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Abstract: The used car market has a high global economic importance, with more than 35 million
cars sold yearly. Accurately predicting prices is a crucial task for both buyers and sellers to facilitate
informed decisions in terms of opportunities or potential problems. Although various machine
learning techniques have been applied to create robust prediction models, a comprehensive approach
has yet to be studied. This research introduced two datasets from different markets, one with
over 300,000 entries from Germany to serve as a training basis for deep prediction models and a
second dataset from Romania containing more than 15,000 car quotes used mainly to observe local
traits. As such, we included extensive cross-market analyses by comparing the emerging Romanian
market versus one of the world’s largest and most developed car markets, Germany. Our study used
several neural network architectures that captured complex relationships between car model features,
individual add-ons, and visual features to predict used car prices accurately. Our models achieved a
high R2 score exceeding 0.95 on both datasets, indicating their effectiveness in estimating used car
prices. Moreover, we experimented with advanced convolutional architectures to predict car prices
based solely on visual features extracted from car images. This approach exhibited transfer-learning
capabilities, leading to improved prediction accuracy, especially since the Romanian training dataset
was limited. Our experiments highlighted the most important factors influencing the price, while
our findings have practical implications for buyers and sellers in assessing the value of vehicles. At
the same time, the insights gained from this study enable informed decision making and provide
valuable guidance in the used car market.

Keywords: car price prediction; visual features; cross-market analysis; feature analysis; deep
neural networks

1. Introduction
1.1. Overview

The used car market plays an important role in the global automotive industry, of-
fering an alternative avenue for consumers to purchase vehicles at a lower price than
new cars. Moore [1] argued that more than 35 million cars are sold yearly. This market
encompasses buying and selling pre-owned vehicles typically obtained through trade-ins,
auctions, or private sales. The used car market dynamic varies across different countries
due to variations in consumer preferences, economic factors, and regulatory frameworks.
Understanding these variations and predicting used car prices is essential for buyers and
sellers to make informed decisions and negotiate fair transactions.

Electronics 2023, 12, 3083. https://doi.org/10.3390/electronics12143083 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12143083
https://doi.org/10.3390/electronics12143083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0380-6814
https://orcid.org/0000-0002-4815-9227
https://doi.org/10.3390/electronics12143083
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12143083?type=check_update&version=1


Electronics 2023, 12, 3083 2 of 25

The used car market has witnessed substantial growth and transformation in various
countries over the years. While developed economies like Germany have long-established
used car markets, emerging economies have experienced rapid expansion in recent decades.
This growth can be attributed to increasing disposable incomes, growing urbanization,
and shifting consumer preferences toward affordable transportation options. Furthermore,
differences in government policies, taxation, and import regulations have shaped the
unique characteristics of each country’s used car market.

A comprehensive study of car markets, including new and used segments, is crucial as
it could provide insights into the overall health and dynamics of the automotive industry,
which serves as a key economic indicator. Applying machine learning techniques to study
used car markets has gained high levels of attention recently. Machine learning algorithms
offer a powerful means to analyze vast amounts of data and extract meaningful patterns,
thereby enabling the prediction of car prices based on their inherent features. The objective
of employing machine learning in this context is to develop accurate and reliable models to
estimate the value of a used car based on its make, model, year of manufacture, mileage,
condition, and other relevant attributes. In doing so, machine learning techniques facilitate
informed decision making for buyers and sellers, enabling them to assess the fair market
value of a vehicle and negotiate prices more effectively.

Conducting a comprehensive and comparative study on two distinct car markets
would also involve exploring the efficacy and generalizability of machine learning tech-
niques for used car price prediction. This comparative approach would support identifying
similarities, differences, and factors contributing to variations in used car prices across dif-
ferent markets. By selecting two countries with diverse economic, cultural, and regulatory
contexts, this study aimed to highlight the contextual factors that influence the pricing prac-
tices of used cars. Moreover, we sought to evaluate the performance of machine learning
models in predicting prices in these markets, thereby contributing to the development of
robust prediction methodologies to be applied across various car markets worldwide.

1.2. Related Work
1.2.1. Estimating Used Car Prices

Estimating used car prices is a significant research area that poses a challenge for
scholars aiming to address the regression task associated with price prediction. We em-
phasize that no universally recognized solution exists, and existing studies predominantly
focus on specific localized markets. Both emerging economies and developed countries
boast substantial second-hand car markets, and research endeavors in this domain span
diverse regions, including Germany [2], Bosnia and Herzegovina [3], China [4,5], India [6],
Bangladesh [7], and Romania [8].

For this task, we chose studies that have employed diverse approaches across various
market locations. Some investigations have used simple machine learning algorithms,
such as linear regression, decision trees [9], and gradient boosting [10]. These algorithms
are favored due to their interpretability and fast convergence for small- to medium-scale
datasets. In contrast, neural networks have been employed to increase prediction accuracy
by improving the aggregation of complex information extracted from features of different
kinds. The next subsections describe, in chronological order, six approaches that employed
simple regressors, followed by two studies that experimented with classical neural net-
works, while the last two papers tackled how deep neural network architectures like CNNs
and transformers can fuse information in the prediction process.

Classic Machine Learning

Pal et al. [2] developed a model for car price prediction using a random forest
classifier [11]. Their dataset comprised 370,000 German eBay entries related to the prices
and attributes of used cars. The data preprocessing and exploration procedure resulted
in using only 10 out of the 20 car attributes from the initial dataset, namely: car shape,
brand, model, age, mileage, engine power, type of fuel, transmission, whether the car was
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damaged and repaired or not, and price. Following model training and testing, the authors
obtained an R2 of 0.83 on the validation data, with price, kilometers, brand, and vehicle
type being the most relevant features.

Kondeti et al. [7] implemented various machine learning techniques to develop a
model for car price estimation. The dataset used by the authors consisted of 1209 entries
related to the prices and attributes of pre-owned cars. It was obtained via scraping methods
applied on an online marketplace from Bangladesh. Here, again, data were explored and
preprocessed to address issues related to outliers, missing data, unrepresentative samples,
the lack of numerical representations of text attributes, multicollinearity, and different
measurement scales. This resulted in using 9 of the 10 car attributes present in the initial
dataset, namely transmission, fuel type, brand, car model, model year, car shape, engine
capacity, mileage, and price. Of the five implemented regression models, extreme gradient
boosting was declared most suitable for car price prediction, with an R2 of 0.91, closely
followed by the random forest classifier with an R2 of 0.90. However, random forests scored
better in terms of the mean average error.

Gegic et al. [3] created a car price prediction model based on an ensemble architecture
consisting of a random forest classifier, a neural network, and a support vector machine [12].
They collected a dataset for used car price estimation in the market of Bosnia and Herzegov-
ina by utilizing a web scraper and cleaning up the data, resulting in 797 distinct samples.
The inputs of the models were features such as the brand, model, car condition, trans-
mission, mileage, and color. The authors initially converted distinct price intervals to
nominal classes and tested each type of classifier separately, obtaining subpar performance.
Subsequently, they introduced an intermediate task of classifying the cars into “cheap”,
“moderate”, or “expensive”, which was performed by the random forest classifier. Based
on this result, the features were given as the input for an independent support vector ma-
chine or neural network, further refining the prediction by estimating the class of the price
interval. Their final architecture combining all the classifiers obtained an accuracy of 0.87.

