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Abstract: Autonomous driving systems have emerged with the promise of preventing accidents.
The first critical aspect of these systems is perception, where the regular practice is the use of top-
view point clouds as the input; however, the existing databases in this area only present scenes
with 3D point clouds and their respective labels. This generates an opportunity, and the objective
of this work is to present a database with scenes directly in the top-view and their labels in the
respective plane, as well as adding a segmentation map for each scene as a label for segmentation
work. The method used during the creation of the proposed database is presented; this covers
how to transform 3D to 2D top-view image point clouds, how the detection labels in the plane are
generated, and how to implement a neural network for the generated segmentation maps of each
scene. Using this method, a database was developed with 7481 scenes, each with its corresponding
top-view image, label file, and segmentation map, where the road segmentation metrics are as
follows: F1, 95.77; AP, 92.54; ACC, 97.53; PRE, 94.34; and REC, 97.25. This article presents the
development of a database for segmentation and detection assignments, highlighting its particular
use for environmental perception works.

Keywords: autonomous driving; driverless vehicle; environment perception; LiDAR; point cloud;
top view; database

1. Introduction

Guided by statistics, autonomous driving systems have emerged with the promise
of preventing accidents, leading to research that is concerned, in the first instance, with
integrating known techniques and methods [1]. Currently, the Society for Automotive
Engineering (SAE) recommends dividing the types of autonomous cars into six levels,
ranging from no automation to complete automation [2]. These levels are best presented by
the US Department of Transportation [3].

The creation of a level-six car involves the fulfillment of multiple tasks. The first
critical aspect is perception, which is responsible for perceiving the surroundings of the
autonomous vehicle to detect each object of interest and the vehicle’s three corresponding
measurements of the center of the object in three-dimensional space, along with its dimen-
sions and the class of object to which it belongs [4]. In pursuit of this critical task, research
has relied on artificial intelligence methods, such as neural networks, to create accurate
models to identify both vehicle movement spaces [5,6] and vehicles and pedestrians on the
streets [7].

A regular practice in these works is the use of a LiDAR sensor as the primary means
of input data acquisition for the neural networks and the basis of the representation of the
results [8–10]. One of the main ways to present results in these investigations is to obtain
a segmentation map of the analyzed scene, seeking to classify each pixel or scene datum
within the classes of interest. This results in works where neural networks are proposed
that aim to improve the metrics of the segmentation results [11–13].
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The use of LiDAR sensors continues torelate to autonomous vehicles today, and
researchers seek to fuse the data acquired via LiDAR with other sensors to enhance the
capacity of the information obtained from each sensor and thus generate better performance
in the task to be covered during autonomous driving [14–16].

In investigations both with point clouds and with segmentation works, the top-view
stands out as a way of analyzing the shapes and measurements from an aerial view of the
scene, facilitating the analysis by placing the three-dimensional information of the space in
a 2D plane, taking the two most relevant dimensions for autonomous driving to form the
plane in which the vehicles move [17–19].

As a method of promoting research in the field of autonomous driving, the KITTI
Vision Benchmark Suite database emerged [20]. This synchronized the acquisition of scenes
around mid-size cities, rural areas, and highways with cameras with a LiDAR scanner
and a location system to generate information such as benchmarks for the stereo camera,
optimal flow, visual odometry/SLAM, and 3D-object detection [21].

In the state-of-the-art databases for autonomous driving that have scenes generated
from point clouds [22–25], the data therein are three-dimensional. Therefore, the detection
labels have three location values. However, the absence of a top-view segmentation map of
each scene is an issue, since segmentation maps are necessary for segmentation work with
neural networks, such as ground-truth training.

To summarize, in this paper, we propose a database with 7481 urban scenes, each
represented in three types of formats: point-cloud top-view images, two-dimensional labels
of the objects of interest (cars, vans, and trucks), and 2D top-view segmentation maps. The
main contributions are as follows:

• A step-by-step explanation of the method used during database production, divided
into eight sections, with an emphasis on ways of reproducing the process of database
creation in order to allow for the possibility of taking different considerations into
account when creating any of the three types of formats, such as considering different
types of classes or different methods of creating ground-truth segmentation maps.

• The creation of a database that includes 7481 top-view segmentation map files of urban
scenes, segmenting the road, background, cars, vans, and pickups. These types of files
do not exist in other databases, as far as we are aware, and are necessary for environ-
mental perception in autonomous vehicles. In addition, the method of their creation
is included, highlighting that the database only has biases during path segmentation
because the objects of interest are found through certain mathematical manipulations.

