposed a series of lightweight object detection algorithms
that balance detection accuracy and real-time performance by lightening the original
algorithms such as YOLO [10-14] and SSD [15]. The most widely used lightweight object
detection algorithm is the YOLO series. In 2015, Redmon et al. [10] proposed a lightweight
version of YOLOv], Tiny-YOLOV1, which simplified the original 24-layer convolutional
structure of YOLOvV1 to nine layers. Although its mAP on the VOC2007 dataset is lower
than that of the original YOLOV], its detection speed is improved by 3.4 times. Based on
this, Redmon et al. also released corresponding lightweight versions of YOLOv2 [11] and
YOLOV3 [12], namely Tiny-YOLOvV2 and Tiny-YOLOV3, respectively. They have reduced
the size of the model while achieving higher mAP. In 2021, Chen et al. [16] proposed
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the YOLOvb5-Lite series of lightweight object detection algorithms based on YOLOVS5,
which are lighter, faster, and easier to deploy. This series of algorithms has smaller Flops
(Floating Point of Operations), lower memory, and fewer parameters, and due to the
introduction of lightweight network modules, it has a faster inference speed. In 2023,
Liet al. [17] proposed a lightweight infrared object detection method called Edge-YOLO.
The method constructs the backbone network by stacking lightweight ShuffleBlocks and a
strip depthwise convolutional attention module. Additionally, CAU-Lite was applied as
the upsampling operator, and EX-IoU was employed as the bounding box loss function.
Experimental results demonstrate that compared to YOLOv5m, Edge-YOLO achieves a
reduction in model size by 71.6% while maintaining the same level of detection accuracy.
Existing lightweight object detection algorithms have achieved a high level of lightweight
optimization compared to general-purpose object detection algorithms. However, most
algorithms fail to incorporate task-specific network design and optimization targeted
towards the characteristics of the applied tasks and hardware platforms, resulting in their
inadequate practical performance that fails to meet practical requirements. In this paper, we
have conducted targeted lightweight design and optimization based on the characteristics
of the violation detection task and the deployed hardware platform. As a result, we propose
a lightweight object detection algorithm that better meets practical requirements. Compared
to existing lightweight object detection algorithms, it achieves a better balance between
detection accuracy and model complexity, leading to improved practical performance.

2.3. Attention Mechanism

The attention mechanism enables neural networks to focus on important features
of the input images while ignoring unimportant ones during feature extraction and has
shown great potential in improving the performance of convolutional neural networks.
Hu et al. [18] first proposed an effective attention mechanism, called the Squeeze-and-
Excitation (SE) attention mechanism, which effectively improved the detection accuracy
of models by utilizing 2D global pooling and fully connected structures. However, the SE
attention mechanism ignored the position information in images that is equally important
to channel information, limiting its ability to improve model accuracy. To address this
issue, Woo et al. [19] proposed the Convolutional Block Attention Module (CBAM), which
aggregated features using both average and max pooling, and fused channel and spatial
information, leading to further improvement in model accuracy. Both methods aimed to
develop more complex attention modules for better performance, inevitably increasing the
complexity of the models. Therefore, Wang et al. [20] proposed a more efficient attention
module, the Efficient Channel Attention (ECA) module, to balance model performance
and complexity, which contained only a small number of parameters but still resulted
in a significant performance improvement. However, in violation detection tasks, the
target objects to be detected are often concentrated in a certain region of the images, and
most attention mechanisms tend to ignore the local spatial information of each feature
channel, limiting their effectiveness in violation detection tasks. To address this issue, this
paper proposes a lightweight attention mechanism, called the Segmentation-and-Product
(SP) Attention Mechanism, which effectively captures local spatial information for better
performance in violation detection tasks while balancing model accuracy and complexity.

3. SP-YOLO-Lite Network Model

As shown in Figure 1, the SP-YOLO-Lite network consists of three parts: Backbone,
Neck, and Head. The Backbone is primarily composed of multiple Lightweight Convo-
lutional Blocks (LC-Blocks) [21], which extract features of different scales from the input
image through a series of convolution operations. The Neck is built upon the PANet
and incorporates the Depthwise Separable Convolution (DSConv) [22] and Segmentation-
and-Product (SP) attention module, enabling the aggregation and fusion of features from
various layers of the Backbone. The Head consists of multiple detection heads composed
of convolutional layers, pooling layers, and fully connected layers. Each detection head
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receives feature maps of different scales from the Neck network and finally outputs the
position, category, and confidence of different scale targets.
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Figure 1. The architecture of SP-YOLO-Lite network. In the Head part, the light purple cubes
represent the final output of the network.
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3.1. Lightweight Backbone Network Based on LC-Block

In this paper, we propose a lightweight Backbone network based on LC-Block. LC-
Block is a lightweight convolutional module that exhibits smaller parameter and com-
putational requirements, as well as higher efficiency in feature extraction compared to
conventional convolutional modules commonly used in general-purpose object detection
algorithms. The specific structure of the LC-Block is illustrated in Figure 2. It is composed
of Depthwise Convolution (DWConv), Pointwise Convolution (PWConv), and a Squeeze-
and-Excitation (SE) attention module. DWConv is a lightweight convolutional module
that performs convolution operations only on one channel of the input tensor for each
convolution kernel. PWConv is a conventional convolution module with a kernel size of
1 x 1, which is often used in combination with DWConv to linearly combine the feature
maps of each channel and obtain more complex feature representations. The SE attention
module is inserted between the PWConv and DWConv to enhance the model’s ability to
extract effective features from the images. The specific structure of the SE attention module
used in this paper is shown in Figure 2. The output feature map of size C x H x W from
DWConv will be fed into the SE module for the following attention operations. Firstly,
the feature map is compressed toa 1 x 1 x C feature vector by pooling operation. Then,
two 1 x 1 convolution modules are used to compress and expand channels, respectively,
to generate channel attention score vectors. Finally, the vector will be weighted on each
channel of the input feature map to generate a weighted feature map of size C x H x W.

