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Abstract: Artificial intelligence has made people’s demands for computer computing efficiency
increasingly high. The traditional hardware circuit simulation method for neural morphology
computation has problems of unstable performance and excessive power consumption. This research
will use non-volatile flash memory cells that are easy to read and write to build a convolutional
neural network structure to improve the performance of neural morphological computing. In the
experiment, floating-gate transistors were used to simulate neural network synapses to design core
cross-array circuits. A voltage subtractor, voltage follower and ReLU activation function are designed
based on a differential amplifier. An Iris dataset was introduced in this experiment to conduct
simulation experiments on the research circuit. The IMC circuit designed for this experiment has
high performance, with an accuracy rate of 96.2% and a recall rate of 60.2%. The overall current
power consumption of the hardware circuit is small, and the current power consumption of the
subtractor circuit and ReLU circuit does not exceed 100 µA, while the power consumption of the
negative feedback circuit is about 440 mA. The accuracy of analog circuits under the IMC architecture
is above 93%, the energy consumption is only about 360 nJ, and the recognition rate is about 12 µs.
Compared with the classic von Neumann architecture, it reduces the circuit recognition rate and
power consumption while meeting accuracy requirements.

Keywords: in-memory computing (IMC); non-volatile flash memory unit; convolutional neural
network; neural morphological computing

1. Introduction

Artificial intelligence has made people’s demands for computational efficiency increas-
ingly high. Simply conducting research on algorithms can no longer meet requirements.
The software implementation method of neural networks has problems such as high re-
source consumption and low processing speed. The method of simulating neural networks
using hardware circuits has received widespread attention. Traditional neuromorphic
computation (NC) circuits are mostly designed based on the von Neumann architecture.
This has problems with unstable computing performance and the high energy consump-
tion of hardware devices [1]. In research into hardware analog neural network circuits
based on in-memory computing (IMC), there are also problems of low accuracy in circuit
model recognition and incomplete circuit-array design. Therefore, this study will build a
convolutional neural network (CNN) based on a non-volatile flash memory unit (NVFMU)
with low energy consumption to improve computational performance. In the experiment,
a floating-gate transistor was used to simulate the synaptic structure design of the neural
network and the cross-array circuit of the core IMC. At the same time, peripheral circuits
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such as a voltage subtracter, voltage follower and ReLU activation function are designed
based on the differential amplifier to improve the performance of the analog circuit. This
study mainly focuses on the following four aspects. Firstly, the research status of hardware
circuit implementation for NC is introduced. Secondly, a specific design was carried out for
the NVFMU-based memory integrated circuit. Next is the analysis of the simulation results
of the CNN analog circuit based on NVFM. At the same time, other neural networks are
introduced in the experiment under the von Neumann architecture and the studied IMC
architecture to compare and validate the advantages of the research methods. Finally, a
summary and analysis of the entire paper will be provided.