• The results of road segmentation metrics F1-95.77, AP-92.54, ACC-97.53, PRE-94.34,
and REC-97.25 are superior to the state-of-the-art.

2. Related Work
2.1. Semantic Segmentation Top-View Works Related to Autonomous Vehicles

Currently, there are works where segmentation analysis is used from top-view scenes
as the primary convention of research, which leads to positive results for autonomous
vehicle management. Examples of the above can be found in [22], in which a comparison is
made between a U-Net and a fully convolutional network (FCN) for the road segmentation
task in 2D images of aerial views, where the metrics of each neural network with different
image sizes stand out. In the same way, the efficient neural network (ENet) can be used
to infer the position and properties of the lines of a highway by segmenting roads in 2D
images of aerial maps and generating a grid map that identifies the lateral and central lines
of the road, seeking to support autonomous vehicle management with the generation of
this information [23]. Another example of this is found in [24], where researchers used
3D scenes acquired with radar to generate 2D top-view maps that they used as input
for the fully convolutional neural network, SegNet, and U-Net networks, in an effort to
segment the streets, cars, edges, and fences as the output of the network in the 2D top-view
plan form.
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2.2. LiDAR Semantic Segmentation Top-View Works Related to Autonomous Vehicles

Point cloud scenes from LiDAR sensors are commonly used in conjunction with
top-view segmentation maps. In [25], the authors propose, with excellent results in road
segmentation, a fully convolutional network that is taken as a basis from which to form three
different models that merge the two input scenes differently in each case: one is captured
with a LiDAR sensor and the other with an RGB camera. As another example, a new
convolutional neural network structure has been designed that outputs a top-view image
that segments vehicles and the road from a cloud with a low density of 3D points, taking
as input three frontal scenes transformed from the 3D view of a LiDAR [26]. As a further
example, in [27], an algorithm is generated that uses some of the segmentation networks
proposed and tested to obtain segmented 2D images with the detection of different classes
using a simple 2D image of a view of the 3D scene taken with a LiDAR. However, the
most crucial previous research in respect of this type of work is the article [28], where the
LoDNN neural network is proposed, which is used as a guide for road segmentation from
RGB top-view cloud point images. Each point cloud is captured with the LiDAR sensor and
transformed into an RGB image by manipulating each captured point’s three-dimensional
coordinates (X, Y, Z) and intensity.

In recent research [29–31], branches composed of several neural network layers have
been proposed and used as a feature extraction block in an artificial intelligence model,
demonstrating promising results in the proposed task according to the presented metrics,
which outperform previous methods. Such branches can be used in future work to improve
the performance of networks such as LoDNN.

2.3. Databases for Autonomous Vehicle Research

There have been several proposals for databases to be created to be used in au-
tonomous driving. In [32], a database was created with synchronized scenes from a
LiDAR with 360◦ and stereo cameras around two cities and under various conditions,
providing ground-truth tracking and annotation of 3D objects. This database provides a
good reference point for automatic mapping and trajectory detection, such as turning at
intersections, driving with many vehicles nearby, and lane changes. In [33], a database
was created with more than 1000 h of training data for autonomous vehicles on the same
route, generated over five months. This provides high-quality scenes with information on
bounding boxes and their class probability. Similarly, in [34], a database was generated
with the synchronized capture of data from a LiDAR sensor and a camera, with around
12 million 3D LiDAR and 12 million 2D camera manual box annotations with track iden-
tifiers, as well as more than 113 k LiDAR object tracks and 250 k camera image tracks.
Like these examples, there are many more databases and sources ofinformation related to
autonomous vehicles [35].

2.4. Databases for Autonomous Vehicles with Segmented Scenes

Returning to the databases previously proposed, we identified various studies with
respect to segmentation scenes. In [36], a large-scale multimodal database was proposed for
autonomous vehicles (AVs) with 360◦ vision from vision and range sensors such as cameras,
lidar, radars, and IMUs. It has 1000 scenes, taken every 20 s, which collect information
on various circumstances along its path, providing new metrics for the 3D detection and
tracking of 23 object classes with eight attributes for each one. Article [37] presents a
database of highly detailed 3D point cloud segmented sequences with 22 identifiable
object classes, with 3D scenes based on the line of a moving car. The database in [38]
comprises street scenes that present a high degree of segmentation difficulty, with examples
of 2D images with their respective segmented 2D maps with up to 25 different classes. In
addition, there are point cloud files with separate segmented 3D maps and video frames
with instance-level annotations.
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2.5. Research in Respect of KITTI Vision Benchmark Dataset