The specific structure and parameter configuration of the lightweight Backbone net-
work constructed in this paper is shown in Table 1. When building the network, we first
directly stack multiple LC-Blocks so that the constructed Backbone network always main-
tains a single path from input to output, without extra network branches. This results in a
low degree of network fragmentation, which is more friendly to low-computing devices
compared to multi-branch networks commonly used in general-purpose object detection
algorithms, and there are no additional calculation costs such as kernel startup and syn-
chronization. Secondly, we adjusted the number of feature channels in each layer of the
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network. On the basis of reducing the channel number of each layer, we kept the input
and output channel numbers of LC-Block 4, LC-Block 6, and LC-Block 8 consistent. This
design effectively reduces the model’s memory consumption and actual operating energy
consumption. In addition, the original YOLOVS5 uses the Focus layer for downsampling the
input feature map, but its “Slice” operation brings an unavoidable computational burden.
Therefore, we replace the Focus layer with a 3 x 3 convolutional layer as the first layer of
the network to improve the model’s inference efficiency on actual devices.

Squeeze
‘—’ Pool —>1x1Conv—>1x1 COnv_ElXPand
DWConv =) & C—> PWConv
Product
CXHxXW CxHxXW
SE Attention Module

Figure 2. The architecture of LC-block. The light orange and orange cubes represent the input feature
map and output feature map of the SE attention module, respectively.

Table 1. Specific Structure and Parameter Configuration of the lightweight Backbone. “K x K” of
LC-Block refers to the kernel size of DWConv, and “Utilization of SE Attention Module” indicates
whether the corresponding LC_Block is inserted with SE attention module.

Module

Conv + BN + H-Swish
LC-Block 1
LC-Block 2
LC-Block 3
LC-Block 4
LC-Block 5
LC-Block 6
LC-Block 7
LC-Block 8

Conv + H-Swish + Dropout

Output Feature Map Size Number of Parameters Utilization of SE
(W x H x C) Modules [K x K, Stride] Attention Module
320 x 320 x 32 1 [3x3,2] -
160 x 160 x 64 1 [3 x3,2] False
160 x 160 x 64 1 [3 x3,1] False
80 x 80 x 128 1 [3x3,2] False
80 x 80 x 128 3 [3 x3,1] False
40 x 40 x 256 1 [3 x3,2] False
40 x 40 x 256 5 [5x5,1] False
20 x 20 x 512 1 [5x5,2] True
20 x 20 x 512 3 [5x5,1] True
20 x 20 x 512 1 [1x1,1] -

3.2. Segmentation-and-Product Attention Mechanism

The attention mechanism is often used to improve the accuracy of deep neural net-
works [18-20]. However, most attention mechanisms come with a significant computational
cost, making it challenging to apply them to lightweight models. Moreover, in violation
detection tasks, the detection targets typically include workers, their safety equipment,
or the fence that spans across a specific area. These targets are often concentrated in spe-
cific localized regions of surveillance footage, with a small proportion and low resolution
within the frame. However, existing attention mechanisms usually directly process the
entire surveillance image, attempting to learn local semantic information from the global
semantics of the image. This approach might overlook the local spatial information within
each feature channel, limiting their effectiveness in violation detection tasks.

To address this issue, we propose a lightweight attention mechanism called the
Segmentation-and-Product (SP) Attention Mechanism, which is applicable to violation
detection tasks. This mechanism takes into account the fact that the targets of violation
detection tasks are concentrated in localized regions. It incorporates image segmentation
operations to divide the input feature map into multiple region feature maps. Each seg-
mented feature map is then subject to attention operations. This approach enables the
model to directly and efficiently extract spatial local information, significantly improving
the model’s ability to extract target feature information from each region. Consequently, it
enhances the detection accuracy of the target detection model in violation detection tasks.
Additionally, in the attention operations of this mechanism, we utilize 1 x 1 convolutions to
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Input Tensor

compress the input feature map channels. This effectively reduces the computational and
parameter complexity, allowing the model to improve target detection accuracy without
imposing excessive computational burden.

As shown in Figure 3, the output tensor of the attention module has different colors in
different positions in each channel. The parts of each channel that are closer to blue repre-
sent the background feature areas that have a smaller impact on detection accuracy [23],
while the parts that are closer to red represent the important feature areas containing the
targets such as people and safety helmets, which are assigned higher attention weights to
help the model obtain more effective feature information.

_____________________

_____

Segmentation

__SP-AttentionModule ./

.. s

Figure 3. The structure of SP Attention module. The different colored blocks on the cubes represent
parameters at different positions in a certain feature channel.

