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Abstract: This paper presents a Q-band image-rejection receiver using a 65 nm CMOS technology.
For a high image-rejection ratio (IMRR), the Q-band receiver employs the Hartley architecture which
consists of a Q-band low-noise amplifier, two down-conversion mixers, a 90◦ hybrid coupler, and two
IF baluns. In addition, a Q-band fundamental voltage-controlled oscillator (VCO) and a frequency
divider chain divided by 256 are integrated into the receiver for LO. A charge injection technique
is employed in the mixers to reduce the DC power while maintaining a high conversion gain and
linearity. The VCO adopts a cross-coupled topology to secure stable oscillation with high output
power in the Q-band. The frequency divider chain is composed of an injection-locked frequency
divider (ILFD) and a multi-stage current-mode logic (CML) divider to achieve a high division ratio of
256, which facilitates the LO signal locking to an external phase-locked loop. An inductive peaking is
employed in the ILFD to widen the locking range. The Q-band image-rejection receiver exhibits a
peak conversion gain of 16.4 dB at 43 GHz. The IMRR is no less than 35.6 dBc at the IF frequencies
from 1.5 to 5 GHz.

Keywords: CMOS; Q-band receiver; image rejection; low-noise amplifier; down-conversion mixer;
voltage-controlled oscillator; frequency divider

1. Introduction

The development of mobile devices and the need for high-speed communication
have resulted in considerable research on receivers operating in the mm-wave frequency
bands [1–17]. In [2–4], the beamforming receivers were implemented by combining four
channels [2,3] and eight channels [4], respectively. In [5,6], direct-conversion receivers
were presented for low power consumption and small chip area. Although the direct
conversion was free from the image problem, the architecture suffered from high DC offset,
even-order distortion, and flicker noise [18]. In [13], a high image-rejection ratio (IMRR)
over a wide bandwidth was obtained using a single-sideband receiver structure with a
high IF. However, such a high IF frequency would require additional down-conversion
to the baseband, and the first down-conversion mixer may suffer from compression or
self-mixing due to the LO frequency interference. In [14,15], a high IMRR was achieved
in the low-IF band by using a Hartley-structured receiver with a quadrature generator
that minimized the I-Q mismatch. However, these studies did not include an LO circuit
integrated in the receiver, so additional VCO and frequency dividers were required for
phase-locked LO generation.

This paper presents a Q-band image-rejection receiver employing the Hartley archi-
tecture for a high IMRR [19]. Furthermore, the receiver integrates an on-chip voltage-
controlled oscillator (VCO) and frequency divider chain for LO generation. The divider
chain is composed of an injection-locked frequency divider (ILFD) and a seven-stage
current-mode logic (CML) divider, which fulfill a high division ratio of 256. This facilitates
the LO locking to an external phase-locked loop (PLL). This Q-band image-rejection receiver
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was implemented using a 65 nm bulk CMOS technology, which is relatively cost-effective
and easily accessible. The remainder of the paper is organized as follows. In Section 2, the
architecture of the Q-band image-rejection receiver is described. The design and measure-
ment of each circuit block of the receiver is presented in Section 3. Section 4 presents the
measurement of the Q-band image-rejection receiver. Finally, the conclusions are presented
in Section 5.

2. Q-Band Image-Rejection Receiver Architecture

Figure 1 shows the block diagram of the Q-band image-rejection receiver. The
image-rejection receiver is composed of a Q-band low-noise amplifier (LNA), two down-
conversion mixers, a 90◦ hybrid coupler, two IF baluns, a Q-band VCO, and a frequency
divider chain. The receiver adopts the Hartley image-rejection architecture for a high IMRR.
The RF input is amplified and divided with a phase difference of 180 degrees through the
single-to-differential Q-band LNA and applied to the two Q-band down mixers. The LO
signal generated by the Q-band VCO is divided with a phase difference of 90◦ through
the 90◦ hybrid coupler and drives two down-conversion mixers, respectively. The dif-
ferential IF outputs generated by each mixer are added in-phase at the output of the IF
balun, and combined through the off-chip IF 90◦ hybrid coupler. The desired IF signal
down-converted through the two down-conversion mixers is added in-phase, and the
image signal is canceled out by out-of-phase.
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The Q-band VCO operates in the fundamental mode to suppress the spurious spectral
components compared to the harmonic-mode VCOs. The following frequency divider
chain provides a low-frequency LO signal divided by 256. Thus, the LO signal can be
readily locked to an off-chip PLL circuitry.

