
Citation: Cao, L.; Chen, Y.; Jin, Q.

Lightweight Strawberry Instance

Segmentation on Low-Power Devices

for Picking Robots. Electronics 2023,

12, 3145. https://doi.org/10.3390/

electronics12143145

Academic Editor: Krzysztof

Okarma

Received: 3 July 2023

Revised: 14 July 2023

Accepted: 17 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Lightweight Strawberry Instance Segmentation on Low-Power
Devices for Picking Robots
Leilei Cao 1 , Yaoran Chen 2 and Qiangguo Jin 1,*

1 School of Software, Northwestern Polytechnical University, Xi’an 710072, China; caoleilei@nwpu.edu.cn
2 School of Artificial Intelligence, Shanghai University, Shanghai 200444, China; ychen169@shu.edu.cn
* Correspondence: qgking@nwpu.edu.cn

Abstract: Machine vision plays a great role in localizing strawberries in a complex orchard or
greenhouse for picking robots. Due to the variety of each strawberry (shape, size, and color) and
occlusions of strawberries by leaves and stems, precisely locating each strawberry brings a great
challenge to the vision system of picking robots. Several methods have been developed for localizing
strawberries, based on the well-known Mask R-CNN network, which, however, are not efficient
running on the picking robots. In this paper, we propose a simple and highly efficient framework
for strawberry instance segmentation running on low-power devices for picking robots, termed
StrawSeg. Instead of using the common paradigm of “detection-then-segment”, we directly segment
each strawberry in a single-shot manner without relying on object detection. In our model, we design
a novel feature aggregation network to merge features with different scales, which employs a pixel
shuffle operation to increase the resolution and reduce the channels of features. Experiments on the
open-source dataset StrawDI_Db1 demonstrate that our model can achieve a good trade-off between
accuracy and inference speed on a low-power device.

Keywords: computer vision; image segmentation; fruit localization; lightweight network; mobile
robots; vision system

1. Introduction

Due to socioeconomic changes of the current society, fewer people are willing to be
engaged in agricultural production [1]. In order to solve the challenge of labor shortage in
the agricultural industry, various robots have been developed for agricultural activities,
e.g., sowing of seeds, irrigating, spraying pesticides, weeding, and harvesting [2]. Among
these activities, harvesting is the most time-consuming and labor-intensive task [2,3]. Con-
sequently, a few commercial harvesting robots have been used to pick fruits and vegetables
in orchards or greenhouses, e.g., apples [4], strawberries [5], grapes [6], tomatoes [7],
and sweet peppers [8]. Strawberries, one of the profitable fruits, are widely cultivated in
the world [3]. Picking a strawberry requires skilled operations, since it is easily bruised.
Training a new picker to have the same skill as an experienced one needs at least one
year [1]. This motivates us to develop an autonomous strawberry-picking robot to reduce
the demand for human labor and improve picking efficiency.

A few companies have developed strawberry-picking robots, e.g., Berry 5 designed
by Harvest CROO, SW 6010 from Agrobot, Dogtooth from Cambridge, and Rubion made
by Octinion [1]. Berry 5 and SW 6010 are designed for picking strawberries cultivated
in large-scale and open-field orchards, which are equipped with large machines with
high costs. Dogtooth and Rubion are small robots designed for picking strawberries
in greenhouses. Designing a picking robot refers to many technologies, e.g., machine
vision, mechanical design, kinematics, path planning, control, and navigation. Among
these, machine vision plays a great role in localizing strawberries in a complex orchard or
greenhouse environment, in which each strawberry needs to be precisely located [1,2]. Due

Electronics 2023, 12, 3145. https://doi.org/10.3390/electronics12143145 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12143145
https://doi.org/10.3390/electronics12143145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0336-9295
https://doi.org/10.3390/electronics12143145
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12143145?type=check_update&version=1


Electronics 2023, 12, 3145 2 of 13

to the variety in shape and scale of strawberries and occlusions of strawberries by leaves
and stems, precisely locating each strawberry brings a great challenge to the vision system
of picking robots.

Compared with the bounding box provided by object detection, the segmentation mask
by the instance segmentation technology can provide better localization accuracy, which
avoids the impact of a complex background in the bounding box. Recently, a few methods
and datasets for strawberry instance segmentation have been proposed [5,9,10]. Borrero
et al. [9] released a large-scale and high-resolution dataset of strawberry images, along
with the corresponding manually labeled instance segmentation mask images. In addition,
they proposed a strawberry instance segmentation network based on the framework of
Mask R-CNN [11], which, however, required a large processing power for vision systems
of picking robots. Therefore, they designed a new network based on U-Net [12] to segment
each strawberry in an image with better accuracy and faster inference speed [10]. However,
these methods are still too heavy to run on the vision system of picking robots, which
usually are equipped with energy-constrained supplies and low-compute devices. This
motivates us to develop a novel lightweight network for strawberry instance segmentation
with low latency running on low-power devices of picking robots.