As suggested by the publication and release of the KITTI database, studies on au-
tonomous management that use KITTI have not stopped emerging [20]. One example of
this is article [39], in which three models are proposed that use as input the combination of
an RGB image of a street scene, with its respective 3D scene generated with a point cloud for
two models and the 3D scene converted into a top-view image for the third model. The au-
thors of that study developed 3D detection of the bounding box of the searched objects and
classes. The authors of [40] used Yolov3 and the Darknet-53 convolutional neural network
to detect cars, trucks, pedestrians, and cyclists on the road using the KITTI database. In [41],
the authors designed an algorithm that includes a neural network based on a YOLOv4
network, capable of segmenting objects in a different color and finding a 2D region of
interest (ROI). This, in turn, facilitates the detection of objects in 2D camera images.

3. Materials and Methods

In this section, the necessary steps are presented to generate the proposed database
(Figure 1), which has three parts: 2D top-view image scenes, segmentation map scenes, and
the required labels to create each object’s bounding box within each scene.
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Figure 1. General diagram of the method proposed for the generation of the database.

3.1. Generation of the Top-View from the Velodyne Point Cloud Data

The objective of this section is to take the point cloud binary files of each scene from
the original database and transform them into the final 2D top-view images (Figure 2) as
the first part of the database.
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Figure 2. Example of a point cloud scene with the section to be generated as an approximate top-view
highlighted on the left and its respective final top-view scene, where each pixel corresponds to 0.1 m,
highlighting the ranges in which the points are considered.

First, it is necessary to understand how the binary files for each scene are structured.
As can be seen in Figure 3, each file contains the information of multiple points that make
up the so-called three-dimensional point cloud of the scene, 360◦ around the vehicle that
collects the information (test vehicle, TV). For each one of the points, information is obtained
on the position of the point in three dimensions (X, Y, Z) concerning the coordinates of the
center of the TV (0, 0, 0) and the intensity of light reflected by that point (i).
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Figure 3. Sample of a scene that can be created from a point cloud binary file, with an approach to a
section of points, highlighting the available information for each.

It is necessary to mention that all the binary files used were obtained from a Velodyne
LiDAR sensor; however, this method is compatible with any other brand of LiDAR sensor
as long as it is possible to obtain the X, Y, Z, i values of each of the points that make up
a scene.

Once the above is understood, the next stage is to determine how a top-view image
is generated, 200 × 400 pixels in this case, from the point cloud. Firstly, it is necessary
to mention that only the front section of each point cloud scene will be considered, as it
is the section of interest for a vehicle moving forward. Then, it must be noted that the
LiDAR sensor with which the information is captured will have specific ranges, as shown
in Figure 1, in each dimension. In addition, it must be taken into account that the values of
the coordinates of each point are provided in meters, and it is proposed to convert each
value from meters to pixels, considering that a pixel is equivalent to 0.1 m. In this way,
all that remains is to find the value that each pixel will have in the top-view image, for
which we need to assign to each point within the range in the point cloud its value in RGB
and its position within the image (pixel number), as shown in Figure 3. To find the point’s
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position, it is necessary to take its X and Y values, convert them to their respective values
in pixels and round those values to the nearest whole number, and finally normalize them
between 0 and 399 in the case of the X coordinate and 0 and 199 for the Y coordinate. If
several points touch the same position, the one with the highest value in its Z coordinate
must be considered. Then, in the case of the RGB value that corresponds to each point, its
data (X, Y, Z, and i) are deemed to assign in R the value of the distance from the origin (d),
which is calculated with the Euclidean distance equation shown in Figure 4; in G the value
of Z; and in B the value of i, remembering to convert the values from meters to pixels and
to then normalize between 0 and 255 each data point in R, G, and B (d, z, i).
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the scene.

As extra support during the development of this section of the method, the flowchart
to transform the point cloud into a top-view image is presented in Figure 5. In addition, a
couple of images (Figures S1 and S2) with the pseudocode containing the programming
logic suggested for the development of this section are provided in the sup-plementary
material of this article.