The SP Attention Mechanism first segments the input feature map into several feature
maps with different spatial locations and then assigns different weights to each feature
map to filter out important target features in different spatial positions. Taking Figure 3
as an example, the SP attention module takes an input image of size C x H x W. The
hyperparameters in the figure are set as follows: W =3, H=3,C=3,K=3,r=2,and G =1.
Here, K represents the size of the sliding window used to segment the feature map, r is the
compression factor of the input feature map channel, and G is the number of groups to
which the input feature map is sliced in the channel dimension. The mechanism performs
the same attention operation on each group. The specific implementation steps of the
attention mechanism are as follows:

(1) Segmentation: The input tensor is passed through the bottom branch. In the bottom
branch, the input tensor is segmented into K? feature maps using a sliding window of
size K x K. Each feature map hasasizeof C x H x W.

(2) Squeeze, Expand, and Excitation: The input tensor is passed through the top branch.
In the top branch, the channel number of the input tensor first is compressed to 1/r
through a 1 x 1 convolution and then expanded to K. Finally, the attention filter is
generated through the excitation operation.

(3) Product: The output of the top branch (the attention filter) and the bottom branch
(the segmented feature maps) is multiplied element-wise using a product operation.
As shown in Figure 4, the product operation between the attention filter and the
segmented feature maps can be equivalently expressed as follows: Firstly, the attention
filter is sequentially unfolded along the channel dimension and the segmented feature
maps are divided into C groups according to the channel order. Then, the attention
filter is multiplied with each group of the segmented feature maps element-wise, that
is, the elements at the same position are multiplied. Finally, the weighted feature
maps are output. The product operation realizes the filtering of the attention filter on
the feature maps representing different regions.

(4)  Add: The resulting feature maps of size K> x C x H x W generated by the product
operation are added for normalization, and finally added to the input feature map to
obtain the output feature map with the same shape as the input.
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Figure 4. Diagram of the product operation.

The computation and parameter volume of this attention mechanism are constrained
by hyperparameters, and the size of the model can be adjusted according to actual needs.
The Parameter and FLOPs (Floating Point of Operations) of the mechanism are shown in
Equations (1) and (2), respectively, and the scale of both primarily depends on hyperpa-
rameters 7, G, and K. In network design, we can effectively change the size of the attention
module by adjusting r, G, K, and the insertion position of the attention module, thus better
balancing the contradiction between accuracy improvement and computational burden.
This attention mechanism can achieve comprehensive and effective extraction of local
image features while balancing accuracy, parameter volume, and computation. Therefore,
compared with most other attention mechanisms, it is more suitable for lightweight object
detection models.

2 2
Parameter sp agention= (1 X 1 x Cx %) +(1x1x %XGKZ) :ﬂ (1)
where C represents the number of channels in the input tensor, K represents the size of the
sliding window used in the segmentation operation, r represents the compression ratio
factor of the input feature map channels, and G represents the number of groups.

FLOPS sp_attention
= 1><1><C><H><W><%)+(1><1><%><H><W><GK2>+(G><K2><H><W><C>+I3 2)

C2+CGK:+rCGK2) HW+ 8

where H and W represent the height and width of the input tensor, respectively, while 8
represents the computational cost of addition and other operations.

3.3. Lightweight Neck Network

In object detection tasks, feature fusion networks are widely used to improve the per-
formance of object detection models. It is usually used as the Neck part of the model to fuse
feature maps from different layers in the Backbone to obtain rich semantic and localization
information. The Path Aggregation Network (PANet) [24] is a widely used feature fusion
network in general-purpose object detection algorithms, which utilizes both top-down
and bottom-up aggregation paths to fully fuse shallow high-resolution features and deep
low-resolution features for more accurate object detection [25]. However, existing PANet
feature fusion networks do not consider the model lightweight, and the computational and
parameter costs need to be reduced and optimized. In this paper, we propose a lightweight
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Neck network based on the PANet framework. For the network, we incorporate SP Atten-
tion modules and make them more lightweight by replacing the complex CSP module and
conventional convolutions with Depthwise Separable Convolution. We also optimize the
channel configuration in each layer and employ lighter-weight operators in the aggregation
path. In contrast to the feature fusion networks commonly used in general-purpose object
detection algorithms, this Neck network strikes a better balance between accuracy, speed,
and complexity.

As shown in Figure 5, when a detection network is input with an image of resolution
640 x 640, the image will gradually decrease in resolution and become more abstract
and semantically rich as it passes through the deeper layers of the Backbone network,
while the localization information in the feature maps will gradually become blurry. The
proposed Neck network in this paper introduces feature maps from different layers for
information fusion, enabling the acquisition of more accurate and rich image features and
target information.

(6)

20x2 \ =) 2021 ® hox20”
0x%20 Layer-18 d Layer-31
>
0% 40x4y ® 140x407
Layer-28
Layer-23 (2) ——————— @)
pr— 4
\ sowo/" Attention Jig (3)7/ sowo/
Layer-26 L
f DSConv (1)  CBS=Conv+BN +SiLU
(@ DSConv +CBS
| Upsample (3)-(6) DSConv
@®-@ Concat
®-@® Add
640x640 N\
Backbone Neck

Figure 5. The structure of the lightweight Neck network. The red text indicates the layer number of
the module within the entire model.

When constructing the Neck network, we first inserted SP attention modules at a
connection between the Backbone and Neck (at the 18th layer), as well as within the
Neck network (at the 26th layer), to enhance the model’s ability to extract features from
deep low-resolution features and shallow high-resolution features with relatively low
computational cost. Next, we pruned the channel numbers in the Neck network’s layers,
while maintaining equal input and output channel numbers for the convolution modules
at the 23rd, 28th, and 31st layers. This was performed to minimize the memory access cost
of the network.