In this paper, we present a simple and highly efficient framework for strawberry
instance segmentation running on low-power devices for picking robots, termed StrawSeg.
Instead of using the common paradigm of “detection-then-segment”, we directly segment
each strawberry in a single-shot manner without relying on object detection. Our network
consists of three parts: backbone, neck, and head. Given an image containing strawberries,
MobileNetV2 [13] is adopted as the backbone to extract multiscale and multilevel features
from the input image, and the multiscale features are aggregated by the neck module. We
design a novel feature aggregation network termed FAN to merge these features with
different scales. Instead of implementing by interpolation or deconvolution layer, we
employ a pixel shuffle operation to increase the resolution and reduce the channels of
features, which can avoid the use of convolutional layers to reduce channels. The head
module directly predicts a fixed-size set of segmentation masks wherein each mask indicates
a target strawberry or background. During training, the predicted masks are matched to
the ground truth by using the bipartite matching strategy. At the inference, we compute an
average pixel value along the spatial dimension for each mask to be its classification score,
and some low-confidence predictions can be dropped. Experiments on the open-source
dataset StrawDI_Db1 [9] demonstrate that our model can achieve a good trade-off between
accuracy and inference speed on the low-power device.

Our contributions are summarized as follows:

(1) We present a lightweight yet effective framework for strawberry instance segmentation
running on low-power devices for picking robots, which can directly segment each
strawberry without relying on object detection.

(2) We design a novel feature aggregation network to aggregate features with different
scales extracted from different levels of the backbone network, which can increase the
resolution and reduce the channels of features.

(3) Experimental results demonstrate that our model achieves a good trade-off between
accuracy and inference speed running on the low-power device.

2. Related Work
2.1. Instance Segmentation

Instance segmentation aims to produce a pixel-wise segmentation mask for the object
of interest in an image. It has been significantly improved with the advancement of
CNNs and Transformers. The conventional methods for instance segmentation follow the
“detection-then-segment” paradigm, which first generates bounding boxes by detectors
and predicts masks by ROIAlign [11] or dynamic convolutions [14]. Mask R-CNN [11],
YOLACT [15], and MEInst [16] are the representative methods. Instead of relying on the
object detectors, SOLO [17,18] directly segmented objects according to the object’s location



Electronics 2023, 12, 3145 3 of 13

and size. PolarMask [19] employed polar coordinates to represent mask contours. Instead
of directly predicting masks, a few methods try to predict mask embeddings. SOLQ [20]
encoded the spatial binary mask into embeddings, and the network is trained to predict the
embedding for the mask. ISTR [21] predicted low-dimensional mask embeddings. Cheng
et al. [22] proposed a sparse set of instance activation maps as an object representation to
highlight informative regions for each object, which achieves a good trade-off between
accuracy and inference speed.

2.2. Fruit Localization

Recently, a few methods have been developed to improve the performance of machine
vision for fruit or vegetable localization. Yu et al. [5] proposed a method for strawberry
detection and segmentation based on Mask R-CNN. Jia et al. [4] designed a model for the
recognition and segmentation of overlapped apples based on Mask R-CNN. Santos et al. [6]
used Mask R-CNN [11] and YOLO [23–27] to segment and detect wine grapes, respectively.
Instead of using the heavy Mask R-CNN, Borrero et al. [10] designed a new network based
on U-Net to segment each strawberry in an image with better accuracy and faster inference
speed. Ning et al. [8] proposed to combine the convolutional block attention module with
YOLOv4 to recognize and localize sweet peppers. Liu et al. [28] proposed a detection and
segmentation method for obscured green fruit based on a FCOS [29] object detection model.
Zeng et al. [7] proposed a lightweight network based on YOLOv5 to achieve real-time
localization and ripeness detection of tomatoes. Liu et al. [30] proposed a method for
localizing pineapples based on binocular stereo vision and an improved YOLOv3 model.
Kang et al. [31] introduced a LiDAR-camera fusion-based instance segmentation method
for the localization of apples.

2.3. Lightweight Detection and Segmentation

Real-time object detection or instance segmentation is necessary for a model running
on edge devices. Recently, real-time detection and segmentation methods are still being de-
veloped. YOLO series [23–27] have been continuously advanced for faster and stronger ob-
ject detection based on efficient architectures and bag-of-freebies. CSL-YOLO [32] proposed
a cross-stage lightweight module to generate redundant features from cheap operations,
and the module was combined with YOLO. Cui et al. [33] proposed a lightweight pinecone
detection algorithm based on the improved YOLOv4-Tiny network, wherein ShuffleNet [34]
was used as a backbone to extract features. Gui et al. [35] proposed a lightweight tea bud
detection model based on the YOLOv5 network, wherein the Ghost_conv [36] module was
applied to reduce the computational complexity and model size. Li et al. [37] designed a
fast and lightweight detection algorithm based on YOLOv5 for passion fruit pest detection,
wherein the attention module was added to improve accuracy.

3. Methods

Our model, StrawSeg, aims to directly segment instance-level strawberries without
relying on object detection. To this end, we first design a lightweight network to extract
features from the input image, and predict all target masks at once. The model is trained end
to end with a set loss function, which performs bipartite matching between the predicted
masks and ground truth. Finally, a simple inference process is described to acquire final
segmentation masks for strawberries. A flowchart of our method is shown in Figure 1.



Electronics 2023, 12, 3145 4 of 13

S2

S3

S4

S5
PPM

Pixel Shuffle

Cat

Pixel Shuffle

Cat

Pixel Shuffle

Cat 3x3 Conv 1x1 ConvH/4*W/4

H/8*W/8

H/16*W/16

H/32*W/32

Hungarian loss

N*H*W

P5

P4

P3

P2 drop "no
strawberries"

Training Set

Backbone
Network

Neck Network

Head Network

Loss Function

Adjusting
Hyperparameters

Figure 1. The flowchart of our method.