2. Related Works

The development of the Internet, big data and artificial intelligence has increased
people’s demands on NC performance. Many scholars have conducted relevant research
on improving computational performance by simulating neural networks in hardware.
The traditional von Neumann computing architecture has the problem of low performance.
Guan Yj and Ohsawa T proposed a novel design of a resistive random-access memory neu-
ral morphological system. At the same time, a deep neural network model was constructed
and optimized on the Iris dataset in the experiment. The validation accuracy of this model
reaches 96.33%, with high performance [2]. The Lee S team proposed a design of a multi-
layer neural network using 2D NAND flash memory units as high-density and reliable
synaptic devices. This method uses NAND synaptic devices to achieve higher learning
accuracy, and uses a method based on unidirectional conductivity response for adaptive
weight updates. Simulation experiments have confirmed that the device has achieved
94.19% learning accuracy and can be used as a synaptic device for high-density multi-layer
neural networks [3]. Organic transistors, as artificial synaptic devices in NC, have the prob-
lem of poor performance. In response, the Xie Z team proposed a vertical three-terminal
N-type organic artificial synaptic structure for neural morphology simulation circuit design.
At the same time, a handwritten digit dataset was used for simulation in the experiment.
It can achieve a high recognition accuracy of 94%, effectively improving computational
efficiency [4]. Peurifoy, J. and Sheverdin, A. propose a novel method for the inverse design
of invisible nanoparticles by swapping the roles between inputs and outputs within a
network. This approach yields remarkable results, surpassing the performance of the top
elements in the training set. This technique can be extended to approximate Maxwell
interactions by simulating the electromagnetic behavior of intricate optical configurations.
By applying this methodology, one can achieve the inverse design of such configurations
directly, without the need for iterative processes. Neural networks can be employed in
the context of inverse design to tackle more complicated configurations and constraints.
Inverse design involves finding the optimal parameters or configurations of a system that
satisfy desired specifications or constraints. By leveraging neural networks, the inverse
design process can be enhanced in mapping complex input-output relationships, handling
high-dimensional search spaces, constraint satisfaction, multi-objective optimization, etc.
Overall, neural networks offer powerful tools for inverse design by enabling the efficient
exploration of complex parameter spaces, handling constraints, optimizing multiple objec-
tives, and facilitating design exploration and generalization [5,6]. Wang TY et al. developed
a three-dimensional flexible Memristor network for neural network analog circuit design
through 130 ◦C low-temperature atomic layer deposition technology. At the same time,
they realized ultra multi-conductance state modulation using 600 data, which verified the
feasibility of the flexible Memristor network [7]. The Jang Y team applied artificial synapses
to pulse neural network simulation circuits to achieve higher energy efficiency in NC. A
pulse neural network simulation circuit model based on amorphous InGaZnO (IGZO)
synaptic transistors was designed in the experiment, and the Iris dataset was introduced
for simulation experiments. The feasibility of this model has been confirmed through
experiments, but there is still the problem of unstable recognition [8].
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Many scholars have also conducted relevant research on the optimization of NC sys-
tems and the selection of simulation materials. The traditional method of learning rules
has the problems of compact and low-power synapses. In response, the Li Y team designed
an NC system based on pulse neural networks that paired electrolyte gated transistors
with transistors. The system has high information processing efficiency, and the simulation
results confirm the high efficiency of the model [9]. Traditional computer data processing
has the problem of low efficiency and inherent limitations in storage units. In this regard,
Meng JL and Wang TY proposed a flexible low dimensional Memristor based on boron
nitride (BN). The Memristor has low power consumption and high efficiency. The power
consumption of each synaptic event is approximately 198 J, and the response time of NC
is 1 µs [10]. Park H and Kim T proposed a new NC architecture to eliminate the inherent
nonzero waiting time between neural morphological nuclei. This architecture combines
dendrite-based and axon-based neural morphological kernels. The architecture was ap-
plied to CNNs for simulating, confirming the architecture effectiveness [11]. Neuromorphic
systems have parallelism and simulation computing characteristics. In response, Liao Y
and Gao B et al. developed a compact model based on physics for simulating Resistive
Random Access Memory (RRAM) and cross arrays. At the same time, statistical data
from RRAM array measurements were used in the experiment, verifying this model’s
high performance and computational accuracy [12]. Scalable resistive memory has scal-
ability and reconfigurability. Therefore, the Milo V team studied the materials, devices,
and structures of resistance switch storage devices using two-layer neural networks for
pattern recognition. At the same time, the classification performance of the two-layer
neural network was tested through annealing experiments. The high precision and low
power consumption of this material can improve classification performance [13]. Vala-
giannopoulos and Schott highlight the emergence of bi-stability concerning the angle of
incidence when constant power feeding fields are employed. This phenomenon gives rise
to a complex phase space that can be effectively controlled from external sources. The
implications of this system are significant, as it holds great potential for being utilized as
a metamaterial with remarkable memory capabilities and efficient reconfigurability for
switching purposes. When considering the memory features of a module that utilizes 2D
circuits, the direction of wave propagation can play a significant role. The directionality of
wave propagation can impact the design and functionality of the memory module in the
interconnect layout, memory array organization, signal timing and synchronization, signal
routing and access, signal integrity, and crosstalk. It is important to note that the specific
design considerations and optimizations related to wave propagation direction may vary
depending on the memory technology, module architecture, and specific requirements
of the application. Detailed analysis, simulation, and engineering expertise are typically
required to optimize the memory module’s performance and functionality based on wave
propagation characteristics [14,15].

In summary, many scholars have applied hardware to solve neural network problems
and conducted research. However, the hardware circuit simulation method for NC gener-
ally has problems of unstable performance and excessive power consumption. However,
the research on hardware analog neural network circuits based on IMC also has problems
with the low recognition accuracy of circuit models and the incomplete design of circuit
arrays. Therefore, this study will use NVFMUs that are easy to read and write to build
CNNs, improve NC performance, and reduce hardware circuit energy consumption.