3.2. Extraction and Arrangement of the Detection Information from the Training Labels

In this subsection, we seek to take the labels provided by the KITTI database and
select only the information that interests us, as shown in Figure 6. In this case, we seek the
information necessary to locate the two-dimensional center of the objects of interest in the
top image view, such as its bounding box, achieving the representation of Figure 7, and it
is necessary to highlight the fact that in the labels, the origin of the values of the vertical
axis is right in the middle of the image. We seek to generate the label files representing the
database’s second part. In addition, the original database has various classes in the labels,
not all of which may be relevant to the new labels, so we must consider a restriction to only
store information on objects of interest.
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Figure 5. Flowchart to transform a binary point-cloud file into a top-view image.

To achieve the above, it is necessary to locate the exact position number, considering
that points are separated by a space, of each of the variables of interest in the original tag
files. Then, when opening each file, data are extracted and saved as a temporary variable
per file for each of the data of interest per object, locating them according to their position
number and storing the temporary variables in the same format as the original file. That is,
we separate each variable of interest using spaces and each cluster of per-object variables is
separated by a new line. In this way, all that remains is to generate a new file that stores the
temporary variable for each original scene.

In the same way as in the previous subsection, a flowchart is provided in Figure 8
to guide the development of this stage and an image (Figure S3) with the pseudocode is
provided in the supplementary material.
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Figure 8. Flowchart used to generate a new file with the variables of the objects of interest from a file
containing the original labels.

From the following subsection to Section 3.7, the objective is to generate the road
segmentation map in each scene of the generated top-view images.

3.3. Manual Road Segmentation from Top-View Images

Firstly, by analyzing each scene of the generated top-view pictures, 100 images are
selected with the single-lane road marked, another 100 are selected with the multi-lane
road marked, and the last 100 are selected with the road not marked.

In this subsection, we use the selected images to manually segment the road using
the MakeSense online software package [42], as shown in Figure 9. In some cases, we use
the easily observable figure of the road as a guide, and in others, where the road is not so
clear, we find the way by comparing the top-view images with the frontal photos taken
with a camera provided as part of the KITTI database [20]. The segmentation carried out
with MakeSense is performed through multiple points around each figure considered to
be of a particular class; however, it is necessary to take into account that for this specific
case, it is only required to create two classes (background and road). It is only necessary to
segment the road precisely, while in the case of the background, we only generate a box
somewhere outside the section considered a road; this will serve to develop the segmented
map of each scene as the ground truth.

It is recommended that the result of the segmentation with the proposed software
beobtained as a file in COCO format to generate the segmentation maps later, as shown in
Figure 10. This is an image with the exact dimensions of the manually segmented image, in
which each pixel is assigned an integer value according to the corresponding class; in this
case, either 0 or 1.
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Figure 10. Example of road segmentation map.

Python [43] is recommended to transform the files in COCO format into segmen-
tation maps using the ‘pycocotools.coco’ library. In the programming, it is essential to
consider that only the pixels detected as roads are assigned a 1. In contrast, all other
pixels are assigned a 0 to enable manual segmentation work, as recommended in the
previous subsection.

3.4. Creation of Training and Validation Data for Road Segmentation

In this section, each segmentation map created in the last subsection and the top-view
images from the first subsection are used to perform data augmentation (see Figure 11),
which allows training a model to create a segmentation map of each of the generated
top-view scenes.
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As the final phase of this subsection, we generate five training databases with different
scene numbers for training and validation, as shown in Figure 14, to generate the databases
for 5-fold validation.
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3.5. Construction of the LoDNN Model

Once the database is generated, it is possible to proceed to the generation of the struc-
ture of an artificial intelligence model, which, once trained, can infer the road segmentation
map of each top-view scene generated in Section 3.1. The suggested design is the LoDNN
model proposed in [28], whose exact implementation structure with hyperparameters is
presented in Figure 15 with Tensor Flow and Keras.
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The structure of the LoDNN model is designed to encode (Encoder) the input top-view
images and reduce the size of what is being analyzed, leaving only the most relevant parts
of the input. Data then enter a feature extractor block (Contextual Module), where the
model learns the most important properties of the input to distinguish between the classes
it has to identify. Finally, the model decodes what it has learned (Decoder) and returns
everything to its original size to create a segmented map of the input scene as output.

The hyperparameters were modified with respect to those originally proposed in [28],
in order to obtain the results faster and with better performance. The ablation experiments
that support the final values selected are summarized in Figure 16, which shows the
accuracy achieved in different tests with a single type of modified hyperparameter. The
upper-left graph shows variations in the learning rate; the upper-right graph shows changes
in the number of epochs; and the lower graph shows changes in the batch size. The learning
rate graph shows a triangular structure that highlights 1 × 10−× as the best value. The
epoch plot shows an increase up to epoch number 22 but then shows a trend of no major
changes, allowing us to opt for 22 epochs as a recommended minimum. Finally, the batch
size graph shows that there is no great variation between one value or another, and we can
select the highest value for simple visualization purposes during training.
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eters to be used during the training of the LoDNN model.