3.1. StrawSeg Architecture

The overall framework of StrawSeg is shown in Figure 2. This simple network consists
of three parts: backbone, neck, and head modules. The backbone module extracts multilevel
and multiscale features from a given image, and the neck module aggregates features from
the backbone. Finally, the head module directly predicts a set of segmentation masks.

Figure 2. Overall framework of StrawSeg. In the figure, Cat represents the concatenate operation,
and PPM represents the pyramid pooling module [38].

3.1.1. Backbone

To reduce the latency of our network running on low-power devices, we use Mo-
bileNetV2 [13] as the backbone network to extract multilevel and multiscale features from
the input image. Given an image I ∈ R3×H×W , the backbone extracts the multiscale image
features from the shallow to deep layers of the backbone network, i.e., {S2, S3, S4, S5},
where Si has a resolution of H

2i × W
2i , i = 2, 3, 4, 5.

3.1.2. Neck

To enhance the feature representations, the neck module is employed to aggregate the
multiscale and multilevel features. To further reduce computational complexity and model
parameters, we design a novel feature aggregation network (FAN) to aggregate features
extracted from the backbone. To enlarge the receptive field of the network, we first apply
a pyramid pooling module (PPM) [38] on the feature map S5 to acquire a feature map P5
with global prior representations. For further details on PPM, we refer the reader to [38].



Electronics 2023, 12, 3145 5 of 13

We then upscale P5 to the same resolution as the feature map S4. Instead of implementing
by interpolation or deconvolution layer [39], we employ a pixel shuffle operation [40] to
increase the resolution and reduce the channels of P5. Pixel shuffle is an operation used
in super-resolution models to implement efficient subpixel convolutions with a stride of
r . Specifically, it rearranges elements in a tensor of shape (∗, C× r2, H, W) to a tensor of
shape (∗, C, H × r, W × r). Suppose P5 has C5 channels; thus, the pixel shuffle rearranges
the feature map P5 of shape H

32 ×
W
32 × C5 to a higher-resolution feature map of shape

H
16 ×

W
16 ×

C5
4 . This higher-resolution feature map is concatenated with the feature map

S4 (of shape H
16 ×

W
16 × C4) along the channel dimension to form a mixed feature map P4.

Similarly, the feature map P4 is upscaled by the pixel shuffle and concatenated with S3 (of
shape H

8 ×
W
8 × C3) to acquire a feature map P3. Additionally, P3 is also upscaled by the

pixel shuffle and concatenated with S2 (of shape H
4 ×

W
4 ×C2) to acquire a feature map P2 of

shape H
4 ×

W
4 × (C5

64 + C4
16 + C3

4 + C2). Let us take MobileNetV2_0.5 as a backbone network,
and C5 = 160, C4 = 48, C3 = 16, C2 = 16; thus, the feature map P2 has a channel number
of 26. Finally, P2 is attached by a 3× 3 convolution layer to generate a merged feature
map, which aggregates the multilevel and multiscale feature maps. The input channel and
output channel numbers are the same with P2.

3.1.3. Head

The segmentation head directly predicts N masks by a single 1× 1 convolution layer
on the fused feature map from the neck module, which are rescaled to the original resolution
of an input image through interpolation: y = {mi|mi ∈ [0, 1]H×W}N

i=1, where N is set to be
significantly larger than the typical number of strawberries in an image.

3.2. Label Assignment and Training Loss

To train our model, a label assignment strategy is needed. The ground truth binary
masks of strawberries in an image are denoted as ygt = {mgt

i |m
gt
i ∈ [0, 1]H×W}Ngt

i=1, where
Ngt is the number of strawberries in the image. Since N is different from Ngt and N ≥ Ngt,
we pad the set of ground truth labels with all-zero masks to allow one-to-one matching.
A bipartite matching-based assignment is employed between the predicted masks and
ground truth labels, which searches for a permutation of N elements σ ∈ {1, 2, ..., N} with
the lowest cost [41,42]:

σ̂ = arg min
σ

N

∑
i
Lmatch

(
ygt

i , yσ(i)

)
, (1)

where Lmatch

(
ygt

i , yσ(i)

)
is a pairwise matching cost between ground truth ygt

i and a pre-
diction with index σ(i), which is defined as

Lmatch = λdice

(
1−Ldice

(
mgt

i , mσ(i)

))
+ λ f ocalLfocal

(
mgt

i , mσ(i)

)
, (2)

where λdice and λ f ocal are hyperparameters, and Ldice and Lfocal denote dice loss and focal
loss, respectively. This optimal assignment is computed with the Hungarian algorithm [41].

Given the optimal assignment σ̂, we define Ngt matched predicted masks and N−Ngt

nonmatched predictions as positive pairs and negative pairs, respectively. The matched
predictions tend to predict the ground truth masks, and the nonmatched predictions aim to
output all-zeros. To this end, we use the Hungarian loss to optimize our network, which is
defined as

LHung =
Ngt

∑
i=1

[
λdice

(
1−Ldice

(
mgt

i , mσ̂(i)

))
+ λ f ocalLfocal

(
mgt

i , mσ̂(i)

)]
, (3)

where λdice and λ f ocal are hyperparameters, and denote dice loss and focal loss, respectively.
For our experiments, we set λdice = 1, λ f ocal = 20.