3. Design of IMC Integrated Circuit Based on NVFMU

The computational architecture of traditional hardware simulated neural networks
has problems such as incomplete array design, low accuracy, and slow speed. This study
will use NVFMUs that are easy to read and write to build CNNs and improve NC per-
formance [14]. Specifically, the basic unit of NVFM is used to simulate CNN synapses
for operations, and a non-volatile flash memory (NVFM) cross-array analog circuit in
IMC form and peripheral hardware circuits are designed to achieve a complete circuit
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design. The novelty of the proposed integrated structure circuit lies in its utilization of a
non-volatile flash memory unit for in-memory computing. Unlike traditional designs, this
approach combines memory and computing functionalities within a single circuit, enabling
the efficient and parallel processing of data. By leveraging the unique characteristics of
non-volatile flash memory, such as its ability to store and process data simultaneously, the
proposed circuit offers advantages in terms of speed, power efficiency, and scalability.

3.1. Design of NVFMU Synaptic Simulation Based on CNNs

A CNN’s main operation method is Multiply Accumulate (MAC), between the weight
matrix and the input matrix. The float transistor is the basic unit of NVFM, which can store
and release electrons with low energy consumption. Therefore, this study will simulate
the CNN synaptic structure using floating delete transistors to achieve the operational
operations of neural networks [15]. Figure 1 shows the hardware implementation of the
CNN and the corresponding way of simulating synapses with transistors.
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Figure 1a is a schematic diagram of the CNN implementation method. The weight
matrix was mapped to the synapse in the experiment, MAC forward operations were
performed on the input data, and the final stored information was output. In Figure 1b, the
cross array of the NVFM circuit corresponds to each neuron of the neural network, and
the transistor corresponds to the synaptic circuit. Due to the role of transistors in releasing
electrons, NVFM circuits will achieve free access to transistors and control data writing and
erasure by reading threshold voltage [16]. The Fowler–Nordheim (F–N) tunneling effect
mechanism will be used in the experiment to read the threshold voltage. This mechanism
improves the efficiency of writing and erasing compared to traditional electron injection
methods. The specific method is to first apply a positive high voltage to the circuit. Through
the F–N tunneling effect mechanism, electrons are released and all units are erased row
by row and column by column. In flash memory operations, the F–N tunneling effect
occurs between the transistor bottom and the floating gate, as shown in Figure 1b. The data
erasure process in non-volatile flash memory circuits such as NAND Flash involves clearing
the stored data in specific memory cells or blocks. It is important to note that the erasure
operation is performed on a specific block or blocks of memory cells within the NAND
Flash array. Each block usually contains multiple pages or sectors. The erase operation
is conducted at the block level. An entire block of memory cells is erased simultaneously.
Firstly, a high voltage, referred to as the erase voltage or erase pulse, is applied to the
control gate (wordline) of the selected block(s) of memory cells. The erase voltage creates a
strong electric field between the control gate and the channel region of the memory cells in
the block. Afterwards, under the action of an electric field, the high electric field induces a
phenomenon called Channel Hot Electron (CHE) injection or Fowler–Nordheim tunneling.
Electrons gain sufficient energy from the electric field and tunnel through the thin oxide
layer, effectively removing the trapped charge from the floating gate. This erases the stored
data. Finally, after the erase operation, the memory cells in the block are typically subjected
to a verification step to ensure the successful erasure. This involves reading the cells and
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confirming that they have reached a predetermined erased state. Figure 2 shows the specific
erasure operation of F–N tunneling.
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Figure 2. Schematic diagram of F–N tunneling erasure operation.

In Figure 2, a positive high voltage of 8 V is added to the control gate WL in the
selected circuit, as shown in the red circuit on the right side of the figure. Additionally, a
voltage of 3 V is applied to the drain BL to make the non-volatile unit conductive. The
unselected line on the left is applied with a voltage of 0 V. Then, a voltage of 0 V is applied
to the selected line unit’s source SL, and a voltage of 3 V is input to the others. The gap
between the control gate and the floating gate is represented as an F–N tunneling channel.
Finally, an erase operation is performed. The potential difference between SL and WL as
shown in the figure is 5 V. When it is greater than 0 V, it indicates that the F–N tunneling
condition is not met and needs to be erased. Then, comparative erasure operations are
performed line by line until all erasures are finally completed. After completing the erase
operation, the voltage inside the transistor will change with the operation. Specifically,
when VGS is lower than the threshold voltage Vth, the F–N tunneling condition is not met,
and the transistor is not turned on. Equation (1) is the source leakage current expression
formula at this time. For the parameter meanings, see Glossary.