Venkatasubbu and Ganesh [13] experimented with different supervised regression
techniques for used car price prediction and studied which variables were most predictive
for this task. They considered the dataset introduced by Kuiper [14], which contained
a total of 804 sample cars with annotations for mileage, make, model, trim, body type,
cylinder, liters, doors, cruise, sound, leather seats, and price. The authors trained models
for lasso regression [15], multiple linear regression, and regression trees on a training set
consisting of 563 records, leaving the rest of the samples for testing. The multiple regression
model obtained the lowest error rate of 3.468%, the regression tree obtained an error rate of
3.512%, and the lasso regressor obtained an error rate of 3.581%.

Samruddhi and Kumar [6] tackled the task of car price prediction with a k-nearest
neighbor classifier. Their experiments were conducted on a Kaggle dataset containing
information about each car’s name, location, year, kilometers, fuel, transmission, mileage,
owner’s number, engine, power, and seats. They encoded these values to obtain a high-
dimensional Euclidean space in which they utilized a k-nearest neighbor algorithm to
predict the price. The price of an unknown sample was predicted as the average of the
closest k known cars in this Euclidean space. They performed an analysis to obtain the
optimal k value, and their results showed that observing the closest four samples yielded
the lowest error rate. Their model obtained an accuracy of 82%, a root mean square error
(RMSE) rate of 4.74, and a mean absolute error (MAE) rate of 2.13.

Gajera et al. [16] used a dataset consisting of 92,386 records to train multiple regression
techniques such as KNN regression, random forest, linear regression, decision trees, and
XGBoost. Each sample contained information about mileage, the year of registration, fuel
type, car make, model, and gear type. The random forest regression model obtained the
lowest error rate and achieved an RMSE of 3702.34, followed by the XGBoost model, which
obtained an RMSE of 3980.77.
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Neural Networks—Multi-Layer Perceptron

Liu et al. [5] proposed a PSO-GRA-BPNN (particle swarm optimization–grey relation
analysis–backpropagation neural network) model for second-hand car price prediction.
The dataset collected for the implementation of the model comprised 10,260 entries related
to the attributes of second-hand cars sold through a car trading platform from East China.
The attributes used for developing the model were: brand, drive mode, gearbox, engine
power, car shape, mileage, age, fuel consumption, emission standard, region, and price. The
performance of the PSO-GRA-BPNN model was compared to random forest, multiple linear
regression, and support vector machine models. Based on this comparison, the authors
concluded that the performance of the PSO-GRA-BPNN model was superior to that of the
others, with an R2 of 0.98 and a mean average percentage error of only 3.9%. However,
their model was the slowest in terms of training speed compared to the other models.

Cui et al. [4] introduced an innovative framework for price regression, employing a
combination of two gradient-boosting techniques and a deep residual network [17]. The
authors conducted experiments on a dataset comprising more than 30,000 samples, taking
into account over 20 features, including the most frequently used features like the car brand,
mileage, age, and fuel type. The neural network processed the input features, generating
an optimized representation of the attribute characteristics. This representation and the
initial prediction served as the input for an XGBoost module, which iteratively predicted
the price by incorporating the predicted price from the previous iteration and the initial
features. To further enhance the results, a LightGBM framework was employed, utilizing
the preceding prediction and initial features to retrain the representations iteratively until
performance improvement plateaued. The proposed evaluation metric, which combined
the mean absolute percentage error (MAPE) and accuracy, yielded a score of 75 out of 100.

Deep Neural Networks

Yang et al. [18] studied the problem of car price prediction from images by employing
multiple classic machine learning techniques and deep learning models such as convo-
lutional neural networks. They constructed a dataset consisting of 1400 images of front
angular views of different cars, with prices ranging from USD 12,000 to USD 2,000,000.
They developed initial baselines for price regression based on linear regression models that
took as their input HOG features or features extracted from pre-trained CNNs. Moreover,
they created a classification task by splitting the data into price intervals and training the
models to predict the price class. The researchers allocated class segments to each example
by employing price cutoffs that aligned with specific percentiles of price distribution (20th,
40th, 60th, 80th, and 100th percentiles) to predict car prices. Their baseline consisted of a
support vector machine classifier for this task. They further analyzed the performance of
CNN models such as SqueezeNet [19] and VGG-16 [20], along with a custom architecture,
PriceNet, which built upon SqueezeNet by adding residual connections between modules
and batch normalization. The PriceNet architecture achieved the best performance for all
metrics, obtaining an RMSE of 11,587.05, an MAE of 5051.61, an R2 score of 0.98 for the
regression task, and an F1 score of 0.88 for classification.

Dutulescu et al. [8] studied several approaches in terms of price prediction, employing
baseline models such as XGBoost and experimenting with deep neural networks to better
aggregate car features. They constructed a dataset of 25,000 ads from a Romanian website
that advertised used cars. The features used in the prediction were the brand; model;
year of manufacture; mileage; fuel; engine capacity; transmission; and a list of add-ons,
which were extra components of cars that customers could opt to include on their cars.
The employed neural networks learned embeddings for the car model to better represent
this feature, and several experiments were performed for add-on representation. Add-ons
were represented as their total count, hot-encoded with a dense projection, or encoded
as trainable embeddings with and without a self-attention layer. Moreover, a pre-trained
RoBERTa model was employed on the text descriptions of the add-ons to capture the
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linguistic meaning of these options. The best scores of 95.47 R2 and 10.68% mean percentage
error were obtained by the neural network that employed learned embeddings on add-ons.

The problem with most of the identified studies was their small scale in terms of
dataset size. However, deep neural networks, which exceed the performance of simple
models in every task nowadays, require a large training set for capturing the complex
relations between the features to be successfully employed. The current landscape of car
price prediction would benefit from deep learning approaches that can take full advantage
of car feature information. Moreover, a comprehensive study of multiple markets and their
particularities has yet to be conducted, as the prediction models’ potential is far from being
fully explored.

1.2.2. Computer Vision Models for Image Processing

In terms of image analysis architectures, SqueezeNet [19] is a deep neural network
specifically designed for efficient image classification tasks. It stands out due to its model
compression technique, achieving high accuracy while reducing the model size and com-
putational complexity. The key innovation of SqueezeNet lies in its fire module, which
combines both squeeze and expand operations to strike a balance between model effi-
ciency and expressive power. SqueezeNet has demonstrates good performance on various
benchmark datasets. It has achieved comparable or superior results to deeper and larger
networks while having considerably fewer parameters.