Electronics 2023, 12, 3145 6 of 13

3.3. Inference

The segmentation head of our network directly outputs N masks {mi}N , and we
can compute an average pixel value along the spatial dimension for each mask to be its
classification score of a strawberry. Thus, some low-confidence predictions can be dropped.
Finally, we obtain the final binary masks by thresholding (we set it as 0.5). Specifically, to
achieve better accuracy, we remove some binary masks that have a few parts occluded by
other masks through nonmaximum suppression (NMS) [43].

4. Experiments
4.1. Dataset and Metrics
4.1.1. Dataset

Our experiments are conducted on the StrawDI_Db1 dataset [9] containing 3100 im-
ages taken in strawberry plantations in the province of Huelva (Spain) at different times
during a full picking campaign. The images were taken with a smartphone and rescaled
to 1008× 756 pixels in PNG format. The dataset is divided into 2800 images for training,
100 images for validation, and 200 images for testing. Each image contains a few strawber-
ries with the number ranging from 1 to 21. Straw DI_Db1 is the only open-source dataset
for strawberry instance segmentation, in which variety in shape and scale of strawberries
exists, as well as occlusions of strawberries by leaves and stems.

4.1.2. Metrics

We evaluate models on accuracy and inference speed on devices. Following the com-
monly used metric in the MS-COCO [44] competition of instance segmentation, the average
precision (AP) metric is used to evaluate the accuracy of predicted masks. Specifically, the
mean average precision (mAP) is computed using 10 IoU thresholds from 0.5 to 0.95. In
addition, we also report the mean average precision for small (mAPS), medium (mAPM),
and large sizes (mAPL) of strawberries as the same criteria as COCO. The value of AP for
IoU = 0.50 (AP50) and 0.75 (AP75) is also reported. For measuring the inference speed, we
report the frames per second (FPS) of the network on a single NVIDIA RTX 3090 GPU and
an edge device, NVIDIA Jetson Nano 2G(Made by NVIDIA Corporate, Santa Clara, CA,
USA). TensorRT or FP16 is not used for acceleration.

4.1.3. Implementation Details

We implement our model in PyTorch and train over one NVIDIA RTX 3090 GPU with
32 images per minibatch and 200 epochs. We adopt an AdamW optimizer with an initial
learning rate of 5× 10−3 with a weight decay of 0.0005. The backbone is initialized with
the ImageNet-pretrained weights, and other layers are randomly initialized. The standard
random scale jittering between 0.8 and 1.5, random horizontal flipping, random rotating
between −30◦ and 30◦, random cropping, and random color jittering are used as data
augmentation. We use a crop size of 640× 640 as input for training. We adopt N = 21 for
each image. We report the performance of the original scale inference without horizontal
flip or multiple scales.

4.2. Comparison with State-of-the-Art Methods

Table 1 compares our model, StrawSeg, with some state-of-the-art methods with
respect to accuracy and inference speed. We set a baseline model wherein FPN [39] is
adopted to replace our designed FAN and the other modules are the same. SparseInst [22]
achieves good accuracy and fast inference speed on the MS-COCO dataset for real-time
instance segmentation, which can be applied for strawberry instance segmentation. We
use MobileNetV2 [13] with different ratios as backbones to achieve the trade-off between
accuracy and inference speed. All models are only trained on the StrawDI_Db1 dataset and
evaluated on the testing set. The results show that our model is superior to the baseline
and SparseInst with better accuracy and faster inference speed under the same backbone.
Specifically, our model with MobileNetV2_0.25 has achieved 72.9% mAP, which improves



Electronics 2023, 12, 3145 7 of 13

the baseline by 4.7% mAP and 15 FPS on RTX 3090 and 4 FPS on Jetson Nano. This verifies
that our proposed FAN can bring improvement on accuracy and reduction on inference
time compared with the commonly used FPN. It is worth noting that our model with
MobileNetV2_0.25 achieves 20 FPS on the edge device NVIDIA Jetson Nano 2G, which has
the right balance of low power and affordability for a picking robot. The inference speed of
our model can be accelerated if using TensorRT or running on more powerful devices (e.g.,
Jetson TX2, Jetson Xavier NX, Jetson Orin NX). Using a heavier backbone does not bring
large improvement on accuracy yet reduces the speed.

Table 1. Performance comparison of our model with state-of-the-art methods on the Straw DI_Db1
testing set. Numbers in bold indicate the best performance.

Backbone Method mAP AP50 AP75 mAPS mAPM mAPL Params FPS (3090) FPS (Jetson)

MobileNetV2_0.25
Baseline 68.2 82.4 74.0 26.8 68.1 94.0 0.18 M 140 16

SparseInst 65.0 80.2 69.0 24.6 66.4 87.2 0.20 M 121 13
Ours 72.9 86.4 78.5 29.1 74.8 94.4 0.15 M 155 20

MobileNetV2_0.5
Baseline 76.2 86.7 79.3 30.1 80.6 96.0 0.65 M 119 14

SparseInst 77.9 89.9 83.0 33.5 81.2 97.3 0.75 M 97 12
Ours 79.7 90.6 84.3 41.0 82.7 96.4 0.53 M 139 19

MobileNetV2_1.0
Baseline 68.2 80.3 71.2 28.9 71.0 88.7 2.50 M 114 12

SparseInst 79.6 89.7 83.8 38.3 83.4 96.0 2.86 M 89 10
Ours 80.0 89.8 83.8 40.9 83.3 97.1 1.97 M 131 17

There are only several published methods based on Mask R-CNN that have been
applied to strawberry instance segmentation on the Straw DI_Db1 dataset. Table 2 compares
our model, StrawSeg, with a few existing methods that have been evaluated on the Straw
DI_Db1 testing set. The results show that our model surpasses the existing methods with
great superiority.

