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Abstract: Multimodal medical image fusion is a fundamental, but challenging, problem in the fields
of brain science research and brain disease diagnosis, as it is challenging for sparse representation
(SR)-based fusion to characterize activity levels with a single measurement and not lose effective
information. In this study, the Kronecker-criterion-based SR framework was applied for medical
image fusion with a patch-based activity level, integrating salient features of multiple domains.
Inspired by the formation process of vision systems, the spatial saliency was characterized by textural
contrast (TC), composed of luminance and orientation contrasts, to promote the participation of more
highlighted textural information in the fusion process. As a substitute for the conventional l1-norm-
based sparse saliency, the sum of sparse salient features (SSSF) was used as a metric for promoting
the participation of more significant coefficients in the composition of the activity level measurement.
The designed activity level measurement was verified to be more conducive to maintaining the
integrity and sharpness of detailed information. Various experiments on multiple groups of clinical
medical images verified the effectiveness of the proposed fusion method in terms of both visual
quality and objective assessment. Furthermore, this study will be helpful for the further detection
and segmentation of medical images.

Keywords: multimodality medical image; image fusion; sparse representation (SR); Kronecker
criterion; activity level measure

1. Introduction

Over the past several decades, a variety of information processing technologies have
led to major achievements in clinical diagnosis research [1], such as image classification [2,3],
image fusion [4], and image segmentation [5]. The main purpose of medical image fusion is
to combine the complementary information from various sensors to construct a new image
with which to assist medical experts with diagnosis. Despite the simplicity of the idea, there
are many challenges related to the theoretical background and the nature of medical images
that need to be resolved. For instance, computed tomography (CT) imaging is informative
regarding dense tissues, but lacks soft tissue information. In contrast, magnetic resonance
imaging (MRI) is more suitable for soft tissues, but is short on dense tissue information.
More crucially, single imaging tends to be ineffective at characterizing the symptoms of
different diseases.

To overcome these challenges, a variety of image fusion methods have been proposed.
The content of the image can be either visual (i.e., color, shape, or texture) or textual
(i.e., to identify datasets appearing within an image). Some new advances in the fusion
field consider these two aspects simultaneously [6,7]. To further improve fusion perfor-
mance, some new features, such as different image moments [8–10], have also been used in
image fusion.
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The mainstream directions of image fusion mainly focus on the visual content, includ-
ing the spatial domain [11,12] and transform domain [13,14]. The former usually addresses
the fusion issue via image blocks or pixel-wise gradient information for multi-focus fu-
sion [15–17] and multi-exposure fusion [18–20] tasks. The latter merges the transform
coefficients relevant to source images with different reconstruction algorithms to obtain a
fused image, which is recognized as being effective for multimodal image fusion [21,22].
Multi-scale transform (MST)-based medical image fusion is a mainstream research di-
rection. Dual-tree complex wavelet transform (DTCWT) [23], non-subsampled shearlet
transform (NSST) [24], and non-subsampled contourlet transform (NSCT) [25] are conven-
tional MST methods for image fusion. In recent years, some novel MST-based methods have
been proposed. Xia combined sparse representation with a pulse-coupled neural network
(PCNN) in the NSCT domain for medical image fusion [26]. Yin proposed a parameter-
adaptive pulse-coupled neural network as part of an NSST domain (NSST-PAPCNN)-based
medical image fusion strategy [27]. Dinh proposed a Kirsch compass operator with a
marine-predator-algorithm-based method for medical image fusion [28].

Differently from MST, the principle of SR is more in accordance with the human
visual system (HVS), and compared to the MST-based methods, SR-based methods have
two main distinctions. For the first distinction, the fixed basis limits the MST-based methods
to expressing significant features, while the SR-based methods are flexible and can procure
more intrinsic features by means of dictionary learning. For the second distinction, the MST-
based methods are sensitive to noise and misregistration with large decomposition level
settings, while the SR-based methods with overlapping patch-wise modes are robust for
misregistration, which guarantees the accuracy of the spatial location of tissues. Therefore,
a wide range of research on SR-based medical image fusion has been conducted in recent
years [29–31].

However, there are still drawbacks to these SR-based methods. Firstly, they may
be insufficient to handle fine details due to an over-complete dictionary, and this highly
redundant dictionary will lead to visual artifacts in the fused result [32]. Secondly, the
dictionary atoms are updated in column vector form, resulting in the loss of correlation
and structural information. In addition to the drawbacks of SR itself, the fusion weight
accuracy will inevitably be reduced with an unreasonable fusion strategy of coefficients.
One issue relates to the activity level measure, which helps to recognize distinct features in
the fusion process, and another issue concentrates on the integration of coefficients into the
counterparts of the fused image. For the former issue, the l1-norm mode is a conventional
solution to describe the detailed information contained in sparse vectors [33]; however, the
solution is insufficient to express the sparse saliency well, since detailed information that
characterizes the activity level with the same weight cannot be highlighted. Furthermore,
as SR is an approximate technique, it tends to fail to reflect the salient features of sparse
coefficient maps accurately with a single measurement of the activity level, thereby further
leading to the loss of detailed information. For this issue, it may reduce the contrast of the
fused image with the weighted averaging rule, and the maximum absolute rule enables the
fused image to absorb the main visual information of source images at the cost of minor
information loss.