IDS = I0 exp[
αG(VGS −Vre f

th )

k
] · exp[

−αG∆Vth
k

] (1)

In Equation (1), k is the leakage current constant. VGS stands for the voltage between
the control gate and the source. Vth stands for the threshold voltage of the transistor. IDS
stands for the current between the drain and source electrodes. αG stands for the gate
coefficient. When VGS is above the threshold voltage Vth, the transistor turns on, and IDS
changes with the voltage between the drain and source. Equation (2) stands for IDS at
this time.

IDS =
1
2

µ
εox

tox

W
L
(VGS −Vth)×VDS (2)

In Equation (2), VDS stands for the voltage between the drain and source electrodes. µ
stands for electron mobility. W and L represent the size width and length of the transistor.
εox/tox is the gate oxygen capacitance per unit area. When VDS continues to increase, the
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transistor will no longer be linearly represented. Equation (3) is the current formula at
this time.

IDS =
1
2

µ
W
L
[(VGS −Vth)×VDS −

1
2

VDS
2] (3)

In Equation (3), IDS shows a parabolic trend at this time. Finally, when
VDS ≥ (VGS −Vth), IDS reaches stability, meaning that the transistor is operating at satura-
tion. Equation (4) stands for the IDS at this time.

IDS =
1
2

µ
εox

tox

W
L
(VGS −Vth)

2 (4)

To achieve the NVFM simulation of CNN operations, simply simulating the synapses
of hardware transistors cannot achieve the desired effect. It also requires the combination of
hardware and software to collaborate in designing circuits for training. This study selected
an IMC array for research. Figure 3 shows the approximate process of the array.
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In Figure 3, after the original data is input, the three-layer neural network cross-array
forward calculation will be performed first, and then the corresponding results will be
output. The output value was compared with the reverse inference output value of the
software. If the hardware output value is greater than the software output value, the
training is successful, and the optimized results are stored. If not, the training will not
converge, and the weight will be updated for the next round of calculations until all the
original data are covered.

3.2. Design of CNN Cross Array Circuit Based on IMC Integrated

For the design of the complete IMC circuit, the research focuses on the IMC cross
circuit. At the same time, peripheral circuits such as the voltage subtracter circuit, voltage
follower circuit and ReLU activation function circuit are introduced to improve the overall
working efficiency [17]. Whether the corresponding dataset can be identified is a classic
problem in machine learning classification. The study will assume the Fashion-MNIST
dataset as the experimental dataset to design a neural network cross-array structure to
achieve better recognition and classification performance. Figure 4 shows the specific
CNNNVFM cross-array structure.

In Figure 4, the input data resolution is 28× 28, a total of 784 pixels. The specific neural
network structure is a three-layer circuit of 784 × 64 × 10. The middle blue layer is the
hidden layer circuit. The purpose of this structure is to simulate the synaptic structure of a
neural network through a non-volatile unit floating-gate transistor in the vertical direction
on the right and achieve the classification operations of the neural network [18,19]. In a
circuit, the drain voltage stands for the salient data of the input. The threshold voltage
difference in the floating-gate transistor serves as the weight of the synapse. The drain
electrodes of the floating-gate unit are connected to each other and connected in parallel
with the source electrode. For the optimization of the synaptic-weight matrix, the nonlinear
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activation function (ReLU) is introduced to select epoch parameters and learning rate.
Equation (5) is the optimal weight matrix.
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f (x) = ReLU(x) =
{

x(x > 0)
0(x ≤ 0)

(5)

In Equation (5), f stands for the weight matrix, and x stands for the input data.
ReLU(x) stands for the ReLU function value when the input data are x. To make the
classification effect more obvious, this study selected Softmax function to optimize the
model classification. Equation (6) is the Softmax function.

Si =
ei

∑j ej (6)

In Equation (6), i and j represent the i-th and j-th input data. Si stands for the i-th
element’s Softmax value. The model conversion of the load resistor itself will have an
impact on floating-gate structure’s voltage value. The research will design a feedback loop
structure to solve the voltage stability problem. Equation (7) is the mathematical expression
for the output voltage of the feedback circuit differential amplifier.