3. Circuit Blocks of the Q-Band Image-Rejection Receiver

In this section, the design details and measurement results of each individual circuit
block of the Q-band image-rejection receiver are described.

3.1. Q-Band LNA

A schematic of the Q-band LNA is depicted in Figure 2a. The first stage of the LNA
employs a single-ended structure to eliminate the noise figure (NF) component which
would be otherwise contributed by an input balun. The NF is further improved by the
source degeneration of a transmission line (TL1). The input is matched to the optimum
NF point through L-section matching, which is composed of parallel and series inductors
(L1 and L2). All transmission lines are designed in a microstrip structure using the top
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metal with a 1.2 µm thickness to minimize the loss and chip area, as shown in Figure 3a.
The layout of the inductor and transformer are shown in Figure 3b,c, respectively. The
inductors were designed in an octagonal shape using the top metal and the inductance
was extracted through EM simulation. The transformers were designed using a broadside
coupling structure composed of the top two metals (LB and OI).
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The second to last stages were designed using a differential common-source structure
with the capacitive neutralization technique to improve gain and stability. The interstage
matching between the first and second stages was implemented using transmission lines
(TL2–TL4) and a transformer-based balun (TF1) connected to a balancing capacitor (C1).
The other interstage and output matching networks are also composed of transmission lines
and transformers to reduce the chip area. The output impedance is conjugately matched
to the RF input of the following Q-band down-conversion mixer. A chip micrograph of
the Q-band LNA is shown in Figure 2b. The chip area is 1.7 × 0.6 mm2, which includes
the probing pads. The differential output is combined into a single-ended signal using a
balun (TF4) for single-ended measurement purposes. The LNA chip consumes DC power
of 30 mW at the drain bias voltage of 1.2 V. The parameter value of each component is
presented in Table 1.

Table 1. Parameter values of the Q-band LNA.

Parameter Value Parameter Value

M1–M7 1 × 10 µm Cdc, Cbypass 880 fF
L1 380 pH C1 160 fF
L2 460 pH CN 8.8 fF

The measurement results for the Q-band LNA are shown in Figure 4. The measurement
was performed by an on-chip probing method. Figure 4a shows the S-parameters and
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NF. A peak gain of 18.8 dB was measured at 43.3 GHz with a 3 dB bandwidth of 5.6 GHz
(41.7–47.3 GHz). The input matching was measured below 7.2 dB over the entire 3 dB
bandwidth while the simulated NF was below 6.9 dB. Figure 4b presents the power
measurement of the LNA at 43.5 GHz. The measured input and output 1 dB compression
power (IP1dB and OP1dB) were −22 dBm and −4.5 dBm, respectively.
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Figure 4. Measurement results of the Q-band LNA: (a) S-parameters and NF; (b) output power and
power gain versus input power at 33.5 GHz.

3.2. Q-Band Down-Conversion Mixer

The Q-band down-conversion mixer was designed using a Gilbert-cell topology for a
high conversion gain and isolation performance [20,21]. A schematic of the mixer is shown
in Figure 5a. The charge injection through R1 and R2 is adopted at the transconductance
stages to reduce DC power consumption while maintaining a high conversion gain. The RF
and LO matching networks are composed of transformer-based baluns (TF5 and TF6) and
series transmission lines (TL15–TL18) for broadband impedance matching and chip area
reduction. Series inductors (Ls) are inserted between the transconductance and switching-
quad stages to extend the RF bandwidth. A source-follower buffer was added at the
output to improve the isolation and IF matching performance. The transistor sizes of the
transconductance, switching-quad, and source-follower stages were 2 × 20 µm (M8 and
M9), 2 × 12 µm (M10–M13), and 2 × 30 µm (M14 and M15), respectively. A chip micrograph
of the Q-band down-conversion mixer is shown in Figure 5b, occupying a chip area of
1 × 0.8 mm2 including the probing pads. For a single-ended testing purpose, one of the
differential output is terminated by a 50-ohm resistor. The Q-band down-conversion mixer
consumes DC power of 4.57 mW at the mixer core and 3.89 mW at the source-follower
buffer. The parameter value of each component is presented in Table 2.
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Table 2. Parameter values of the Q-band down-conversion mixer.