EfficientNet Tan and Le [21] is a newer convolutional neural network that has achieved
superior performance by balancing model complexity and computational efficiency. The
architecture employs a compound scaling technique that uniformly scales the network’s
depth, width, and resolution, improving accuracy while minimizing computational over-
head. EfficientNet has consistently achieved top performance in well-known challenges,
such as ImageNet [22] classification (84.3% accuracy), and outperformed previous models
[17,23,24] by a large margin. Moreover, EfficientNet has demonstrated its effectiveness
in transfer-learning scenarios, where it excels at learning representations from large-scale
pre-training datasets and transferring that knowledge to downstream tasks with limited
labeled data.

Liu et al. [25] built upon the vision transformer (ViT) architecture [26], which used the
self-attention mechanism introduced in the transformer model [27] to capture interactions
between image patches. Their Swin transformer considered a hierarchical approach to
extract features at multiple resolutions, making it suitable as a backbone for multiple vision
tasks. This hierarchical structure was obtained by incrementally combining embeddings
corresponding to neighboring image patches. Moreover, the Swin transformer replaced
the classic self-attention operation requiring a quadratic computation time with a more
efficient approximation function. It split the operation into two modules, one that captured
the interactions between image patches inside a local window and one that shifted the
local window, capturing global information. The Swin transformer obtained state-of-the-art
results in image classification on ImageNet [22], object detection on COCO [28], and image
segmentation on ADE20K [29].

1.3. Research Objective

Our research objective was to develop comprehensive and accurate machine learning
models for predicting used car prices in different car markets. As such, this study aimed to
train deep learning architectures that captured complex relationships between car features
from two distinct datasets localized in Romania and Germany. To this end, we conducted
a comprehensive evaluation of three car price prediction approaches based on: gradient
boosting as a baseline, neural networks for learning the interactions between the features
of the car, and deep image processing architectures for obtaining relevant visual features
from the car image. Overall, this research contributes to developing robust prediction
methodologies for used car prices to be applied across various car markets worldwide
and provides a deeper understanding of the contextual factors that define used car prices,
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highlighting the similarities and differences between markets while providing insights into
pricing dynamics.

This study expanded upon the initial experiments performed by Dutulescu et al. [8].
Along with improving the initial dataset with additional features, another large-scale
dataset was introduced, representative of the German market with over 300,000 car quotes.
This served as a resource for our cross-market analysis. We reproduced the experiments on
both datasets and proposed new ways of aggregating categorical features. Moreover, we
complemented our approach with image analysis to improve the predictions further.

The main contributions of this article toward these objectives are threefold:

• We created a comprehensive dataset comprising over 300,000 entries from the Ger-
man market and a second dataset comprising more than 15,000 car quotes from the
Romanian market. These datasets served as valuable resources for training the deep
prediction models and enabled a comparative analysis of the behavior and predic-
tion models between the emerging Romanian and well-established German markets.
To our knowledge, these combined datasets represent the largest corpus analyzed
to date and provided a basis for the first cross-market analysis on fine-tuning deep
learning models.

• We introduced state-of-the-art approaches for developing advanced prediction models
that accurately estimated used car prices by considering multiple types of features,
trainable embeddings, multi-head self-attention mechanisms, and convolutional neu-
ral networks applied to car images. These models achieved a high prediction accuracy,
with the R2 score exceeding 0.95. Moreover, we added to these findings an extensive
ablation study to showcase the most relevant features, while an error analysis was
also performed to study the models’ limitations.

• We created a baseline model that employed convolutional architectures to predict
car prices based solely on visual features extracted from car images. This model
demonstrated transfer-learning capabilities, enabling improved prediction accuracy,
particularly for low-resource training datasets. This highlighted the potential for
leveraging visual information alone to predict car prices accurately.

2. Method

This section describes the introduced datasets and the prediction methods in detail.

2.1. Datasets

The datasets used in this study were extracted from two distinct platforms, namely
Autovit.ro and Mobile.de, which are prominent websites dedicated to selling second-hand
cars in Romania and Germany, respectively. Autovit.ro primarily caters to the Romanian
market, with a localized focus limited to the country’s geographical boundaries. In contrast,
Mobile.de is a broader platform that serves the German second-hand car market, known for
having the largest market share within the European Union. However, it is worth noting
that Mobile.de is also widely used by individuals in neighboring countries, including
Romania. Overall, 30,264 car ads were scraped from Autovit.ro, while 1,308,575 entries
were extracted from Mobile.de, on March 2023. As per the terms and conditions statements
of each website, posting duplicate ads of the same vehicle is not allowed, and there are
methods in place to remove the ads violating this rule. This implies that no duplicate vehi-
cles were part of our dataset. While the same features were extracted from both websites,
variations in the feature values were observed, requiring subsequent post-processing steps
for normalization. The features considered relevant for the purpose of this investigation en-
compassed the car brand, car model, year of manufacture, mileage, engine power, gearbox
type, fuel type, engine capacity, transmission, car shape, color, add-ons, images, and price.

An outlier filtering technique was employed to ensure the integrity of the data and
eliminate spurious ads that could adversely impact the training and prediction processes.
This filtering procedure was conducted alongside additional pre-processing steps to main-
tain data quality.
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The subsequent sections detail the pre-processing steps undertaken for both datasets
unless otherwise specified.

1. Mobile.de ads do not explicitly contain the categorized car brand and model but
rather a title written by the seller. We extracted these two relevant features from the
title using a greedy approach of matching them against an exhaustive list of all car
brands and models and choosing the closest fit. Finding a category was impossible
for some ads, and these entries were dropped from the dataset.

2. We discarded the ads that did not contain the relevant features mentioned above
and those that did not contain at least an image of the car’s exterior. As some sellers
published multiple images, some irrelevant to the ad or not showing the entire vehicle,
we only considered images that contained the full car exterior. This filtering was
carried out with the help of a YOLOv7 model [30] that detected a bounding box for a
car image. Images displaying multiple cars without a prominent focus (e.g., parking
lots) or with car bounding boxes occupying less than 75% of the entire image size
were removed from the dataset.

3. To maintain precision and minimize the presence of erroneous data, listings with
questionable features were eliminated, as they could potentially contain inaccurate
information. Thus, we excluded cars with a manufacturing year before 2000, a mileage
exceeding 450,000 km, a price surpassing EUR 100,000, and an engine power exceeding
600 horsepower.

4. The dataset was split randomly into an 80% training set and a 20% validation set;
however, we ensured a balanced distribution of car brands in each subset. Notably, a
car advertisement could include multiple images, resulting in multiple entries within
the dataset (one for each image). However, measures were taken to ensure that
the training and validation sets did not contain the same advertisements but rather
different ads, each with their respective images.

5. Within the training dataset, we calculated each car model’s mean and standard
deviation. Subsequently, we removed outlier listings from the entire dataset that fell
outside the range defined by meanmodel ± stdmodel , where meanmodel and stdmodel are the
mean price and standard deviation calculated for each car model, respectively. When
considering car models with less than 20 instances in the dataset, we calculated the
mean and standard deviation for the car manufacturer instead to ensure meaningful
measurements, because the car manufacturer category contained an adequate number
of entries for each group. We determined the mean and standard deviation on a
per-model basis for frequently represented car models (i.e., with over 20 sale ads).