U = (V −Vre f )G (7)

In Equation (7), Vre f is the reverse terminal voltage of the amplifier. U stands for the
output voltage value. G is the gain of the differential amplifier. V is the input voltage.
Equation (8) stands for the current flowing through the feedback circuit.

I = β(U −Vth)
2 (8)

In Equation (8), β stands for the current feedback coefficient, and Vth is the threshold
voltage of the floating-gate transistor. Formulas (7) and (8) were combined in the experi-
ment, and V −Vre f = X was assumed. After calculation and resolution, X in Equation (9)
can be obtained.

X =
(2RβGVth − 1) +

√
1− 4RβGVth + 4RβG2(V −Vre f )

2RβG2 (9)
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In Equation (9), R is the equivalent resistance value of the external load circuit. When
G approaches infinity, lim

G→∞
X = 0. At this point, the voltage at the same amplifier end is

equal to Vre f . Figure 5 shows the ReLU activation function circuit and voltage subtracter
circuit design in the peripheral circuit.
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In Figure 5, the subtractor is an improved operational amplifier voltage subtractor
circuit that can obtain two input voltages. It includes four load resistors, with a ground
terminal voltage of 0.9 V for the grounded load resistor and an output terminal connected
to the ReLU circuit. The ReLU circuit consists of a differential amplifier and a transmission
gate. In the experiment, a transmission gate was used to compare the output voltage with
the ground voltage to control the conduction of the transmission gate. Due to the “virtual
short” and “virtual break” of the subtraction classifier port, the formula can be obtained
in (10). {

I2 =
V2−Vin−

R3
= V2−Vout

R3+R4

I1 =
V2−Vin−

R1
= V1−Vre f

R2+R1

(10)

In Equation (10) and Figure 5, R1, R2, R3 and R4 represent the load resistance. I1 and
I2 represent the current flowing through R1 and R2, respectively. V1 and V2 are two input
voltages, Vin− stands for virtual short voltage, and Vin+ stands for virtual break voltage.
Vre f is the ground terminal voltage, and Vout is the output voltage. Equation (11) stands
for the output voltage.

Vout = G(Vin+ −Vin−) (11)

When R1 = R3, R2 = R4, (10) and (11) are combined to obtain Equation (12).

(1 +
R3G

R3 + R4
)Vout = G(

R4

R3 + R4
V1 +

R3

R3 + R4
V2 −V2 +

R3

R3 + R4
Vre f ) (12)

When R1 = R2, the output voltage Vout in Equation (13) can be obtained.

Vout =
G− R3

R3+R4

1 + R3G
R3+R4

(V1 −V2 + Vre f ) (13)

When the gain is infinite, Equation (14) stands for the output voltage of the subtractor circuit.

Vout = V1 −V2 + Vre f (14)

By combining the relevant formulas of the subtractor and the ReLU function, the
output voltage in Equation (15) is ultimately obtained.

out = ReLu(x) =
{

x + Vre f (x ≥ 0)
Vre f (x ≤ 0)

(15)
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This study designed an IMC integrated method based on NVFMU to simulate neural
network classifiers. Figure 6 shows the specific control process of a neural network classifier.
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In Figure 6, the general process of controlling the classifier is shown as follows: first,
software training was performed on the input data. Secondly, the synaptic weights of the
neural network were optimized and transformed to obtain corresponding voltage prefabri-
cation for the floating-gate transistor. Then, a voltage was applied based on the characteris-
tic values detected by the transistor gate. Finally, forward inference was performed based
on the subtractor of the analog circuit, and the classification results were output.

4. Simulation and Verification of CNN Analog Circuit Based on NVFM

This study introduced the Iris dataset to conduct simulation experiments on the de-
signed analog circuit, verify its feasibility, and analyze its power consumption and accuracy.
Finally, different neural network structures and traditional von Neumann architecture were
introduced for experiments and were compared and analyzed with the IMC architecture of
the NVFM CNN explored in this study.

4.1. Simulation Power Analysis of Analog Circuits

The experimental dataset used in this study is the Iris dataset, which is widely used
by scholars. This dataset contains a total of 150 sets of Iris data, including three different
types, namely Virginia Iris, Varicolor Iris, and Setosa Mountain Iris, with 50 sets each [20].
This experiment will conduct simulation experiments on analog circuits based on the Iris
dataset. Table 1 shows the main simulation parameters.