Parameter Value Parameter Value Parameter Value

M8, M9 2 × 20 µm R3, R4 730 Ω C3 203 fF
M10–M13 2 × 12 µm R5, R7 68 Ω Cbypass 880 fF
M14, M15 2 × 30 µm R6, R8 92 Ω CIF 5 pF

RG 5 kΩ LS 240 pH
R1, R2 340 Ω C2 139 fF

Figure 6 presents the measurement result of the Q-band down-conversion mixer.
Figure 6a shows the measured conversion gain versus RF frequency with the LO power
of 0 dBm applied at 40 GHz. The conversion gain exhibited a peak value of 0.25 dB at
40.5 GHz and the 3 dB bandwidth was 6.8 GHz (37.3–43.3 GHz). The conversion gain and
IF output power at 1.0 GHz versus RF input power at 41.0 GHz are plotted in Figure 6b.
The IP1dB of the mixer was measured to be −6.5 dBm. Since the OP1dB of the LNA was
−4.5 dBm, as given in Section 3.1, the input drive power to the mixer would be −7.5 dBm
taking into account a 3 dB difference due to the output balun of the LNA (TF4 in Figure 2a).
Therefore, no gain compression was expected from the mixer.
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Figure 6. Measurement of the Q-band down-conversion mixer: (a) conversion gain versus RF
frequency with fLO = 40 GHz and PLO = 0 dBm, and (b) conversion gain and IF output power versus
RF input power with fIF = 1 GHz, fRF = 41 GHz and PLO = 0 dBm.

3.3. Q-Band Voltage-Controlled Oscillator

Generally, there are three oscillator topologies used in the mm-wave frequency band:
ring topology [22,23], Colpitts topology [24], and cross-coupled topology [25]. In this
work, the cross-coupled topology was adopted as shown in Figure 7a because it provides
a sufficient negative resistance, differential operation, and high output power [25]. The
total gate width was set to 1.5 × 12 µm considering the trade-off between DC power
consumption and output power. The LC tank was implemented using transmission lines
(TL19 and TL20) and MOS varactors (Cvar). The dimensions were optimized to resonate
with the input capacitance of the cross-coupled pair and the buffer transistors (M18 and
M19) at 40 GHz. The Cvar tuned the capacitance from 51.6 to 146 fF with a Q-factor ranging
from 4 to 7.6 at 40 GHz. The oscillation core was followed by two cascaded buffer amplifiers.
The first buffer is a source follower that improves isolation and stability. Subsequently, a
common-source amplifier (M20 and M21) was followed to boost the output power to the
level required for pumping the Q-band down-conversion mixer. A chip micrograph of the
Q-band VCO is shown in Figure 7b. For a single-ended testing purpose, the differential
output was combined using the output balun (TF7). The Q-band VCO occupied a chip area
of 0.7 × 0.8 mm2 including the probing pads. The DC power consumption levels of the
oscillation core and buffer stage were 21.1 mW and 31.7 mW, respectively. The parameter
value of each component is presented in Table 3.
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Table 3. Parameter values of the Q-band VCO.

Parameter Value Parameter Value

M16, M17 1.5 × 12 µm L5, L6 250 pH
M18, M19 1.5 × 20 µm L7, L8 195 pH
M20, M21 3 × 20 µm Cbypass 880 fF

RG 5 kΩ Cvar 51.6–146 fF
R9, R10 100 Ω

In Figure 8, the measured oscillation frequency and output power of the Q-band VCO
are compared with the simulation. As the varactor control voltage (VC) varied from 0 to
2.4 V, the oscillation frequency was tuned from 35.6 to 45.6 GHz (24.6%). The measured
output power ranged from −2.7 to 0.6 dBm, including 2 dB of balun loss, which was added
only for a measurement purpose.
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Figure 8. Measured oscillation frequency and output power of the Q-band VCO versus the con-
trol voltage.

3.4. Frequency Divider Chain

Three different topologies are widely used for a frequency divider at the mm-wave
frequency: the injection-locked frequency divider (ILFD), Miller divider, and current-mode
logic (CML) divider. Generally, the ILFD operates at the highest frequency with a low
DC power consumption at the expense of a narrow bandwidth. On the other hand, the
CML divider cannot support a high-frequency operation and consumes high DC power.
However, it occupies the smallest chip area, particularly at relatively low frequencies [26,27].
Therefore, in this work, the frequency divider chain adopted a ILFD for the first frequency
division in the Q-band, which was followed by seven CML dividers.