This filtering removed 15,253 entries from Autovit.ro and 1,001,324 entries from
Mobile.de; thus, our datasets retained 15,011 and 307,251 unique entries, respectively.
Moreover, 59,450 images were available for Autovit.ro ads, while 1,628,546 images from
Mobile.de were kept.

A thorough analysis of both datasets is presented below. We based our choice of
experiments on this analysis to make the most of the data.

The car brand and model were the most relevant categorical features for our task.
Figures 1 and 2 depict the frequency distributions of the top 10 most popular car brands in
the datasets. Notably, a similarity emerges from the figures, as they reveal a considerable
overlap in the most frequently occurring models between the German and Romanian
markets. This alignment could be attributed to the substantial influx of car imports into
Romania, particularly in the form of second-hand vehicles originating from Germany.

The next features had the same distribution and tended to follow the same pattern
from one dataset to another, even though their values were not considered when creating
the training and validation partitions. The year of manufacture data in Figures 3 and 4
show that the majority of vehicles were manufactured between 2015 and 2020, with an
approximate age of around 5 years at the time of the ad posting.
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Figure 1. Ten most popular brands—Autovit.ro.

Figure 2. Ten most popular brands—Mobile.de.

Figure 3. Year of manufacture—Autovit.ro.
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Figure 4. Year of manufacture—Mobile.de.

In terms of mileage, roughly 5% of the cars (i.e., 728 from the Romanian dataset and
21,171 from the German ads) had less than 5000 km, making them candidates for new or
almost new vehicles. Here, the difference between the two datasets was more striking, as
Mobile.de ads tended to become less frequent as the mileage increased. At the same time,
a high number of vehicles from the Romanian market were sold at around 200,000 km, a
tendency also shown in Figures 5 and 6.

Figure 5. Mileage—Autovit.ro.

In terms of engine power, the values were measured in horsepower, and the vast ma-
jority of advertised cars had a value between 100 and 200 HP. Off-value ads had a lower fre-
quency for both datasets, especially after the 300 mark. However, Mobile.de also advertises
luxury cars with a high engine power given its wider market (see
Figures 7 and 8).
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Figure 6. Mileage—Mobile.de.

Figure 7. Engine power—Autovit.ro.

Figure 8. Engine power—Mobile.de.

Table 1 highlights the distribution of a subset of features across both datasets and
partitions. A difference was observed in the gearbox category between the two datasets.
The distribution on Autovit.ro highlighted a strong preference for automatic cars, with
around 50% more automatic vehicles than manual ones. The gearbox type tended to have a
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meaningful impact on the selling price. However, the difference was small in the German
market, and the numbers were balanced between the two classes. The fuel type highlighted
another striking difference between the two datasets. Diesel cars were advertised on
Autovit.ro more than gasoline-based ones by a large margin. Although this preference was
also be observed on Mobile.de, the vehicles were more evenly balanced. However, in both
datasets, oil-based fuel was strongly preferred in comparison to alternatives. The engine
capacity was a relevant feature, since it influences car tax. It had a similar distribution in
both datasets, with most vehicles advertised at around 2000 cm3. In terms of transmission
type, a preference for 2 × 4 transmission was observed in both datasets, as an integral
transmission increased the price; this difference was more pronounced in the Mobile.de
dataset. However, it should be noted that while sellers on Autovit.ro were asked to choose
the transmission type, on the German website, users had the possibility of adding the
4 × 4 feature as an add-on, and many may have omitted this step.

Table 1. Distribution of specific features.

Feature Value
Autovit.ro Mobile.de

Training Validation Total Training Validation Total

Transmission 2 × 4 6914 1690 8604 192,305 47,932 240,237
4 × 4 5125 1282 6407 53,561 13,453 67,014

Fuel

Diesel 8445 2082 10,527 105,842 26,442 132,284
Gasoline 2893 683 3576 128,643 32,172 160,815
Hybrid 645 193 838 9545 2310 11,855

LPG 56 14 70 1596 401 1997
Others 240 60 300

Gearbox Automatic 7469 1876 9345 127,071 31,828 158,899
Manual 4570 1096 5666 118,795 29,557 148,352

Engine capacity

<1000 508 106 614 22,257 5543 27,800
1000–2000 8743 2183 10,926 175,479 43,902 219,381
2000–3000 2623 642 3265 39,488 9,780 49,268

3000+ 165 41 206 8642 2160 10,802

The car shape also had a different distribution among the two datasets, as SUVs are
prevalent in the Romanian market. At the same time, the Mobile.de website presented a
more balanced distribution (see Figures 9 and 10).

Figure 9. Car shape—Autovit.ro.
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Figure 10. Car shape—Mobile.de.

The color did not have a high impact on the price, although specific car models had a
default color with a lower price than other options (see Figures 11 and 12).

Figure 11. Color—Autovit.ro.

Figure 12. Color—Mobile.de.

In addition to the primary features, the vehicle owners may have appended a list of
supplementary attributes for their cars in the advertisement. These add-ons were presented
as an unordered list with string-based categorical values. The add-ons for a given vehicle
could include up to 180 distinct categories for Autovit.ro and 120 for Mobile.de, with the
most prevalent ones displayed in Table 2.
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Table 2. Most frequent add-ons.

Autovit.ro Mobile.de
Add-On Count Add-On Count

ABS 13,626 ABS 300,662
ESP 13,494 Power steering 296,909

Electric windows 13,428 Central locking 295,256
Radio 12,933 Electric windows 293,416

Driver airbag 12,555 Electric side mirror 284,564
Passenger airbag 12,531 ESP 283,250

Side airbag 12,082 Isofix 263,770
Heated exterior

mirrors 12,037 On-board computer 258,794

Leather steering
wheel 11,986 Alloy wheels 248,468

Isofix 11,643 Electric immobilizer 247,690

Finally, the predicted feature was the price. Here, both datasets showcased similar
distributions (see Figures 13 and 14), with the highest number of cars advertised at below
EUR 20,000. It should be noted that the price represented the owner’s asking price, so this
may not have reflected the real market value of the car. Furthermore, the prices categorized
by the most popular manufacturers displayed noteworthy variations in terms of value,
with certain brands exhibiting a broad spectrum of potential prices. In contrast, other
brands had values concentrated within a narrow range, as illustrated in Figure 15. It should
also be noted that cars advertised on Autovit.ro had a higher mean asking price than cars
of the same brand on Mobile.de. An underlying reason is that some of the cars from the
Romanian market were bought from Germany and resold at a higher price in Romania.

Figure 13. Price distribution—Autovit.ro.

Figure 14. Price distribution—Mobile.de.
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Figure 15. Price distribution—most popular brands.

Overall, we observed that the Mobile.de dataset had more evenly distributed numeri-
cal features and a more granular and diverse range of categorical features. In contrast, the
Romanian market tended to be more biased towards certain car types.

The initial representation of the features remained largely consistent across all exper-
iments, with only minor variations based on their respective types. Table 3 provides an
overview of the features in their original state, while the subsequent model descriptions
document any specific modifications made to them.

Table 3. Feature representation.