Finally, we lightened the Neck network by replacing the complex CSP module and
the conventional convolution used as the upsampling operator with Depthwise Separa-
ble Convolution (DSConv). The specific structure of the DSConv used in this paper is
shown in Figure 6, which consists of a Depthwise Convolution (DWConv) and a Pointwise
Convolution (PWConv) [26]. Additionally, the Batch Normalization (BN) layer and Hard-
Swish (H-Swish) activation function are connected after both convolutions to accelerate
model training convergence and improve the model’s expression ability [27]. In DWConv,
each convolution filter only convolves with one channel of the input tensor, while in a
conventional convolution, the filter needs to convolve with every channel of the input
tensor. Therefore, compared with conventional convolution, DWConv significantly reduces
computation and parameter costs. However, since DWConv independently convolves
each channel of the input tensor, it cannot effectively extract the relationship information
among different input channels. Therefore, after DWConv, PWConv is required to facilitate
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inter-channel feature communication and compensate for the feature richness sacrificed by
DWConv due to its lightweight design.

Depthwise Convolution Pointwise Convolution
=
‘ s

: e J
a =N 4%) ——~— }
m— i , U

BN + H-Swis t—\><\ 5// pu

BN + H-Swish ey : mEmf

.. Input Tensor Filters 7" BN + H-Swish

Figure 6. The structure of Depthwise Separable Convolution. The orange cuboids represent the
output of this convolutional module.

In addition, we replaced the original Concat operation with the Add operation, which
has smaller FLOPs and Parameter. The calculation processes for these two operations are
shown in Equations (3) and (4), respectively. A comparison shows that, for the same size
of input tensor, the Add operation does not increase the number of channels in the input
tensor, and therefore, the number of convolutional kernels in the subsequent layers is only
half that of the Concat operation. Consequently, the corresponding FLOPs and Parameter
are also only half of that of the Concat operation.

C c
Calculationgopcat = 2 X;* K; + Z Yix Kiyc 3)
i=1 i=1

where X; and Y; are input feature maps from different branches, ¢ is the number of channels
in the input feature map, * is the convolution operation, and K; is the number of convolution
kernels in the subsequent convolution layer.

C C C
Calculationggg = Z(XZ-+YZ~) * K; = Z Xix K; + Z Y;* K; 4)
i=1 i=1 i=1

4. Experimental Results
4.1. Experimental Setting

The experimental environment for this paper is Windows 10, 2.10 GHz Intel Xeon
Silver 4110 CPU, NVIDIA GeForce RTX 2080 Ti GPU, Python 3.8.15, CUDA 11.3.1, cuDNN
8.2.1, and torch 1.13.0. We adopt transfer learning to train the model by loading pre-trained
weights before training. The optimizer of the neural network model is SGD, with a learning
rate of 0.01. The input size of the images is 640 x 640, and the batch size is 32. A total of
300 epochs of iterative training was conducted.

4.2. Experimental Data
4.2.1. VOC Dataset

The PASCAL VOC (Visual Object Classes) dataset is a classic benchmark dataset for
object detection and semantic segmentation, which has been widely used for evaluating
object detection algorithms. Therefore, we evaluated the general performance of our
proposed algorithm on this dataset. The VOC dataset consists of seven versions from
2005 to 2012, and we used the commonly used 2007 and 2012 versions of the PASCAL VOC
training and validation sets for model training. After model training, we performed a
final evaluation on the test set of PASCAL VOC 2007. The VOC dataset used in this paper
contains target information for 20 categories such as a car, dining table, and bus. The dataset
includes a total of 21,503 images, consisting of 17,202 training images, 2150 validation
images, and 2151 testing images. A sample of the dataset is shown in Figure 7.
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Figure 7. PASCAL VOC dataset.

4.2.2. Security Monitor for Power Construction Dataset

As there is currently no publicly available dataset suitable for detecting violations of
power grid workers, we require the construction of a dataset for training the model. In the
process of constructing the dataset, we conducted a great deal of work, including image
acquisition, image cleaning and annotation, and image normalization. We first collected
6550 pictures of power grid work sites from a certain power company, which were divided
into two categories. The first category is high-resolution pictures taken by on-site inspection
personnel with cameras, consisting of 5250 images with a resolution of 5184 x 3888 pixels,
usually taken from horizontal or oblique angles relative to the target object. The second
category is single-frame images captured from the power grid monitoring video, consisting
of 1300 images with relatively small resolutions of 1280 x 720 pixels or 1920 x 1080 pixels,
usually taken from an overhead angle relative to the target object. Afterward, we cleaned
and annotated the collected images to obtain the Security Monitor for Power Construction
dataset suitable for this study, which contains 1499 images and 7 categories, including
Hat, Human, No-neckline, No-cuff, Safety belt, Seine, and Fence. A sample of the dataset
is shown in Figure 8. The algorithm trained on the SMPC dataset is designed to detect
violations in the attire and behaviors of workers. Specifically, it can detect whether a
safety helmet is properly worn, whether the safety clothing is correctly worn (e.g., cuff and
neckline), and determine if a worker has violated restricted areas by detecting their relative
position to the Seine and Fence.

Figure 8. SMPC dataset.