Figure 9 shows a schematic diagram of a basic Q-band ILFD, which consists of a
cross-coupled oscillation core (M22 and M23), a resonator, an injection network (M24), and
a source-follower buffer (M25 and M26). The resonator, composed of an inductor (Lres)
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and parasitic capacitances of M22–23, M24, and M25–26, resonates at f0, a half frequency of
the injection signal (LOin). The LOin is injected directly into the differential oscillation
core through M24. This direct injection enables the extension of the locking range (LR) at
a higher operating frequency compared to conventional injection through a tail current
source [28]. The LR of the direct ILFD can be expressed as [29]

LR ∝
2π f0 Iin

QIosc
(1)

where Iin and Iosc denote the injection current by LOin and oscillation current, respectively,
flowing through Minj, and Rds denotes the drain-to-source resistance of Minj. Q is defined
as follows:

Q ≈ Rds
2π f0Lres
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Figure 9. Schematic diagram of a basic Q-band ILFD.

According to Equation (1), the LR can be widened by increasing the injection current Iin.
To improve LR of the basic ILFD shown in Figure 9, two variations of ILFD employing

a peaking inductor and a varactor, respectively, are presented. In Figure 10a, a peaking
inductor (Lpeak) is connected in series with M29j, so that the swing of Vds and thus Iin of
M29 increase. This leads to a wider LR. In Figure 10b, a varactor (Cvar) is added to tune
the free-running oscillation frequency. Therefore, the LR can be extended by adjusting the
oscillation frequency in accordance with the injection frequency. The parameter value of
each component is presented in Table 4.
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Table 4. Parameter values of the ILFDs.

Parameter Value Parameter Value

M22, M23, M27, M28, M32, M33 3 × 13 µm Lres 290 pH
M24, M29, M34 2 × 24 µm Lpeak 120 pH

M25, M26, M30, M31, M35, M36 3 × 20 µm Cbypass 1.4 pF
RG 5 kΩ Cvar 41–167 fF

R11–R16 80 Ω

Figure 11 shows the chip micrographs of the basic ILFD, ILFD with a peaking inductor,
and ILFD with a varactor. The chip sizes were 0.62 × 0.58 mm2, 0.67 × 0.58 mm2, and
0.66 × 0.55 mm2, respectively, excluding the probing pads. All chips consumed 26.1 mW
of DC power.
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Figure 11. Chip micrographs of the (a) basic ILFD, (b) ILFD with a peaking inductor, and (c) ILFD
with a varactor.

Figure 12 shows the measurement result of the ILFDs. Figure 12a shows the measured
output spectrum in the free-running and injection-locked modes. It was observed that
the output signal at 19.6 GHz was clearly locked to the injection signal of PLO = 0 dBm
at 39.2 GHz. Figure 12b presents a comparison of the LR and output power of the three
ILFDs at PLO = 0 dBm. The ILFD with a peaking inductor achieved the widest LR of 35.1%
(19.4–26.9 GHz). The output power of the ILFD was no lower than −13.8 dBm over the LR.
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Figure 12. Measurement result of the ILFDs: (a) output spectrum in the free-running and injection-
locked modes; (b) LR and output power at PLO = 0 dBm.

To achieve a sufficient frequency division ratio, the output of the ILFD was further
divided by the subsequent CML dividers. Seven CML dividers were connected in cascade,
so that the whole divider chain fulfilled a division ratio of 256 in the integrated receiver. To
experimentally verify the operation of the divider chain, a reduced version of the LO test
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cut consisting of a Q-band VCO and a 1/16 divider chain shown in Figure 13 was tested.
The divider chain was composed of the ILFD with a peaking inductor and three-stage CML
divider employing a master-slave structure. One of the differential VCO output signals
was monitored to check the oscillation frequency.
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Figure 13. (a) Schematic diagram and (b) chip micrograph of the Q-band VCO followed by a 1/16
divider chain.

Figure 14 shows the measurement results of the Q-band VCO followed by a 1/16
divider chain. The phase noise of the divided signal was −102.37 dBc/Hz at 10 MHz offset
as shown in Figure 14a. Figure 14b shows the output frequency of the VCO and the divider
versus the VCO control voltage. It was observed that the frequency division by 16 was
exactly performed.
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Figure 14. Measurement results of the Q-band VCO followed by a 1/16 divider: (a) phase noise at
10-MHz offset and (b) output frequency of the VCO and divider versus the VCO control voltage.