Feature Representation

Brand, model, gearbox, fuel, transmission,
shape, color

Categorical features, represented with an
integer as ID

Year of manufacture, mileage, engine power,
engine capacity

Numerical features, scaled with Z-score in
(0, 1) interval

Add-ons List of categorical features, handled differently
based on the approach

Images .jpg file, converted into a 3D array

Price Numerical feature, scaled differently based on
the approach

2.2. Gradient-Boosting Methods

The first experiments as a baseline for further analysis involved extreme gradient
boosting. XGBoost [10] is an extension of the gradient-boosting method that combines
multiple weak classifiers to form a strong classifier. The algorithm works by iteratively
building decision trees based on the previous tree’s error to minimize the model’s overall
error. Although it is widely used for classification, XGBoost can also be effectively used to
predict continuous values in a regression task.

For the purpose of this experiment, we used all features described in Table 3, except
the images, since XGBoost cannot handle this type of data efficiently. The IDs of the
categorical features were scaled in the interval [0; 1] using a MinMaxScaler [31], since the
algorithm did not have the ability to learn a better representation. The list of add-ons was
hot-encoded as binary features to mark a specific extension’s presence and account for
different combinations of add-ons. The price was also scaled in the [0; 1] interval.

2.3. Neural Network Methods

We conducted various experiments involving different neural network architectures
to enhance the learning of inter-feature relationships and optimize the representation of
the car model and its manufacturer. All neural network architectures were trained to
learn an embedding that optimally represented the car model and its brand. However, the
training process failed to converge for certain infrequent car models. To address this issue,



Electronics 2023, 12, 3083 15 of 25

we employed a mapping procedure whereby the embedding for models with fewer than
20 occurrences was learned for the manufacturer rather than for the model itself. To encode
the name of the car more formally, we considered the following method:

name =

{
brand, i f f req(model) < 20
model, otherwise

(1)

Furthermore, the price was scaled based on the mean and standard deviation com-
puted per car model (or brand, for models with a frequency of fewer than 20 entries). As
such, the predicted price was computed as:

GTi =
pricei − meanname

stdname
(2)

After the model performed the predictions, the final price was evaluated with the
inverse transformation of Equation (2).

An embedding for the rest of the categorical features was learned during the training
process. Numerical features were scaled as described in Table 3. In terms of add-ons, we
experimented with several ways of including them in the training. The listing below offers
a detailed description of how add-ons were encoded and used as features.

A general architecture (see Figure 16) was used in all the experiments. Unless a
variation is mentioned regarding image processing or add-on representation, the neural
network had the same general structure with different hyperparameters fine-tuned for each
special case. The numerical features were used as-is, while an embedding layer trained its
weights to learn an optimal representation for each categorical feature in the current context.
The network component responsible for handling add-ons differed from one approach to
another and is detailed for each variation. All these representations were concatenated and
served as the input for a stack of dense layers of different sizes to learn and represent the
complex relationships between the input features and their corresponding outputs. The
final dense layer computed the model output and predicted the price value.

Figure 16. General architecture overview.

2.3.1. Neural Network with Hot-Encoded Add-On Projection

In this case (see Figure 17), the add-ons were hot-encoded to account for their presence
or absence. We encoded them with −1 for their absence and 1 for their presence since these
values were forwarded to a dense layer with a tanh activation function.
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Figure 17. Hot-encoded add-on projection component.

2.3.2. Neural Network with Mean Add-On Learned Embeddings

In order to better learn a representation for each add-on and a representation of what
the absence of that option meant, add-ons were aggregated using trainable embeddings (see
Figure 18). For each potential add-on, two embeddings were computed: one to represent
its presence and another to represent its absence. As a result, each vehicle was allocated an
equal number of attributes pertaining to add-ons. The average of these embeddings was
then considered an aggregation of the vehicle’s characteristics.

Figure 18. Mean add-on embedding component.

2.3.3. Neural Network with Add-On Embeddings and Multi-Head Self-Attention

Another approach similar to the previous method involved learning a contextualized
representation of these add-ons (see Figure 19), which accounted for more relations than
aggregating the average. As previously stated, a self-attention layer was used after comput-
ing the embeddings. The multi-head self-attention determined how much each individual
add-on contributed to the representation of other add-ons, facilitating the identification
of relevant dependencies and capturing long-range dependencies. Self-attention enabled
the network to focus on different parts of the input adaptively. After the self-attention was
applied, the output was averaged to obtain an aggregated representation.

Figure 19. Add-on embedding with self-attention component.

2.3.4. Deep Neural Networks for Image Analysis and Add-On Multi-Head Self-Attention

In order to use all available information in the dataset, we adopted a comprehensive
approach by incorporating numerical, categorical, and image attributes. The previously
described features were aggregated using the above experimental method, the neural net-
work with add-on embeddings and multi-head self-attention. Additionally, we integrated
information about the vehicle’s image into our model. To achieve this, the image was
reshaped into a three-dimensional array of dimensions (224, 224, 3), enabling us to capture
its visual characteristics. Subsequently, we employed a pre-trained convolutional neural
network (CNN) architecture to extract contextualized information from the image. The
resulting image projection was combined with the numerical projection obtained from
the previous features. The concatenated attributes were then passed through a stack of
dense layers, enabling the network to learn complex relationships and patterns within the
data. Finally, the prediction was computed based on the processed features, resulting in a
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comprehensive and informed output based on both the declared car characteristics and
images provided in the ad.

For the purpose of this approach, we experimented with a pre-trained convolutional
neural network architecture, namely EfficientNet [21], and a transformer-based architecture,
Swin transformer [25]. Both architectures were selected based on their proven state-of-the-
art results on various computer vision tasks and their transfer-learning ability. Although
used for classification tasks, we removed the classification head from EfficientNet and
used the last hidden states of both as a representation of the image characteristics. This
representation was then sent into our downstream task of price regression. Although the
weights of the pre-trained networks were initialized with their published values, we kept all
layers trainable to allow the network to dynamically adjust and adapt to our specific task.

Figure 20 presents a detailed visual representation of this architecture.

Figure 20. Deep neural networks for image and feature analysis architecture.

2.4. Experimental Setup

In all preceding models, we used the TensorFlow framework version 2.12 [32] to build
the models and conducted hyperparameter tuning to achieve an optimal configuration
by employing grid-search cross-validation via the Scikit-learn framework [31] and Keras
Tuner [33]. Appendix A outlines the range of considered values and their corresponding
optimal values.

3. Results

We computed the results (see Table 4) using the testing set for all described methods
and their best hyperparameter settings. Three metrics were used to analyze the perfor-
mance, namely the R2 score to assess the prediction accuracy considering the variety of
ground-truth labels, the mean absolute error (MAE), the median error (MedE), and the
root mean squared error (RMSE). It should be noted that the results were calculated for
the final prices with their ground truth after rescaling the models’ predictions. Overall, the
best-performing method on both datasets was the neural network with self-attention on
add-on embeddings.
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Table 4. Results (bold denotes the best model in terms of R2 and MAE).