Table 2. Performance comparison of our model with a few existing models that have been evaluated
on the Straw DI_Db1 testing set. Numbers in bold indicate the best performance.

Methods mAP AP50 AP75 mAPS mAPM mAPL

Yu et al. [5] 45.4 76.6 47.1 07.4 50.0 78.3
Perez-Borrero et al. [9] 43.8 74.2 45.1 07.5 51.8 75.9
Perez-Borrero et al. [10] 52.6 69.4 57.8 17.0 65.3 53.3

Ours 80.0 89.8 83.8 40.9 83.3 97.1

Figure 3 shows visualization comparisons of different methods on some images from
the Straw DI_Db1 testing set, wherein we denote the inaccurate predictions by the red ar-
rows. For the first column, the baseline model mistakenly predicts the leaf as the strawberry,
which occurs at SparseInst. For the second column, the baseline model and SparseInst
miss two and one strawberries, respectively, and SparseInst predicts an inaccurate mask.
For the third column, the baseline model and SparseInst mistakenly predict the leaf as
the strawberry, and SparseInst misses one strawberry in the corner of the image. The
visualization results demonstrate the superiority of our model.



Electronics 2023, 12, 3145 8 of 13

Figure 3. Visualization comparison of different methods on some images (a–c) from the Straw DI_Db1
testing set. The inaccurate predictions are denoted by the red arrows.

4.3. Ablation Studies

We investigate the effectiveness of our designs through a few ablation studies, includ-
ing the neck module, the feature aggregation network, the scale of an input image, the
number of convolution layers in the neck module, the number of predicting masks by the
head network, the hyperparameters of loss function, and the usage of NMS in the inference
stage. Without losing generality, we use MobileNetV2_0.5 as the backbone and evaluate on
the testing set.

4.3.1. Structure of the Neck Module

The neck module consists of two parts: PPM and FAN. To further analyze the impor-
tance of each component in the neck, PPM and FAN are progressively added into the neck
module to verify their effectiveness. We first set a baseline wherein S5 of the backbone is
directly appended to the head. Table 3 summarizes the results of the investigation on each



Electronics 2023, 12, 3145 9 of 13

component. It shows that PPM and FAN improve the baseline by 6.2% and 21.5% mAP,
respectively. The combination of PPM and FAN can achieve 79.7% mAP. It is worth noting
that the ASPP [45] module is commonly adopted to enlarge and acquire different scales of
receptive fields for semantic information. The result shows that adding ASPP even drops
0.2% mAP compared with adding PPM and FAN, which only improves 1% mAPM and
0.6% mAPL for medium and large sizes, respectively.

Table 3. Ablation study on the structure of the neck module. Numbers in bold indicate the best
performance.

Module mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

Backbone only 52.5 76.5 55.2 7.3 50.8 82.0 194
+PPM 58.7 80.1 62.4 10.5 58.3 89.1 145
+FAN 74.0 86.8 78.1 37.4 75.8 93.0 152

+PPM+FAN 79.7 90.6 84.3 41.0 82.7 96.4 139
+PPM+FAN+ASPP 79.5 89.8 83.4 37.4 83.7 97.0 108

4.3.2. Stage of Output Feature Maps

In FAN, features with different scales are aggregated progressively, and the feature
map P2 is appended to the head module to predict masks. We investigate the accuracy
and inference speed when using features from different levels, as shown in Table 4. If
the head module directly appends to P5, which means that the scale of the output feature
map is only H

32 ×
W
32 and the predicted masks are rescaled to the original resolution of the

input image through interpolation, then the model can only achieve 58.7% mAP. Adopting
P4 can improve the model by 13.4% mAP yet reduce the speed by 4 FPS. P3 does not
further improve the model compared with P4. The feature map P2 achieves a good trade-off
between accuracy and speed, which improves to 79.7% mAP and with 139 FPS.

Table 4. Ablation study on the output feature maps. Numbers in bold indicate the best performance.

Stage mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

P5 58.7 80.1 62.4 10.5 58.3 89.1 145
P4 72.3 86.9 76.5 27.4 75.2 94.2 141
P3 72.2 85.4 75.9 28.6 75.0 93.2 140
P2 79.7 90.6 84.3 41.0 82.7 96.4 139

4.3.3. Scale of Input Image

The default input image size is set to 640× 640; we further analyze the influence of an
input image size. Table 5 summarizes the results of models trained with different input
image sizes. It shows that increasing the input image size does not bring an improvement of
accuracy yet reduces the speed. Decreasing the input image size also reduces the accuracy.
The results verify that an input image size of 640× 640 is appropriate.

Table 5. Ablation study on the scale of an input image. Numbers in bold indicate the best perfor-
mance.