3.6. Training the Neural Network for Road Segmentation and Adjustments for Optimization

In addition to structuring the model, it is necessary to generate, compile, and finally
train it, as well as define the hyperparameters of each of these instructions. Following the
method in the previous subsection, this procedure is presented in Figure 17. It is necessary
to clarify that the data stored in ‘x’ are the matrices of the top-view images normalized
between 0 and 1, while the data stored in ‘y’ are the arrays of the segmentation maps of
each scene of ‘x’. In the same way, a function is assigned to the callbacks hyperparameter
that allows reducing the learning rate during training if a particular chosen metric does not
present improvements.
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Figure 17. Graphical representation of the commands necessary to generate, prepare, and train the
model and their corresponding hyperparameters. The name ‘Model’ is given to the developed neural
network.

Finally, the model is trained, varying the number of epochs to try to obtain a result
with better metrics. In this study, the model was analyzed through tests with 22 epochs,
and good results were obtained.

3.7. Generation of the Segmented Road Database from Model Predictions

In this section, the trained model from the previous subsection is used to infer the
segmentation map of each of the top-view scenes generated in Section 3.1, as shown in
Figure 18. Each of the matrices of the inferred maps is stored in a new variable, which, in
this case, we will call ‘Scenes with a segmented path’.
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Figure 18. Example of original and inferred segmentation maps using the LoDNN model with the
proposed hyperparameters, where yellow represents the road and purple the background.

3.8. Creation of the Final Database with the Path, Vehicles, and Obstacles Detected, Taking the
Detection Information as a Reference

As a last step, we generate the previous part of the proposed database with segmen-
tation maps that include the objects of interest; in this case, these are background, road,
car, van, and truck. To achieve this, each map of the segmented road scenes is taken, and
the objects of interest present are added according to the scene number. The number is
considered because the labels generated in Section 3.2 will be taken into account, both to
determine the number of objects to add in each scene and to understand the corresponding
location of the bounding box of each object in the scene. We consider that each pixel within
a bounding box will correspond to a specific class, and therefore the value of each of those
pixels within the segmentation map will have to be changed to the value corresponding to
the class of the object. The proposed object numbers are as follows: background, 0; road, 1;
car, 2; van, 3; and truck, 4.

As a method of generating a bounding box, we first propose to generate it without
taking rotation into account in order to identify each of the pixels within the generated
rectangle and to later rotate them by a certain angle indicated in the file of labels in radians.
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In addition, both images in Figure 19 show the mathematical considerations necessary
to determine the position in two-dimensional coordinates of each of the points within
the unrotated bounding box (all points within the four corners of the bounding box) and
to subsequently calculate the variables t and r of each point according to the conversion
formulas between polar and Cartesian coordinates. We finally rotate each of the points,
considering that the angle in the label file is only the angle r and the final angle of each
point is actually f. It is recommended that the values of the vertical axis are changed so that
the origin is at the top, resulting in the values of the centers of each object being based on
the 0,0 coordinate of the upper-left corner of the segmentation map.
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Figure 19. Graphical method for the proposal to generate a bounding box. The image on the
left depicts graphically the result of generating a bounding box of an object to be detected in a
scene without considering its rotation, while the image on the right shows the same bounding box
already rotated.

As in the previous sections, a flowchart is presented in Figure 20 for carrying out
this final stage of the proposed methodological process to support the understanding and
possible duplication of this work. Similarly, five images (Figures S4–S8) with the pseu-
docode containing the suggested programming logic for this stage are provided in the
supplementary material.
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Figure 20. Flowchart of procedure used to generate the final segmented map from predicted road
maps.

4. Results

As the first result of the general method described, road segmentation scenes were
created. These are referred to as LoDNN-I (LiDAR-only deep neural network—improved).
This system allows result metrics such as those in Table 1 and the confusion matrix in
Figure 21 to be obtained.

Table 1. Road segmentation results metrics pertaining to the test set.

Method F1 AP ACC PRE REC

LoDNN-I (proposal) 95.77 92.54 97.53 94.34 97.25

Then, based on the created road segmentation scenes, a segmentation map was mathe-
matically created for each scene (Figure 22), along with each top-view point cloud image
and its 2D label file. An image containing the information from the three sections included
in the proposed database is presented in Figure 23.
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Figure 23. Visual example of the information spliced from the labels of the objects of interest (red
lines with white dots), the segmentation map (green and blue backgrounds), and the corresponding
top-view point cloud image.