Method
Autovit.ro Mobile.de

R2 MAE MedE RMSE R2 MAE MedE RMSE

XGBoost 0.92 2965 1613 5570 0.91 3102 1772 4527

NN with add-on projection 0.95 2463 1391 4403 0.94 2050 1236 3696
NN with add-on
embedding 0.96 2234 1298 3788 0.95 2018 1220 3271

NN with self-attention on
add-on embedding 0.96 2230 1296 3762 0.95 2012 1214 3261

EfficientNet for image
analysis and self-attention
on add-on embedding

0.96 2369 1350 3839 0.95 2030 1231 3306

Swin transformer for image
analysis and self-attention
on add-on embedding

0.96 2462 1533 3899 0.95 2116 1233 3340

4. Discussion

XGBoost represented our baseline against which to compare the results. The neural
network architectures yielded the best results, as they learned more complex feature
relations. The architecture that leveraged multi-head self-attention on add-on embeddings
ranked the highest due to its ability to contextualize vehicle characteristics and gather
information from different configurations. This approach achieved a high score since it was
trained on multiple characteristics without overfitting.

The deep neural network that leveraged images along with numerical features also
achieved high accuracy. However, as the features gathered from the images could be
inferred from existing data, the last configuration did not improve upon the best-performing
model prediction. A more detailed discussion on how the features impacted the model
prediction, followed by an analysis of the best model’s errors, as well as this study’s
limitations, are presented in the next subsections.

4.1. Ablation Study

As neural networks lack a straightforward method of determining feature importance,
we performed an ablation study to highlight how each feature impacted the model and
whether the neural network could learn to predict an accurate price without a particular
piece of information.

Table 5 refers to the experiments carried out by removing a feature from the input
while keeping the same model architecture of the best-performing approach described
above. We kept the same brand and model of car in all cases, as these characteristics were
compulsory for computing the final price. The most relevant features, whose absence
impacted performance, were the year of manufacture, the mileage, and the list of add-ons.
Other car characteristics did not disturb the predictions, as they could be inferred from a
combination of the remaining features.

Moreover, we explored the extent to which each characteristic individually supported
the predictions. Table 6 provides insights into how each feature influenced the price of
a particular car model and brand. Again, the most influential features were the year of
manufacture, mileage, and add-ons. However, all features influenced a car’s price, more or
less, and their importance was consistent across both datasets.

A particularly interesting experimental setup examined the model’s ability to de-
termine a car’s price based on just car images. For this experiment, we considered the
pre-trained deep neural networks and appended a dropout and a stack of fully connected
layers (see Figure 21). The input for this network was the image array, and all the architec-
ture weights were trainable. The results suggested that the model predicted the price of the
vehicle with satisfactory accuracy using images alone. Moreover, the model attained a high
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score for estimation accuracy in the case of the Mobile.de dataset, which contained over
50× the number of image entries than the Autovit.ro dataset and was considerably more
diverse.

Figure 21. Deep neural network for image analysis architecture.

Table 5. Validation results after removing one feature (bold denotes features with the highest impact).

Model Structure Autovit.ro Mobile.de

Best architecture without: R2 MAE MedE RMSE R2 MAE MedE RMSE

- 0.96 2230 1296 3938 0.95 2012 1214 3399
Year of manufacture 0.94 3028 1949 4823 0.94 2223 1374 3833

Mileage 0.95 2723 1600 4403 0.93 2481 1589 4192
Engine power 0.96 2342 1354 4057 0.94 2077 1249 3698

Engine capacity 0.96 2251 1342 3958 0.95 2004 1203 3374
Add-ons 0.96 2401 1401 4164 0.93 2264 1370 3993

Fuel 0.96 2278 1336 3983 0.95 2007 1200 3382
Transmission 0.96 2243 1337 3947 0.95 2018 1221 3411

Gearbox 0.96 2270 1331 3974 0.94 2046 1248 3656
Car shape 0.96 2271 1315 3976 0.94 2051 1218 3671

Color 0.96 2299 1334 4002 0.95 2011 1202 3394

Table 6. Validation results after adding one feature (bold denotes features with the highest impact).

Model Structure Autovit.ro Mobile.de

Brand/Model with: R2 MAE MedE RMSE R2 MAE MedE RMSE

- 0.57 8761 5697 12914 0.57 7015 5182 9896
Year of manufacture 0.92 3444 1930 5570 0.87 3450 2240 5441
Mileage 0.88 4419 2872 6822 0.84 3955 2637 6036
Engine power 0.72 6525 3559 10421 0.75 4958 3226 7545
Engine capacity 0.63 7930 4947 11979 0.67 5828 3880 8669
Add-ons 0.82 5181 2927 8355 0.87 3374 2124 5441
Fuel 0.62 8010 5052 12140 0.61 6651 4852 9424
Transmission 0.60 8395 5215 12455 0.58 7083 5338 9780
Gearbox 0.61 8113 4725 12298 0.63 6427 4583 9179
Car shape 0.59 8546 5476 12610 0.60 6804 4945 9544
Color 0.59 8659 5669 12706 0.59 6784 4873 9663

Images (EfficientNet) 0.69 6899 4053 10965 0.82 4045 2658 6402
Images (Swin transformer) 0.67 7534 4335 11313 0.82 4087 2697 6471
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4.2. Transfer-Learning Capabilities

The evaluation results considering only car images from Autovit.ro were unsatisfactory
and differed from the high scores computed for the Mobile.de dataset. As such, we tested
whether the training carried out on the larger dataset had transfer-learning capabilities and
could improve the results for the other market. In this regard, we took the architecture
from Figure 21 and pre-trained it on the Mobile.de images to predict the price. After
this, we fine-tuned the resulting model on the Autovit.ro dataset for only five epochs to
gather the particularities of the Romanian car prices and market. The results presented in
Table 7 showcased an improvement of over 10% in the R2 score for the Autovit.ro validation
set after fine-tuning on the Mobile.de pre-trained architecture. This suggested that our
method led to increased performance and adaptation capabilities for low-resource datasets.
Therefore, our method was particularly useful for underdeveloped car markets lacking
diversity and coverage.

Table 7. Validation results for transfer learning (bold denotes the best performance).

Method
Autovit.ro

R2 MAE MedE RMSE

DNN for image analysis without pre-training 0.69 6899 4053 10965

DNN for image analysis with pre-training and fine-tuning 0.79 5652 3373 9024

4.3. Error Analysis

Quantile–quantile plots (see Figures 22 and 23) were used to analyze the prediction
values in relation to the ground truth; the majority of price estimations were gathered along
the main diagonal for both datasets. This indicated a robust prediction mechanism, even
for highly varied data.

Figure 22. Q–Q plot—Autovit.ro.
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Figure 23. Q–Q plot—Mobile.de.

Figures 24 and 25 highlight the mean absolute error per brand. As expected, the
highest errors were among luxury cars with a high mean price; consequently, the prediction
error was relative to the price. For both datasets, brands such as Bentley, Aston Martin,
Ferrari, and Porche were among those that increased the mean error. Moreover, under-
represented brands in the dataset, such as Alpina and GMC, also yielded higher than
usual errors due to the lack of training examples required for contextualizing information
about them. Nevertheless, we observed that besides these particular cases of luxury or
under-represented cars, the models’ errors fell below the average, and their estimation
range was satisfactory.