In order to enhance the robustness and generalization of the trained algorithm and im-
prove its performance in the presence of noise, environmental changes, and other abnormal
circumstances, while avoiding overfitting during training, we employed data augmentation
methods on the SMPC dataset. We applied various data augmentation operations such as
Blurring, Salt-and-pepper noise addition, Brightening, Darkening, Equalization, Rotation,
Flipping, Gaussian noise addition, and Translation, as illustrated in Figure 9. Through
these data augmentation operations, we can simulate various abnormal conditions that
may occur in real-world scenarios, including changes in brightness, viewpoint, and noise
interference. Additionally, these approaches greatly increase the number of samples in
the SMPC dataset, allowing the model to learn a more diverse range of real-world sce-
nario information during training, and making the detection system deployed with this
algorithm can operate continuously and efficiently. After data augmentation, the final
dataset contained 10,693 images, including 7802 training images, 873 validation images,
and 2018 testing images.
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Figure 9. Data Augmentation methods for SMPC dataset.

4.3. Evaluation Indicators
4.3.1. Evaluation Metrics for Accuracy

The evaluation metrics for accuracy adopted in this paper include Precision, Recall,
and mean Average Precision (mAP). Precision refers to the ratio of the number of correctly
detected positive samples to the total number of detected positive samples by the model.
Its calculation formula is shown in Equation (5).

TP

Precision = TP+ FP

®)
where TP denotes the number of true positives detected as positive and FP represents the
number of true negatives detected as positive.

Recall is the proportion of true positives that were correctly detected by the model. In
other words, Recall measures the model'’s ability to correctly identify positive instances. Its
formula is shown in Equation (6).

TP

Recall = m

©
where FN represents the number of true positives that are incorrectly classified as negatives.

mAP is the average of the Average Precision (AP) for all categories. AP is the average
Precision calculated at different Recall. Therefore, mAP is the average performance of the
detection algorithm on different categories, as shown in Equation (7). mAP@0.5 is the mAP
calculated at an IoU of 0.5, while mAP@0.5:0.95 refers to dividing the IoU threshold into
11 thresholds with an interval of 0.05 from 0.5 to 0.95, respectively, calculating the mAP at
each threshold and averaging these mAP values.

Zszl Api

mAP = X

@)
where K is the number of all categories and AP; represents the Average Precision of the i-th
category.

4.3.2. Evaluation Metrics for Lightweight

FLOPs (Floating Point of Operations) and Parameter are the two most commonly used
evaluation metrics for model complexity. FLOPs refer to the computational power required
for the network’s forward propagation [28], while Parameter refers to the total number of
parameters involved in the computation of the model. If the detection algorithm includes L
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convolution layers, the FLOPs of the algorithm can be calculated according to Equation (8) [29].

2
L L (K HLw!.cl .
FLOPs ~ ) FLOPs'=2x )~ ) in " “out

®)
1=1 1=1 (Sl>2

where K' represents the convolution kernel size of the I-th convolutional layer, while H' and
W/ represent the height and width of the input tensor, respectively. Ciln and C. , represent
the number of input and output channels of the /-th convolutional layer, respectively, while
S represents the convolution stride.

To measure the total number of learnable parameters in a detection model, we use
Parameter as the evaluation metric. If the detection model contains L convolutional layers,
its total number of parameters can be calculated using Equation (9).

L L ! 2
Parameter = Y ' Parameter | ~ Z (K ) oCiln-Cf)ut )
=1 I=1

In addition, we introduce FPS [30] as a metric to evaluate the actual performance of
the model, which represents the number of images that the model can detect per second.
Its formula is as Equation (10):

T,
FPS — _-total (10)
Niamges
where Ty, represents the total inference time of the model and Nimages represents the
number of images that the model processes during inference.

4.4. SP Attention Module Experimental Analysis

To evaluate the impact of the proposed SP attention module on the SP-YOLO-Lite
detection model, we first conducted experiments under four different conditions: “without
inserting the SP attention module”, “inserting an SP attention module at the 18th layer”,
“inserting an SP attention module at the 26th layer”, and “inserting two SP attention
modules”. “Inserting two SP attention modules” refers to simultaneously inserting an
SP attention module into the 18th and 26th layers of the network. We conducted these
comparative experiments to verify the superiority of the attention module insertion method
used in the proposed SP-YOLO-Lite.

The experimental results are shown in Tables 2 and 3. The results demonstrate that
“inserting two SP attention modules” can achieve better detection accuracy compared with
other insertion methods for both datasets, albeit with a slight increase in computation and
parameter costs as well as a small decrease in FPS.

Table 2. The results of experiments on the VOC dataset with different attention module insertion
methods and various attention modules. “Without attention” indicates that no attention module is
inserted into the model, “18” and “26” represent the insertion positions of the attention modules at
the 18th and 26th layers of the network, respectively.

Model mAP mAP FLOPs Paraments FPS

@0.5(%) @0.5:0.95(%) (x 10%) (Byte x 10°) (t/n)

SP-YOLO-lite (without 77.1 521 48 232 465
attention)

+SP Attention (18) 78.2 54.1 49 2.39 47.4

+SP Attention (26) 78.1 54.1 5.0 233 47.8

+SP Attention (18,26) 78.4 54.3 5.0 2.40 435

+SE Attention (18,26) 75.1 48.4 48 236 452

+ECA Attention (18,26) 75.1 48.6 4.8 2.32 41.0

+CBAM Attention (18,26) 75.0 48.4 49 2.36 37.2
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Table 3. The results of experiments on the SMPC dataset with different attention module insertion
methods and various attention modules.