Scale mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

704 70.1 83.4 74.9 31.5 71.0 92.3 119
640 79.7 90.6 84.3 41.0 82.7 96.4 139
512 74.9 87.1 80.0 32.9 78.2 93.6 141

4.3.4. Number of Convolution Layers in the Neck

In the neck module, we use a single 3× 3 convolution layer to generate a merged
feature map from P2; now we investigate the influence of the number of convolution layers.
Table 6 summarizes the results of models with different numbers of convolution layers in



Electronics 2023, 12, 3145 10 of 13

the neck module. It shows that removing or increasing the number of convolution layers
will reduce the accuracy. A single 3× 3 convolution layer has achieved a good trade-off
between accuracy and inference speed.

Table 6. Ablation study on the number of convolutional layers in the neck module. Numbers in bold
indicate the best performance.

Number of Conv mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

w/o 71.4 85.9 75.4 33.4 71.4 92.0 144
1 79.7 90.6 84.3 41.0 82.7 96.4 139
2 75.4 84.7 78.8 37.4 77.9 93.9 134

4.3.5. Number of Predicting Masks

In the above experiments, we set the number of predicting masks by the head network
as 21, which is the maximum number of strawberries in the Straw DI_Db1 dataset. Thus,
the model would lose some targets if the testing image contains more than 21 strawberries.
Could we set this number to be larger? We then set N = 30 to investigate how this number
affects the performance of StrawSeg. Table 7 shows that increasing the number of predicting
masks greatly reduces the performance of StrawSeg. According to our statistics on Straw
DI_Db1, the average number of strawberries in an image is only 5.8. Thus, predicting too
many masks causes excessive negative samples when training, which makes the model
hard to optimize the parameters.

Table 7. Ablation study on the number of predicting masks by the network. Numbers in bold indicate
the best performance.

Number of Masks mAP AP50 AP75 mAPS mAPM mAPL

30 68.4 79.9 73.3 33.9 76.8 83.5
21(Ours) 79.7 90.6 84.3 41.0 82.7 96.4

4.3.6. Hyperparameters of Loss Functions

In our experiments, we choose λdice = 1, λ f ocal = 20 in the loss function by evaluating
on the validation set. Table 8 shows the performance variation of StrawSeg on the testing
set when varying the hyperparameters in the loss function. It is obvious that increasing
λ f ocal or λdice can improve the performance of StrawSeg, and a larger λ f ocal brings better
performance. However, λ f ocal = 30 achieves a lower result, which illustrates that setting
λdice = 1, λ f ocal = 20 is appropriate for training StrawSeg on this dataset.

Table 8. Ablation study on varying hyperparameters in the loss function. Numbers in bold indicate
the best performance.

λdice λ f ocal mAP AP50 AP75 mAPS mAPM mAPL

1 1 67.6 81.0 70.7 26.5 69.3 89.8
10 1 72.5 85.1 76.5 31.4 75.7 91.1
1 10 75.1 87.4 79.6 36.8 76.1 95.8
1 20 79.7 90.6 84.3 41.0 82.7 96.4
1 30 77.8 89.6 82.9 36.2 81.2 95.5

4.3.7. Usage of NMS

During the inference stage, we use the NMS process to remove a few binary masks that
have a few parts occluded by other masks. We explore the effectiveness of NMS. Table 9
shows that dropping the NMS process at the inference stage only reduces the accuracy by
3.4% mAP. This demonstrates that NMS is not necessary for our model, yet an effective
trick for improving accuracy.



Electronics 2023, 12, 3145 11 of 13

Table 9. Ablation study on the usage of NMS at the inference stage. Numbers in bold indicate the
best performance.

Postprocessing mAP AP50 AP75 mAPS mAPM mAPL

w/o NMS 76.3 86.4 80.5 37.7 79.5 94.5
Ours 79.7 90.6 84.3 41.0 82.7 96.4

4.4. Discussion

We develop StrawSeg to segment each strawberry in an image, and this model per-
forms well on the Straw DI_Db1 dataset compared with some state-of-the-art methods.
Theoretically, our model is available for any one-class instance segmentation task. To
investigate how well our StrawSeg generalizes to other more larger-scale datasets, we train
and evaluate models on a person instance segmentation dataset, CIHP [46], which is an
instance-level human-parsing dataset. This dataset includes 28,280 images for training,
5000 for validation, and 5000 for testing. The average and maximum number of persons in
an image are 3.4 and 12, respectively. Thus, we set N = 12 for StrawSeg when training on
CIHP, and MobileNetV2_0.5 is utilized as the backbone. We train models with 50 epochs,
and the other settings are the same with training on Straw DI_Db1. Table 10 shows a
performance comparison of our model with the baseline and SparseInst. The results verify
that our model, StrawSeg, still has superiority over the baseline and SparseInst.

Table 10. Performance comparison of our model with state-of-the-art methods on the CIHP testing set.
Numbers in bold indicate the best performance.

Methods mAP AP50 AP75 mAPS mAPM mAPL

Baseline 44.6 74.7 46.5 2.7 26.5 54.9
SparseInst 44.1 72.9 46.5 2.9 27.2 56.2

Ours 47.7 76.4 50.9 4.4 28.8 58.3

It is worth noting that the head network of StrawSeg only directly predicts masks
without a classification output; thus, StrawSeg can only adapt to the one-class instance
segmentation task. It may be applied to multiple-class instance segmentation by adding a
classification head to represent the probability of belonging to the target class. This can be
our future work to investigate the performance of StrawSeg on the multiple-class instance
segmentation task.