Table 1. Analog circuit simulation parameter table.

Parameter Parameter Value

Transistor size 220/180
Supply voltage 1.8

Reference source level 1.0(1/2VDD)
Gate WL voltage 1.0(1/2VDD)

Iris circuit load resistance 4
MNIST circuit load resistance 220
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To verify the effect of the nonlinear activation function optimized synaptic-weight
method designed in this study, the experiment divided the original dataset into two equal
parts. A set of optimal weight matrices obtained through training optimization is applied
to analog circuits. The other group was the test group for scientific control. Accuracy and
recall indicators were introduced to evaluate the experimental results in Figure 7.
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The optimal weight matrix parameters selected through the linear activation function
are: Learning rate = 0.002, Epoch = 1100. Figure 7 shows the comparison results. In
Figure 7a, the average accuracy of the training and testing sets is 96.2 and 95.3, respectively,
and the accuracy increases with the increase in sample size. When the sample is 150 sets of
data, the accuracy training set is 98.2, and the test set is 97.6. In Figure 7b, the recall rate of
the experiment is also positively correlated with the number of samples, with an average
recall rate of 60.2 for the training set and 58.8 for the test set. The recall rates reached
62.2 and 61.9 for a sample size of 150 groups. Optimizing the weight matrix can improve
the accuracy of classification and achieve good classification results. To consider the specific
power consumption of the hardware circuit in this study, the experiment analyzed the
power consumption current of the core analog synaptic computing circuit and peripheral
hardware circuits. Figure 8 shows the simulation results of energy consumption.
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In Figure 8a, the currents of the subtractor circuit and ReLU circuit are extremely low,
both of which do not exceed 100 µA and can be ignored. However, the current of the
negative feedback circuit is about 440 µA compared to other peripheral circuits, but the
overall current of the device is still relatively small. In Figure 8b, the current consumption
of the voltage follower reaches a stable state after 400 ns, with a current of approximately
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1.53 mA. Overall, the current consumption of the analog circuit mainly depends on the
voltage follower. In a classification and recognition experiment, the power consumption
of the voltage follower accounted for about 65% of the entire circuit power consumption.
However, the overall current of the analog circuit not exceeding 2 mA is still extremely
low, indicating that the method of simulating neural network synapses in this study has
good performance.

4.2. Simulation Results of Analog Circuits Based on NVFMU

This experiment conducted simulation experiments on analog circuits using the Iris
dataset as experimental data. A stable power supply voltage was input to the analog circuit,
and the complete circuit was subjected to static scanning observation and classification [21,
22]. Specifically, the highest voltage output value of Iris flowers is represented as the
classification and recognition results of the experiment. When the three groups of Iris
categories are input data, Figure 9 shows the correct classification structure for Virginia,
Setosa, and Versicolor.
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In Figure 9, the experiment applies a gate on voltage to the circuit at 1 ns. At this point,
the circuit begins to correspond, and the classification curve undergoes strong oscillations.
At approximately 100 ns, the circuit response is complete, and the curve becomes flat.
Figure 8b shows a strong circuit response when the input is Versicolor data. The curve
only reaches stability after 350 ns, which may be influenced by the state of the transistor
and cause competition phenomenon. This causes a brief oscillation in the classification
before it stabilizes, without affecting the experimental results. Overall, when the input
data is a certain type of Iris, the classification effect of that type of Iris is the best. The
maximum output voltage is around 0.35 V, the curve is smooth and stable, and the overall
classification effect is good. Next, a simulation experiment was conducted on all 150 sets of
Iris data, using the Iris species corresponding to the highest output voltage as the accurate
classification result. Among them, 100 training sets and 50 test sets were set up in the
experiment. In the experiment, the training set was used to calculate the optimal weights
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and estimate the classification of analog circuits. Figure 10 shows the experimental results
of a simulation experiment on 150 sets of Iris flowers.
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Among the 150 sets of data in Figure 10, Setosa’s floral features are the most obvious 
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Among the 150 sets of data in Figure 10, Setosa’s floral features are the most obvious
and the classification effect is the most intuitive. The difference in output voltage between
Virginia and Versicolor is not significant, but the resulting pattern can still be distinguished.
On the right side of Figure 10, even though the voltage output values of Virginia and
Versicolor are equivalent, there is still a gap of nearly 10 mV. At this point, different flower
patterns can be distinguished, and the overall classification effect is good. This analog
circuit has certain feasibility. The simulated neural network selected for this study was
CNN. The experiment further validated the impact of different neural network structures
on the performance of the NVFM analog circuit studied, as well as the superiority of the
IMC structure. The experiment introduced Spiking Neural Networks (SNNs) and Deep
Neural Networks (DNNs) and conducted simulation experiments on the von Neumann
architecture and IMC architecture, respectively, along with the CNN used in the study.
Table 2 shows the results.