Figure 24. Mean absolute error by brand—Autovit.ro.

Figure 25. Mean absolute error by brand—Mobile.de.
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4.4. Limitations

The limitations of the model’s performance were strongly connected to and derived
from the datasets’ shortcomings. Both datasets were scraped from used car advertisement
websites, so they were inherently prone to flaws in human judgment and the individual
assessment of each vehicle’s value. The seller could have overestimated the price of the
car or aimed for an expedited transaction with a lower price; thus, the ground truth for
prediction may not have been the real market value of the vehicle. Moreover, the users
may not have specified the hidden flaws of the vehicle, which may have also affected the
estimation. Another detrimental aspect was that some car ads had an incomplete or non-
existent list of add-ons. As there were over 100 possible add-ons for each website to choose
from, this cumbersome task was often overlooked by sellers; this resulted in ads containing
declared features that were not correlated with the price. As Table 5 indicates, the add-ons
had a big impact on the price predictions, and the lack of an accurate list of these add-ons
would degrade the models’ performance. However, the studied architectures performed
well on the two datasets, highlighting their ability to leverage complex features and their
potential for learning using different datasets. Moreover, the scores did not improve as
we experimented with larger models and more fine-grained architectures; this indicated
the limited correctness of our datasets. Since the ads were scraped on March 2023, the
information represented the state of the ads at that time and did not account for purchases
or changes made to the ads after that date.

A limitation of the considered deep neural models was their marginal decrease in
performance when adding images. More research is required to learn how to best represent
the visual features of car sale ads and search for hidden flaws or aspects that do not appear
in the numerical entries.

5. Conclusions and Future Work

This research successfully reached its objective of developing comprehensive and
accurate deep learning models for predicting used car prices in different car markets. We
built upon our initial study [8] in terms of the considered datasets, feature aggregation
methods, and image analysis. The construction of the largest datasets to date, comprising
over 300,000 entries from the German market and 15,000 entries from the Romaian market,
provided valuable resources for training deep prediction models and enabled a compar-
ative analysis between these two markets. Our approaches achieved a high prediction
accuracy, with an R2 score exceeding 0.95. Incorporating multiple features in these models
contributed to their effectiveness and reliability in accurately estimating used car prices.
Furthermore, we showcased the potential of using convolutional architectures to predict
car prices based solely on visual features extracted from car images. Notably, this model
exhibited transfer-learning capabilities, leading to an improved prediction accuracy, partic-
ularly in cases where the training datasets had limited resources. The findings emphasized
the importance of visual information in accurately predicting car prices and have practical
implications for buyers and sellers in assessing the value of vehicles.

Several paths for future research can be pursued to build upon the findings and
contributions of this study. First, a method for dataset standardization across different car
markets and features should be developed. Given the variations in data collection practices
and feature representation across different markets, establishing standardized data pre-
processing and feature engineering protocols would enhance comparability and enable
more robust analyses. As such, developing a standardized approach would increase the
generalizability of the prediction models. Second, future research should aim to incorporate
economic situations and inflation rates into the prediction models. Integrating economic
indicators into the models would enable a more comprehensive understanding of the
pricing dynamics. Furthermore, an ablation study focusing on the visual features extracted
from car images should be conducted to determine the relative importance of different
image parts in price prediction. This would provide valuable insights into the decision-
making processes of buyers and sellers. Moreover, we envision future research avenues to
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extract the car manufacturer and model directly from the picture and improve prediction
quality from images only.

Author Contributions: Conceptualization, A.D., A.C., S.R. and M.D.; data curation, A.D. and A.C.;
formal analysis, A.D. and A.C.; funding acquisition, M.D.; investigation A.D.; methodology, A.D.;
project administration, M.D.; resources, S.R. and M.D.; software, A.D.; supervision, M.D.; vali-
dation, S.R., L.-M.N. and M.D.; visualization, A.D.; writing—original draft, A.D., A.C. and D.I.;
writing—review and editing, S.R., L.-M.N., V.G. and M.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the “Automated car damage detection and cost
prediction—InsureAI”/“Detectia automata a daunelor si predictia contravalorii aferente–InsureAI”
project, contract number 30/221_ap3/22.07.2022, MySMIS code: 142909.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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BPNN Backpropagation neural network
CNN Convolutional neural network
DNN Deep neural network
GRA Grey relation analysis
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HOG Histogram of oriented gradients
HP Horsepower
KNN K nearest neighbor
MAE Mean absolute error
MedE Median error
NN Neural network
PSO Particle swarm optimization
RMSE Root mean squared error
SVM Support vector machines

Appendix A

Table A1. Hyperparameter search options.

Method
Hyperparameters

Autovit.ro Mobile.de

XGBoost

learning rate: 0.12 (0.10–0.15) learning rate: 0.12 (0.10–0.15)
max depth: 14 (12–16) max depth: 16 (12–18)

min child weight: 8 (6–9) min child weight: 8 (6–9)
subsample: 1 (0.7–1) subsample: 1 (0.7–1)

colsample bytree: 0.8 (0.6–1) colsample bytree: 0.9 (0.6–1)
objective: squared error objective: squared error

NN with add-on
projection

learning rate: 10−3 (10−2–10−4) learning rate: 10−3 (10−2–10−4)
add-on projection: 25 (24–28) add-on projection: 26 (24–28)
model embedding: 26 (24–27) model embedding: 26 (24–27)

fuel embedding: 21 (21–23) fuel embedding: 22 (21–23)
transmission embedding: 21 (21–23) transmission embedding: 22 (21–23)

gearbox embedding: 22 (21–23) gearbox embedding: 21 (21–23)
car shape embedding: 21 (21–23) car shape embedding: 23 (21–23)

color embedding: 22 (21–23) color embedding: 22 (21–23)
dense layer 1: 28 (27–29) dense layer 1: 29 (27–29)
dense layer 2: 27 (26–28) dense layer 2: 27 (26–28)
dense layer 3: 24 (23–25) dense layer 3: 24 (23–25)
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Table A1. Cont.