Model mAP mAP FLOPs Paraments FPS

@0.5(%) @0.5:0.95(%) (x10°) (Byte x 10°) (t/n)

SP-YOLO-lite (without 825 55.2 47 230 403
attention)

+SP Attention (18) 83.3 55.2 48 237 36.5

+SP Attention (26) 83.6 55.1 49 2.32 30.8

+SP Attention (18,26) 84.8 57.6 5.0 2.39 39.4

+SE Attention (18,26) 82.8 55.3 438 234 37.6

+ECA Attention (18,26) 83.3 56.3 47 2.30 37.3

+CBAM Attention (18,26) 82.8 54.6 48 234 39.8

For the VOC dataset, compared to “without inserting the SP attention module”, the
mAP@0.5 and mAP@0.5:0.95 of the model using “inserting two SP attention modules”
increased by 1.3% and 2.2%, respectively. Compared to “Inserting an SP attention module
at the 18th layer”, the mAP@0.5 and mAP@0.5:0.95 of the model increased by 0.2% and
0.2%, respectively, while compared to “Inserting an SP attention module at the 26th layer”,
the mAP@0.5 and mAP@0.5:0.95 of the model increased by 0.3% and 0.2%. Similarly, for the
SMPC dataset, using “inserting two modules” increased the mAP@0.5 and mAP@0.5:0.95
by 2.3% and 2.4%, respectively, compared to “without inserting the module”. Compared to
“Inserting one module at the 18th layer”, it increased the mAP@0.5 and mAP@0.5:0.95 by
1.5% and 2.4%, respectively, while compared to “Inserting one module at the 26th layer”,
the increase was 1.2% and 2.5%.

Moreover, we compared the performance of the proposed SP attention module with
three mainstream attention modules, namely SE [18], ECA [20], and CBAM [19]. These
three modules were inserted into the model’s 18th and 26th layers in the same way as the
SP-YOLO-Lite. The experimental results are shown in Tables 2 and 3. The results showed
that the SP attention module can effectively improve the detection performance of the
model compared to other attention modules in both datasets. For the VOC dataset, the
model with SP modules inserted achieved mAP@0.5 and mAP@0.5:0.95 that exceeded those
of the SE, ECA, and CBAM modules by 3.3%, 3.3%, 3.4%, and 5.9%, 5.7%, 5.9%, respectively.
For the SMPC dataset, its mAP@0.5 and mAP@0.5:0.95 exceeded those of the SE, ECA, and
CBAM modules by 2.0%, 1.5%, and 2.0%, and 2.3%, 1.3%, and 3.0%, respectively.

In addition, we use Grad-CAM (Gradient-weighted Class Activation Map) [31] to
visualize the training weights of detection models with four types of attention modules:
SE, ECA, CBAM, and SP (ours), in order to demonstrate the superiority of the SP attention
module by comparison. The visualization results are shown in Figure 10, where the reddish
areas indicate the regions that the attention mechanism pays more attention to, while the
bluish areas receive less attention. The experimental results show that the SP attention
mechanism can focus more on the target area compared to other attention mechanisms,
thus enabling the detection model to extract more effective feature information.

4.5. Ablation Experiments

To validate the superiority of the lightweight Backbone and Neck networks proposed
in this paper, we replaced the Backbone and Neck networks of YOLOv5s with the proposed
Lite-Backbone and Lite-Neck networks, respectively, and conducted ablation experiments
on the VOC and SMPC datasets. The experimental results are shown in Tables 4 and 5.
Compared with the original YOLOvV5s, the YOLO model using Lite-Backbone significantly
reduced FLOPs and Parameters by approximately 40% and 30%, respectively, on both
datasets, while maintaining comparable accuracy. The model using Lite-Neck sacrificed
some accuracy for significant reductions in FLOPs and Parameters by approximately 30%
and 40%, respectively, on both datasets. Moreover, when applying both Lite-Backbone and
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Lite-Neck, FLOPs and Parameters of the model were greatly reduced by approximately
70%, with a small decrease in accuracy of approximately 3% on both datasets.

Original

CBAM ECA

Figure 10. Grad-Cam Heat map comparison of various attention mechanisms.

Table 4. Ablation experiments of SP-YOLO-Lite on the VOC dataset.

Model mAP mAP FLOPs Paraments FPS

ode @0.5(%) @0.5:0.95(%) (x10%) (Byte x 10°) (t/n)

YOLO V5s 81.5 59.6 15.9 7.06 49.3

+Lite-Backbone 79.3 57.0 9.5 5.03 37.5

+Lite-Neck 75.5 50.0 115 445 43.7

+Lite-Backbone + Lite-Neck 78.4 54.3 5.0 2.40 435
Table 5. Ablation experiments of SP-YOLO-Lite on the SMPC dataset.

Model mAP mAP FLOPs Paraments FPS

@0.5(%) @0.5:0.95(%) (x10°) (Byte x 10°) (t/n)

YOLO V5s 87.6 65.9 15.8 7.03 441

+Lite-Backbone 86.3 62.4 9.5 4.99 50.0

+Lite-Neck 77.3 45.3 114 443 38.9

+Lite-Backbone + Lite-Neck 84.8 57.6 5.0 2.39 394

4.6. Comparison Experiments

To further validate the superiority of the proposed SP-YOLO-Lite model, we conducted
performance comparison experiments on the VOC and SMPC datasets with other YOLOv5
series models, including YOLOv5n, YOLOv5s, YOLOv5m, YOLOvV5], and YOLOv5X, as
well as YOLOv5-Litee, YOLOv5-Lites, YOLOv5-Lite., and YOLOv5-Liteg from YOLOv5-
Lite [16] series. As shown in Tables 6 and 7, the experimental results demonstrate that the
SP-YOLO-Lite model better balances the relationship between detection accuracy, model
size, computational complexity, and detection speed (FPS) compared to other models. With
smaller parameters and computational complexity, the SP-YOLO-Lite model achieves high
detection accuracy and speed on both datasets.
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Table 6. Comparison experiments of different target detection algorithms on the VOC dataset. “Size”
refers to the storage space occupied by a model, which is the number of weight parameters in the

model.