5. Discussion

In this paper, we have presented a database with top-view images, segmentation maps,
and labels of the positions of the objects of interest. We have also described the method
by which it was created and the development of a database with different considerations.
Using this, a set of segmentation maps of top-view images of point clouds was created. This
cluster is not state-of-the-art as far as we are aware. A significant advantage of the method
proposed during the creation of the segmentation maps is that it will allow matching the
segmentation of each object of interest with its respective detection label. In addition, the
road segmentation in each scene presents high performance in comparison with similar,
fairly recent state-of-the-art methods, according to the test dataset metrics (Table 2). Good
results are obtained with LoDNN-I compared to other research that utilizes the LoDNN
model; this is the same neural network used for the same objective but with a different
ground truth generation methodology. In addition, how the neural network structure
for road segmentation should be built was presented directly in this paper, including the
necessary considerations during its programming with the proposed libraries, to save
time during the reproduction of this work or the creation of a neural network in general
for some other work. Specifically, this database will be used in research on autonomous
vehicle perception, in which top-view images are used as input to a neural network, and
segmentation maps in conjunction with labels are used as the ground truth for training.

Table 2. Comparison of the result metrics obtained in this study with those used in other road
segmentation works, adapted from [25].

Methods F1 AP PRE REC

LoDNN-I (proposal) 95.77 92.54 94.34 97.25

LoDNN [28] 94.07 92.03 92.81 95.37

Up-Conv-Poly [44] 93.83 90.47 94.00 93.67

DDN [45] 93.43 89.67 95.09 91.82

FTP [46] 91.61 90.96 91.04 92.2

FCN-LC [47] 90.79 85.83 90.87 90.72

HIM [48] 90.64 81.42 91.62 89.68

NNP [49] 89.68 86.5 89.67 89.68

RES3D-Velo [50] 86.58 78.34 82.63 90.92
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Among the limitations of this work, the proposed database was explicitly created for
use with a top-view point cloud, which limits the types of applications in which it can be
used. In addition, during the development of the general method presented herein, the
database is focused on detecting only three objects (vehicles) of the seven well-identified
available objects. Another limitation is that the database only considers objects detectable
by LiDAR sensors. However, in future research, we propose an alternative of integrating
several sensors into the same system in order to enrich the information obtained during
the data acquisition. The method is also limited by using information from only one
LiDAR sensor, so in future work, it is proposed that part of the proposed method is used
to generate independent LiDAR databases that can be used to reconstruct scenes formed
by point clouds. The last limitation of this work is time; if more time was available, an
integrated system could be implemented in a vehicle to collect new scenes and expand the
database, placing the LiDAR sensor in the same position as suggested by the researchers
who created the KITTI database.

6. Conclusions

In this paper, a method was described, in eight subsections, for the elaboration of
a database consisting of 7481 scenes, each represented by three types of files (top-view
point cloud images, two-dimensional segmentation maps, and in-plane labels of position,
dimensions, and rotation) for each of the three types of vehicles detected in each scene.
When creating top-view images, some points overlap at the same position of a pixel. In these
cases, using the highest point to define a value as the final value of that pixel is sufficient
for convolutional neural network models to find features to segment and detect objects.
However, when generating ground-truth segmentation maps, taking as a reference the
road guidelines clearly visible in the top-view images allows functional and simple manual
segmentation using software, which in turn makes it possible for a convolutional neural
network to improve its performance during the inference of new segmentation maps.

The main contribution of this study is the proposal for creating top-view segmentation
maps of urban scenes, whose data type does not exist in other databases, and this is
necessary for environmental perception work in respect of autonomous vehicles. With this
proposal, road segmentation metrics in respect of F1-95.77, AP-92.54, ACC-97.53, PRE-94.34,
and REC-97.25 can be obtained. In addition, thanks to the proposed method, only road
inference bias exists in the segmentation maps created, since the rest of the segmented
classes were added through mathematical manipulations that allowed them to precisely
match each vehicle’s segmentation within the scene with their respective labels in the plane.

Supplementary Materials: Supporting information can be downloaded at https://www.mdpi.com/
article/10.3390/electronics12143165/s1. The codes and pseudocodes for developing any section of
the methodology are available to those who request them by email.
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