4. Measurement of the Q-Band Image-Rejection Receiver

A Q-band image-rejection receiver integrated the circuit blocks described in Section 3
on a single chip, as shown in Figure 15. The chip area was 2.5 × 1.6 mm2 including the
probing pads.
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Figure 15. Chip micrograph of the Q-band image-rejection receiver.

The measurement result of the image-rejection receiver is shown in Figure 16. The
conversion gain was measured versus the IF frequency while the LO frequency was fixed
at 40 GHz. As shown in Figure 16a, the receiver exhibited a peak conversion gain of 16.4 dB
at 43 GHz and a 3 dB bandwidth of 3.5 GHz (1.5–5 GHz). The noise figure was simulated
to be 5.8–7.8 dB over the 3 dB bandwidth. Figure 16b shows the measured IMRR, which
ranged from 35.6 to 55.1 dBc over the same bandwidth. The input 1 dB compression power
(IP1dB) was −28 dBm at the IF frequency of 2.5 GHz.
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Figure 16. Measurement of the Q-band image-rejection receiver: (a) conversion gain, noise figure,
and (b) image-rejection ratio.

In Table 5, the performance of the Q-band image-rejection receiver is summarized and
compared with those of previously reported silicon-based receivers in a similar frequency
band. Compared with other image-rejection receivers, this work achieved a high IMRR at a
reasonably low IF frequency below 5 GHz using the Hartley structure. It should be noted
that a high IMRR was achieved in [13] by using a high IF frequency of 16 GHz. In addition,
the LO circuit consisting of a VCO and a 1/256 divider chain was integrated in this work,
which facilitated locking to a low-frequency LO reference.
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Table 5. Performance summary and comparison.

Ref. Process RF Freq.
(GHz) Architecture CG 1

(dB)
NF 2

(dB)
IP1dB
(dBm)

IMRR
(dBc)

Pdc
(mW)

[6] 65 nm
CMOS 22.5–26.1 LNA + Mixer + AMPIF

3

+ AMPLO
4 + PPFLO

5 31.5 4.8 −35.2 - 127.44

[9] 0.12 µm
SiGe 10–40 LNA + Mixer + VGAIF

6

+ ×4 + AMPLO
4 39 6.8 −33 - 130

[10] 0.13 µm
SiGe 25–45 LNA + Mixer + ×3 +

AMPLO
4 21 5 - 30 -

[11] 45 nm SOI
CMOS 24–44 LNA + Mixer + AMPIF

3

+ AMPLO
4 35.2 3.2 −25.5 32 60

[13] 22 nm SOI
CMOS 20–44 LNA + Mixer + AMPIF

3

+ AMPLO
4 28.5 3.3 −25 75 70

[16] 22 nm SOI
CMOS 19.5–42

LN-VGA + mixer + LPF
+ AMPIF

3 + AMPLO
4 +

IQGEN
7

25.3 2.7 −23 - 102

[17] 65 nm
CMOS 26.5–32.5 LNA + Mixer + BuffIF

8

+ AMPLO
4 + PPFLO

5 29.5 5.3 −28 - 33

This
work

65 nm
CMOS 41.5–45 LNA + Mixer + VCO +

1/256 divider 16.4 5.8 −28 35.6
91.9

+ 294 (divider
chain)

1 Maximum conversion gain over the bandwidth. 2 Lowest NF over the bandwidth. 3 IF amplifier. 4 LO amplifier.
5 LO poly phase filter. 6 IF variable gain amplifier. 7 I-Q generator. 8 IF buffer.

5. Conclusions

In this paper, a Q-band image-rejection receiver was developed using a 65 nm bulk
CMOS technology, which is relatively cost-effective and easily accessible. The Q-band
receiver employing a Hartley architecture for a high IMRR integrates a Q-band LNA, two
Q-band down-conversion mixers, a 90◦ hybrid coupler, two IF baluns, and an LO circuit.
The integrated LO consists of a Q-band fundamental VCO followed by a 1/256 divider
chain, which fulfills a high division ratio. This facilitates the LO locking to an external
phase-locked loop (PLL). The Q-band image-rejection receiver exhibits a peak conversion
gain of 16.8 dB and a high IMRR of 35.6 dB with IP1dB of −28 dBm. This receiver can be
employed for future 5G mm-wave communication.
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