Model mAP@0.5 mAP Size FLOPs Paraments FPS
(%) @0.5:0.95(%) (MB) (x 10%) (Byte x 10°) (t/n)
YOLOV5-Lite, 69.4 429 1.8 2.7 0.73 41.2
YOLOV5-Liteg 74.9 49.6 3.3 3.8 1.57 32.6
YOLOvV5n 75.7 51.7 3.9 4.2 1.79 339
SP-YOLOvS-Lite 78.4 54.3 5.1 5.0 2.40 435

(Ours)
YOLOV5-Lite. 79.1 56.3 9.1 8.9 443 48.5
YOLOv5s 81.5 59.6 13.8 15.9 7.06 49.3
YOLOv5-Liteg 81.7 60.9 11.3 15.9 5.51 455
YOLOv5m 84.4 65.7 40.3 48.1 20.93 47.6
YOLOv5I 86.6 68.8 88.7 108.0 46.21 26.2
YOLOvV5x 87.5 70.5 165.3 204.2 86.30 21.6

Table 7. Comparison experiments of different target detection algorithms on the SMPC dataset.

Model mAP@0.5 mAP Size FLOPs Paraments FPS
(%) @0.5:0.95(%) (MB) (x 10%) (Byte x 10°) (t/n)
YOLOvV5-Lite, 82.0 50.5 1.8 2.7 0.72 45.0
YOLOV5-Liteg 82.1 56.1 3.5 3.7 1.55 42.6
YOLOV5n 83.1 56.5 3.9 4.2 1.77 47.2
SP-YOLOvS-Lite 84.8 57.6 49 5.0 2.39 39.4

(Ours)
YOLOV5-Lite. 87.3 65.2 9.2 8.7 4.39 36.6
YOLOv5s 87.6 65.9 144 15.8 7.03 441
YOLOv5-Liteg 87.5 66.7 114 15.8 5.48 33.6
YOLOv5m 87.7 70.3 42.2 479 20.88 28.4
YOLOv5I 88.0 73.3 92.9 107.7 46.14 23.8
YOLOvV5x 88.1 73.9 173.1 203.9 86.21 19.6

As shown in Table 6, compared to the YOLOv5-Litee, YOLOv5-Lites, and YOLOv5n
with similar sizes, the SP-YOLO-Lite model achieved an improvement of 9%, 3.5%, 2.7%
in mAP@0.5 and 11.4%, 4.7%, 2.6% in mAP@0.5:0.95, respectively, on the VOC dataset,
and an improvement of 2.3, 10.9, and 9.6 in detection speed, respectively. Compared to
larger models such as YOLOvb5-Lite., YOLOv5s, YOLOv5-Liteg, YOLOv5m, YOLOVS5I, and
YOLOV5x, the SP-YOLO-Lite model achieved high accuracy and detection speed while
significantly reducing FLOPs and Parameters, by 42.5-97.6% and 45.6-97.2%, respectively.

Similarly, as shown in Table 7, compared to YOLOv5-Lite,, YOLOvV5-Lites, and
YOLOv5n with similar sizes, the model achieved an improvement of 2.8%, 2.7%, and
1.7% in mAP@0.5 and 7.1%, 1.5%, and 1.1% in mAP@0.5:0.95, respectively, on the SMPC
dataset. Compared to YOLOv5-Lite., YOLOv5s, YOLOvV5-Liteg, YOLOv5m, YOLOVS5I,
and YOLOvV5x, the model significantly reduced FLOPs and Parameters, by 42.5-97.5% and
45.6-97.2%, respectively.

4.7. Visualization Results

Figure 11 shows the recognition results of SP-YOLO-Lite on four randomly selected
images in the SMPC dataset. Figure 11b not only includes detection boxes for different
targets but also contains information on the category and confidence of each detection box,
where confidence indicates the predicted probability that the target belongs to that category.
By comparing Figure 11a with Figure 11b, it can be observed that SP-YOLO-Lite accurately
identifies targets such as a hat, human, and safety belt without missing any detection or
causing false alarms. Moreover, SP-YOLO-Lite can accurately recognize small targets such
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as a safety belt with partial occlusion and has high confidence, which further demonstrates
the superiority of the SP-YOLO-Lite algorithm.

H
HN

Figure 11. Visualization Results. (a) Original picture; (b) Visualization Results of our proposed
SP-YOLO-Lite algorithm.

4.8. Robustness Study

To evaluate the performance of the proposed algorithm under various conditions and
potential challenges, we visualized the recognition results of SP-YOLO-Lite on a sample
image from the SMPC dataset, both in its original form and after undergoing data augmen-
tation methods such as Blurring and Salt-and-pepper noise addition. The visualization
results are shown in Figure 12. By comparing the algorithm’s recognition results on the
original and augmented images in Figure 12, it is evident that SP-YOLO-Lite can accurately
detect objects in images processed with different data augmentation operations, without
any missed detections or false positives. This demonstrates the algorithm’s robustness and
generalization capabilities, as it maintains good detection performance even in the presence
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of noise interference and other abnormal circumstances. Therefore, the deployment of
this algorithm in a detection system ensures it can easily handle most detection scenarios,
without requiring frequent maintenance, while operating continuously and efficiently.