5. Conclusions

In this paper, we present a novel and highly efficient method for strawberry instance
segmentation on low-power devices for picking robots. Our network uses MobileNetV2
as the backbone to extract multiscale and multilevel features from the input image, and
the multiscale features are aggregated by the neck module. We design a novel feature
aggregation network termed FAN to merge these features with different scales. Instead of
implementing by interpolation or deconvolution layer, we employ a pixel shuffle operation
to increase the resolution and reduce the channels of features. The aggregated features
directly output a fixed number of masks to represent strawberries of the input image.
Experimental results demonstrate that our model can achieve a good trade-off between
accuracy and inference speed on a low-power device (NVIDIA Jetson Nano 2G), in which
our model with MobileNetV2_0.50 achieves 79.7% mAP and 19 FPS. In a future work, we
will explore the application of this model to the other fruit or vegetable localization on
different edge devices.



Electronics 2023, 12, 3145 12 of 13

Author Contributions: Conceptualization, L.C. and Q.J.; methodology, L.C.; software, L.C.; vali-
dation, L.C. and Y.C.; formal analysis, Y.C.; investigation, Q.J.; resources, Q.J.; data curation, Y.C.;
writing–original draft preparation, L.C.; writing–review and editing, Q.J.; visualization, Y.C.; supervi-
sion, L.C.; project administration, L.C.; funding acquisition, L.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Fundamental Research Funds for the Central Universities.

Institutional Review Board Statement: This article does not contain any studies with human partic-
ipants or animals performed by any of the authors.

Data Availability Statement: Data are available on this website: https://strawdi.github.io/ (ac-
cessed on 10 January 2023).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Preter, A.D.; Anthonis, J.; Baerdemaeker, J.D. Development of a Robot for Harvesting Strawberries. IFAC-PapersOnLine 2018,

51, 14–19. [CrossRef]
2. Charania, I.; Li, X. Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet Things 2020,

9, 100142. [CrossRef]
3. Hernandez-Martinez, N.R.; Blanchard, C.; Wells, D.; Salazar-Gutierrez, M.R. Current state and future perspectives of commercial

strawberry production: A review. Sci. Hortic. 2023, 312, 111893. [CrossRef]
4. Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and segmentation of overlapped fruits based on optimized mask

R-CNN application in apple harvesting robot. Comput. Electron. Agric. 2020, 172, 105380. [CrossRef]
5. Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on

Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [CrossRef]
6. Santos, T.T.; Souza, L.L.d.; Santos, A.A.d.; Avila, S. Grape detection, segmentation, and tracking using deep neural networks and

three-dimensional association. Comput. Electron. Agric. 2020, 170, 105247. [CrossRef]
7. Zeng, T.; Li, S.; Song, Q.; Zhong, F.; Wei, X. Lightweight tomato real-time detection method based on improved YOLO and mobile

deployment. Comput. Electron. Agric. 2023, 205, 107625. [CrossRef]
8. Ning, Z.; Luo, L.; Ding, X.; Dong, Z.; Yang, B.; Cai, J.; Chen, W.; Lu, Q. Recognition of sweet peppers and planning the robotic

picking sequence in high-density orchards. Comput. Electron. Agric. 2022, 196, 106878. [CrossRef]
9. Borrero, I.P.; Santos, D.M.; Arias, M.E.G.; Ancos, E.C. A fast and accurate deep learning method for strawberry instance

segmentation. Comput. Electron. Agric. 2020, 178, 105736. [CrossRef]
10. Borrero, I.P.; Santos, D.M.; Vazquez, M.J.V.; Arias, M.E.G. A new deep-learning strawberry instance segmentation methodology

based on a fully convolutional neural network. Neural Comput. Appl. 2021, 33, 15059–15071. [CrossRef]
11. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer

Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.
12. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

MICCAI, Munich, Germany, 5–9 October 2015; pp. 234–241.
13. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520.
14. Tian, Z.; Shen, C.; Chen, H. Conditional convolutions for instance segmentation. In Proceedings of the ECCV, Glasgow, UK,

23–28 August 2020; pp. 282–298.
15. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-Time Instance Segmentation. In Proceedings of the ICCV, Seoul, Republic of

Korea, 27 October–2 November 2019; pp. 9156–9165.
16. Zhang, R.; Tian, Z.; Shen, C.; You, M.; Yan, Y. Mask Encoding for Single Shot Instance Segmentation. In Proceedings of the CVPR,

Seattle, WA, USA, 13–19 June 2020; pp. 10223–10232.
17. Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. SOLO: Segmenting Objects by Locations. In Proceedings of the ECCV, Glasgow, UK,

23–28 August 2020; pp. 649–665.
18. Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. SOLOv2: Dynamic and Fast Instance Segmentation. In Proceedings of the NeurIPS,

Virtual, 6–12 December 2020.
19. Xie, E.; Sun, P.; Song, X.; Wang, W.; Liu, X.; Liang, D.; Shen, C.; Luo, P. PolarMask: Single Shot Instance Segmentation With Polar

Representation. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 12190–12199.
20. Dong, B.; Zeng, F.; Wang, T.; Zhang, X.; Wei, Y. SOLQ: Segmenting Objects by Learning Queries. In Proceedings of the NeurIPS,

Virtual, 6–14 December 2021.
21. Hu, J.; Cao, L.; Lu, Y.; Zhang, S.; Wang, Y.; Li, K.; Huang, F.; Shao, L.; Ji, R. ISTR: End-to-End Instance Segmentation with