Method
Hyperparameters

Autovit.ro Mobile.de

NN with add-on
embedding

learning rate: 10−2 (10−2–10−4) learning rate: 10−2 (10−2–10−4)
add-on embedding: 25 (24–28) add-on embedding: 25 (24–28)
model embedding: 24 (24–27) model embedding: 24 (24–27)

fuel embedding: 21 (21–23) fuel embedding: 21 (21–23)
transmission embedding: 21 (21–23) transmission embedding: 21 (21–23)

gearbox embedding: 21 (21–23) gearbox embedding: 21 (21–23)
car shape embedding: 22 (21–23) car shape embedding: 22 (21–23)

color embedding: 22 (21–23) color embedding: 22 (21–23)
dense layer 1: 29 (27–29) dense layer 1: 29 (27–29)
dense layer 2: 26 (26–28) dense layer 2: 26 (26–28)
dense layer 3: 24 (23–25) dense layer 3: 24 (23–25)

NN with self-
attention on
add-on embed-
ding

learning rate: 10−2 (10−2–10−4) learning rate: 10−2 (10−2–10−4)
add-on embedding: 25 (24–28) add-on embedding: 26 (24–28)

add-on attention heads: 21 (21–23) add-on attention heads: 21 (21–23)
add-on attention key: 23 (22–25) add-on attention key: 25 (22–26)

model embedding: 24 (24–27) model embedding: 25 (24–27)
fuel embedding: 21 (21–23) fuel embedding: 22 (21–23)

transmission embedding: 21 (21–23) transmission embedding: 22 (21–23)
gearbox embedding: 21 (21–23) gearbox embedding: 21 (21–23)

car shape embedding: 22 (21–23) car shape embedding: 23 (21–23)
color embedding: 22 (21–23) color embedding: 22 (21–23)

dense layer 1: 29 (27–29) dense layer 1: 29 (27–29)
dense layer 2: 26 (26–28) dense layer 2: 27 (26–28)
dense layer 3: 24 (23–25) dense layer 3: 23 (23–25)

DNN for image
analysis and self-
attention on add-
on embedding

learning rate: 10−3 (10−2–10−4) learning rate: 10−3 (10−2–10−4)
feature projection: 29 (28–210) feature projection: 29 (28–210)
image projection: 29 (28–210) image projection: 29 (28–210)

dense layer 1: 29 (27–29) dense layer 1: 29 (27–29)
dense layer 2: 28 (26–28) dense layer 2: 28 (26–28)
dense layer 3: 24 (23–25) dense layer 3: 24 (23–25)

DNN for image
analysis and self-
attention on add-
on embedding

learning rate: 10−5 (10−3–10−6) learning rate: 10−5 (10−3–10−6)
dense layer 1: 210 (27–210) dense layer 1: 210 (27–210)
dense layer 2: 29 (27–210) dense layer 2: 29 (27–210)
dense layer 3: 26 (25–28) dense layer 3: 26 (25–28)
dense layer 4: 24 (23–25) dense layer 4: 24 (23–25)

References
1. Moore, C. Used-Vehicle Volume Hits Lowest Mark in Nearly a Decade. 2023. Available online: https://www.autonews.com/

used-cars/used-car-volume-hits-lowest-mark-nearly-decade (accessed on 29 May 2023).
2. Pal, N.; Arora, P.; Kohli, P.; Sundararaman, D.; Palakurthy, S.S. How much is my car worth? A methodology for predicting used

cars’ prices using random forest. In Advances in Information and Communication Networks, Proceedings of the 2018 Future of Information
and Communication Conference (FICC), San Francisco, CA, USA, 14–15 March 2019; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 1, pp. 413–422.

3. Gegic, E.; Isakovic, B.; Keco, D.; Masetic, Z.; Kevric, J. Car price prediction using machine learning techniques. TEM J. 2019,
8, 113.

4. Cui, B.; Ye, Z.; Zhao, H.; Renqing, Z.; Meng, L.; Yang, Y. Used Car Price Prediction Based on the Iterative Framework of XGBoost+
LightGBM. Electronics 2022, 11, 2932. [CrossRef]

5. Liu, E.; Li, J.; Zheng, A.; Liu, H.; Jiang, T. Research on the Prediction Model of the Used Car Price in View of the PSO-GRA-BP
Neural Network. Sustainability 2022, 14, 8993. [CrossRef]

6. Samruddhi, K.; Kumar, R.A. Used Car Price Prediction using K-Nearest Neighbor Based Model. Int. J. Innov. Res. Appl. Sci. Eng.
(IJIRASE) 2020, 4, 629–632.

7. Kondeti, P.K.; Ravi, K.; Mutheneni, S.R.; Kadiri, M.R.; Kumaraswamy, S.; Vadlamani, R.; Upadhyayula, S.M. Applications of
machine learning techniques to predict filariasis using socio-economic factors. Epidemiol. Infect. 2019, 147, e260. [CrossRef]
[PubMed]

8. Dutulescu, A.; Iamandrei, M.; Neagu, L.M.; Ruseti, S.; Ghita, V.; Dascalu, M. What is the Price of Your Used Car? Automated
Predictions using XGBoost and Neural Networks. In Proceedings of the 2023 24th International Conference on Control Systems
and Computer Science (CSCS), Bucharest, Romania, 24–26 May 2023.

9. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]

https://www.autonews.com/used-cars/used-car-volume-hits-lowest-mark-nearly-decade
https://www.autonews.com/used-cars/used-car-volume-hits-lowest-mark-nearly-decade
http://doi.org/10.3390/electronics11182932
http://dx.doi.org/10.3390/su14158993
http://dx.doi.org/10.1017/S0950268819001481
http://www.ncbi.nlm.nih.gov/pubmed/31475670
http://dx.doi.org/10.1007/BF00116251


Electronics 2023, 12, 3083 25 of 25

10. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

11. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
12. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
13. Venkatasubbu, P.; Ganesh, M. Used Cars Price Prediction using Supervised Learning Techniques. Int. J. Eng. Adv. Technol. (IJEAT)

2019, 9, 216–223.
14. Kuiper, S. Introduction to Multiple Regression: How Much Is Your Car Worth? J. Stat. Educ. 2008, 16. [CrossRef]
15. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
16. Gajera, P.; Gondaliya, A.; Kavathiya, J. Old Car Price Prediction With Machine Learning. Int. Res. J. Mod. Eng. Technol. Sci. 2021,

3, 284–290.
17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
18. Yang, R.R.; Chen, S.; Chou, E. AI blue book: Vehicle price prediction using visual features. arXiv 2018, arXiv:1803.11227.
19. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
20. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
21. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
22. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ,
USA, 2009; pp. 248–255.

23. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

24. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

25. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada,
11–17 October 2021; pp. 10012–10022.

26. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; Volume 30.

28. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in con-
text. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014;
Springer: Berlin/Heidelberg, Germany, 2014; Part V 13, pp. 740–755.

29. Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes through the ade20k
dataset. Int. J. Comput. Vis. 2019, 127, 302–321. [CrossRef]

30. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

32. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 29 May 2023).

33. O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L. Keras Tuner. 2019. Available online: https://github.com/
keras-team/keras-tuner (accessed on 29 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1080/10691898.2008.11889579
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1007/s11263-018-1140-0
tensorflow.org
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

	Introduction
	Overview
	Related Work
	Estimating Used Car Prices
	Computer Vision Models for Image Processing

	Research Objective

	Method
	Datasets
	Gradient-Boosting Methods
	Neural Network Methods
	Neural Network with Hot-Encoded Add-On Projection
	Neural Network with Mean Add-On Learned Embeddings
	Neural Network with Add-On Embeddings and Multi-Head Self-Attention
	Deep Neural Networks for Image Analysis and Add-On Multi-Head Self-Attention

	Experimental Setup

	Results
	Discussion
	Ablation Study
	Transfer-Learning Capabilities
	Error Analysis
	Limitations

	Conclusions and Future Work
	Appendix A
	References