® A
-pepper
noise addition

Gaussian
noise addition

MLNM T b
Flipping

Translation

Figure 12. The visualization results of images processed using various data augmentation methods.

4.9. Algorithm Deployment

To evaluate the practical application performance of the proposed SP-YOLO-Lite
algorithm, it was deployed on the NVIDIA Jetson AGX Orin embedded platform in this
paper. The NVIDIA Jetson AGX Orin is an embedded Al computing device known for its
low power consumption and compact size. The hardware configuration information of the
platform is presented in Table 8.

Table 8. The hardware configuration information of the NVIDIA Jetson AGX Orin embedded

platform.
Name Configuration Information
GPU NVIDIA Ampere Architecture GPU
Maximum GPU Frequency 930 MHz
CPU Octa-core Arm® Cortex®-A78AE 64-bit CPU
Maximum CPU Frequency 2.2GHz
Memory 32 GB
Storage 64 GB
Power 15 W40 W

Due to the limited computational power of embedded platforms, deploying object
detection algorithms on such a platform requires lower power consumption, smaller
models, and faster detection speed. Therefore, in this paper, the SP-YOLO-Lite model
was further optimized using the TensorRT deep learning inference framework specifically
for the deployed NVIDIA platform. In this process, we not only reduced the precision of
the model weights through quantization to improve model inference efficiency but also
exported the model in a specific format for efficient execution on the targeted platform.

TensorRT is a deep learning inference engine developed by NVIDIA for high-performance
inference. Models exported with TensorRT can be applied to NVIDIA Jetson series embed-
ded platforms such as Jetson Nano and Jetson Xavier NX. For other embedded platforms,
such as ARM, TPU, and FPGA, we can choose the appropriate inference framework (such
as OpenVINO) that is compatible with the platform to achieve efficient deployment of the
algorithm on different embedded platforms.
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To evaluate the comprehensive performance of the algorithm on the embedded plat-
form, we standardized the input image resolution to 640 x 640 and evaluated the overall
system performance using the SMPC dataset. The specific performance results are shown
in Table 9.

Table 9. The performance comparison of optimized models with different weight quantization

precisions.
Weight Quantization mAP mAP FPS Power Efficiency
Precision @0.5(%) @0.5:0.95(%) (t/n) W) (FPS/W)
FP32 79.80 52.30 55.25 20.112 2.747
FP16 79.70 52.40 60.61 18.992 3.191
INTS8 70.00 40.80 57.14 17.885 3.195

According to Table 9, it can be observed that the optimized models with different
weight quantization precisions can achieve high efficiency on embedded platforms with
power consumption ranging from 17.885 W to 20.112 W, running at a speed of at least
55 FPS, while maintaining a detection accuracy of over 70%. Therefore, the SP-YOLO-Lite
algorithm exhibits lower model complexity and computational resource requirements
compared to general-purpose object detection algorithms, enabling real-time violation
detection on most resource-limited embedded platforms.

5. Conclusions

To achieve low-cost deployment and efficient operation of object detection algorithms
on embedded platforms for safety monitoring systems at construction sites, this paper
proposes a lightweight violation detection algorithm called SP-YOLO-Lite. The algorithm
is built on the YOLOv5s framework and integrates a lightweight Backbone network based
on the LC-Block, a lightweight Neck network based on the DSConv module, and a new
attention module called the Segmentation-and-Product attention module. The lightweight
Backbone network is directly stacked with LC-Block, a lightweight network module based
on Depthwise Separable Convolution. It exhibits low network fragmentation and high
inference efficiency. By replacing the backbone of the YOLOV5 algorithm with the Lite-
Backbone, the algorithm achieves a 30% reduction in Parameters and a 40% reduction in
FLOPs while maintaining similar accuracy. The Segmentation-and-Product attention mech-
anism innovatively incorporates image segmentation operations. It segments the input
image and performs attention operations on each segmented region, thereby capturing
sufficient local spatial feature information and effectively improving the detection accuracy
of the model in violation detection tasks. The lightweight Neck network is based on PANet
and constructed by introducing the DSConv module and SP attention module. We further
optimize the channel configuration of each layer of the Neck network. By replacing the
Neck of the YOLOVS5 algorithm with the Lite-Neck, the algorithm achieves a 40% reduction
in Parameters and a 30% reduction in FLOPs while maintaining similar accuracy. Compara-
tive experimental results show that the proposed SP-YOLO-Lite achieves similar detection
accuracy on the VOC and SMPC datasets compared to the YOLO V5s baseline network
while significantly reducing FLOPs and parameters by approximately 70%, resulting in a
significant decrease in deployment costs.

In the future, we will further optimize the SP-YOLO-Lite algorithm to enhance its
performance and broaden its application scope. Firstly, we will collect relevant images to
further expand the SMPC dataset and include other types of violation behaviors that may
occur in real-world scenarios, thereby increasing the detectable violation types of the SP-
YOLO-Lite algorithm. Secondly, we will further optimize the existing network structure and
parameter configuration of SP-YOLO-Lite to improve its detection accuracy and speed. Finally,
we will explore the use of other inference frameworks such as OpenVINO to optimize the
SP-YOLO-Lite algorithm for compatibility with other types of embedded platforms.
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