Transformers. In Proceedings of the CVPR, Virtual, 19–25 June 2021; pp. 8737–8746.

https://strawdi.github.io/
http://doi.org/10.1016/j.ifacol.2018.08.054
http://dx.doi.org/10.1016/j.iot.2019.100142
http://dx.doi.org/10.1016/j.scienta.2023.111893
http://dx.doi.org/10.1016/j.compag.2020.105380
http://dx.doi.org/10.1016/j.compag.2019.06.001
http://dx.doi.org/10.1016/j.compag.2020.105247
http://dx.doi.org/10.1016/j.compag.2023.107625
http://dx.doi.org/10.1016/j.compag.2022.106878
http://dx.doi.org/10.1016/j.compag.2020.105736
http://dx.doi.org/10.1007/s00521-021-06131-2


Electronics 2023, 12, 3145 13 of 13

22. Cheng, T.; Wang, X.; Chen, S.; Zhang, W.; Zhang, Q.; Huang, C.; Zhang, Z.; Liu, W. Sparse Instance Activation for Real-Time
Instance Segmentation. In Proceedings of the CVPR, New Orleans, LA, USA, 18–24 June 2022; pp. 4423–4432.

23. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

24. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017;
pp. 6517–6525.

25. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
26. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
27. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.
28. Liu, M.; Jia, W.; Wang, Z.; Niu, Y.; Yang, X.; Ruan, C. An accurate detection and segmentation model of obscured green fruits.

Comput. Electron. Agric. 2022, 197, 106984. [CrossRef]
29. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the ICCV, Seoul,

Republic of Korea, 27 October–2 November 2019; pp. 9626–9635.
30. Liu, T.H.; Nie, X.N.; Wu, J.M.; Zhang, D.; Liu, W.; Cheng, Y.F.; Zheng, Y.; Qiu, J.; Qi, L. Pineapple (Ananas comosus) fruit detection

and localization in natural environment based on binocular stereo vision and improved YOLOv3 model. Precis. Agric. 2023,
24, 139–160. [CrossRef]

31. Kang, H.; Wang, X.; Chen, C. Accurate fruit localisation using high resolution LiDAR-camera fusion and instance segmentation.
Comput. Electron. Agric. 2022, 203, 107450. [CrossRef]

32. Zhang, Y.M.; Lee, C.C.; Hsieh, J.W.; kuo Chin, F. CSL-YOLO: A new lightweight object detection system for edge computing.
arXiv 2021, arXiv:2107.04829.

33. Cui, M.; Lou, Y.; Ge, y.; Wang, K. LES-YOLO: A lightweight pinecone detection algorithm based on improved YOLOv4-Tiny
network. Comput. Electron. Agric. 2023, 205, 107613. [CrossRef]

34. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings
of the ECCV, Munich, Germany, 8–14 September 2018; pp. 122–138.

35. Gui, Z.; Chen, J.; Li, Y.; Chen, Z.; Wu, C.; Dong, C. A lightweight tea bud detection model based on Yolov5. Comput. Electron.
Agric. 2023, 205, 107636. [CrossRef]

36. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features From Cheap Operations. In Proceedings of the CVPR,
Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586.

37. Li, K.; Wang, J.; Jalil, H.; Wang, H. A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5.
Comput. Electron. Agric. 2023, 204, 107534. [CrossRef]

38. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26
July 2017; pp. 6230–6239.

39. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings
of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944.

40. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the CVPR, Las Vegas, NV, USA,
27–30 June 2016; pp. 1874–1883.

41. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In
Proceedings of the ECCV, Glasgow, UK, 23–28 August 2020; pp. 213–229.

42. Cheng, B.; Schwing, A.G.; Kirillov, A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In Proceedings of
the NeurIPS, Virtual, 6–14 December 2021.

43. Neubeck, A.; Van Gool, L. Efficient Non-Maximum Suppression. In Proceedings of the ICPR, Hong Kong, China, 20–24 August
2006; Volume 3, pp. 850–855.

44. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the ECCV, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

45. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 801–818.

46. Gong, K.; Liang, X.; Li, Y.; Chen, Y.; Yang, M.; Lin, L. Instance-Level Human Parsing via Part Grouping Network. In Proceedings
of the ECCV, Munich, Germany, 8–14 September 2018; pp. 770–785.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compag.2022.106984
http://dx.doi.org/10.1007/s11119-022-09935-x
http://dx.doi.org/10.1016/j.compag.2022.107450
http://dx.doi.org/10.1016/j.compag.2023.107613
http://dx.doi.org/10.1016/j.compag.2023.107636
http://dx.doi.org/10.1016/j.compag.2022.107534

	Introduction
	Related Work
	Instance Segmentation
	Fruit Localization
	Lightweight Detection and Segmentation

	Methods
	StrawSeg Architecture
	Backbone
	Neck
	Head

	Label Assignment and Training Loss
	Inference

	Experiments
	Dataset and Metrics
	Dataset
	Metrics
	Implementation Details

	Comparison with State-of-the-Art Methods
	Ablation Studies
	Structure of the Neck Module
	Stage of Output Feature Maps
	Scale of Input Image
	Number of Convolution Layers in the Neck
	Number of Predicting Masks
	Hyperparameters of Loss Functions
	Usage of NMS

	Discussion

	Conclusions
	References