Table 2. Classification results of different neural network structures.

Von Neumann Architecture Integrated Storage and
Computing Architecture

Network CNN DNN SNN CNN DNN SNN
Accuracy (%) 97.93 98.33 95.98 95.64 94.27 93.80

Recognition rate (µs) 1000.00 964.00 897.00 12.56 11.67 12.92
Energy

consumption/nJ 146,700 14,900 15,000 360 354 357

In Table 2, firstly, the recognition accuracy of analog circuits under the IMC architec-
ture is slightly lower than that of the von Neumann architecture, but the difference is not
significant, with all having good recognition accuracy rates of over 93%. Secondly, the
IMC architecture greatly improves the recognition performance of the circuit, significantly
reducing the recognition rate and current power consumption [23]. The recognition rate
under the von Neumann architecture is close to 1000 µs and the IMC architecture recogni-
tion rate is 12 µs. The circuit energy consumption under the von Neumann architecture
is close to 15,000 nJ, while the circuit energy consumption under the IMC architecture is
only around 360 nJ. Finally, under the IMC architecture, CNN has the highest recognition
accuracy and overall classification performance. Overall, the IMC architecture designed in
this study can achieve accuracy comparable to traditional von Neumann architectures. This
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greatly reduces the circuit recognition rate and current power consumption and improves
recognition efficiency. The performance of various benchmark neural network structures is
comparable, with CNN structures having the highest accuracy.

5. Conclusions

In the research of improving the efficiency of neural morphology operations by sim-
ulating neural network structures in hardware circuits, the traditional von Neumann
architecture has problems such as high energy consumption and low computational ef-
ficiency. This study was based on NVFMU, simulated a CNN structure, and designed
an IMC integrated architecture analog computing circuit to solve related problems. This
circuit uses NVFMU’s floating-gate transistor to simulate CNN synaptic structure to design
a core cross-array circuit. At the same time, peripheral hardware circuits were introduced
for improvement and optimization in the experiment, and the Iris dataset was selected
for simulation experiments on the circuit. First, the optimal weight matrix parameters
selected through the nonlinear activation function were learning rate = 0.002 and epoch
= 1100. Simulation experiments were conducted under the optimal weight matrix. The
average accuracy of the training set and the test set were 96.2 and 95.3, respectively, and the
average recall rate was 60.2 for the training set and 58.8 for the test set. This indicates that
this method can improve classification computation performance. Secondly, the analysis of
the circuit power consumption results shows that the current power consumption of the
subtractor circuit and ReLU circuit is extremely low, both of which do not exceed 100 µA.
The power consumption of the negative feedback circuit is relatively high, at about 440 mA,
but the overall power consumption is still very small. Finally, the accuracy of the relevant
circuits in the IMC architecture is over 93%, the energy consumption is only about 360 nJ,
and the recognition rate is about 12 µs. Compared with the traditional von Neumann
architecture, it greatly reduces circuit recognition rate and current power consumption
while meeting accuracy requirements, and also improves recognition efficiency.
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Glossary

Parameter Meaning
VGS The voltage between the control gate and the source
Vth The threshold voltage of the transistor
IDS The current between the drain and source electrodes
αG The gate coefficient
VDS The voltage between the drain and source electrodes
µ Electron mobility
W The size width of the transistor
L The size length of the transistor
f The weight matrix
x The input data
Si The i-th element’s Softmax value



Electronics 2023, 12, 3155 14 of 15

Vre f The reverse terminal voltage of the amplifier
U The output voltage value
G The gain of the differential amplifier
V The input voltage
β The current feedback coefficient
Vth The threshold voltage of the floating-gate transistor
R The equivalent resistance value of the external load circuit
Vin− Virtual short voltage
Vin+ Virtual break voltage
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