Based on the above discussion, we adopted a promising signal decomposition model,
known as Kronecker-criterion-based SR [34], to solve the medical image fusion problem.
The main contributions of this work are illustrated as follows:

(a) Kronecker-criterion-based SR, with a designed activity level measure integrating the
salient features of multiple domains, will effectively reduce the loss of structural
detailed information in the fusion process.

(b) Inspired by the formation process of the vision system, the spatial saliency by textu-
ral contrast consists of luminance and orientation contrasts that can promote more
highlighted textural information in order to participate in the fusion process.

(c) Compared with the l1-norm-based activity level measure in sparse vectors, the
transform saliency by the sum of sparse salient features can highlight more coef-
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ficients to measure the composite activity level through the sum of differences in the
adjacent areas.

The rest of this paper is organized as follows: Section 2 provides a brief descrip-
tion of conventional sparse representation theory and the Kronecker-criterion-based SR,
i.e., the separable dictionary learning algorithm. The detailed fusion scheme is described
in Section 3. The experimental results and a discussion are given in Section 4. Finally,
Section 5 concludes the paper.

2. Related Work
2.1. SR-Based Image Fusion

SR reflects the sparsity of natural signals with minimal sparse coefficients, and this
is consistent with the principle of HVS [35]. Given y ∈ Rm in the vector mode of signal
sample Y ∈ R

√
m×
√

m and an over-complete dictionary D ∈ Rm×n (m < n), the objective
function of dictionary learning consisting of the fidelity term and penalty term is defined as

argmin
D,α

1
2
‖y− Dα‖2

2 + λR(α) (1)

where α represents the sparse vector, ‖•‖2
2 represents the l2-norm, and λ represents the

regularization parameter of the penalty term R(α). SR can be roughly divided into
two categories, the greedy scheme (e.g., matching pursuit (MP) [36] and orthogonal
matching pursuit (OMP) [37]) with R(α) = ‖α‖0 and the convex optimization scheme
(e.g., alternating direction method of multipliers (ADMM) [38]) with R(α) = ‖α‖1. The
extremely high complexity inhibits the practicality of the convex optimization scheme,
while the greedy scheme has superiority in this regard.

In the process of conventional SR-based image fusion, its ability to handle fine details
with an over-complete dictionary may be insufficient, since atoms (i.e., vectors) of the pre-
trained over-complete dictionary are updated one-by-one with either the method of optimal
directions (MOD) or k-singular value decomposition (K-SVD). This can be understood as
extracting image textural information from only a one-dimensional direction; this breaks the
potential correlations within the image, thus causing the obtained pre-trained dictionary to
become unstructured. Meanwhile, the highly redundant dictionary is sensitive to random
noise and may cause visual artifacts to appear. Therefore, there is a deviation between the
source and fused images to some extent.

2.2. Separable Dictionary Learning Algorithm

To overcome the aforementioned deficiencies of SR for image fusion, the Kronecker-
criterion-based separable structure has received significant attention [34]. On the premise
of ensuring the quality of image reconstruction, the penalty in l0-norm with R(α) = ‖α‖0
and the corresponding objective function of separable dictionary learning [39] is defined as

arg min
DA ,S,DB

‖S‖0 such that DASDT
B = Y, S ∈ Rn×n (2)

where S represents a sparse matrix. As the cross-product of the over-complete dictionary
D, the sub-dictionaries DA ∈ R

√
m×n and DB ∈ R

√
m×n were obtained by the Kronecher

product criterion. For simplicity, we set both sub-dictionaries to the same size.
The steps of the separable dictionary-learning algorithm include sparse coding and

dictionary update. The dictionary optimization problems were found using the extensional
two-dimensional OMP (2D-OMP) greedy algorithm and the ASeDiL (analytic separable
dictionary learning) algorithm to obtain the sparse coefficients and the pre-trained sub-
dictionaries {DA, DB}, respectively, using the method described by [40]. The dictionary
pre-training model is shown in Figure 1.
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The process of sparse coding consists of a four-step iterative loop, including the
determination of the most relevant dictionary atom, updates to the support set, updates to
the sparse matrix S, and refactoring residual updates. To obtain the sparsest representation
under the current dictionary, the objective function of sparse coding is expressed as

argmin
S
‖S‖0 such that ‖DASDT

B −Y‖2
2 < ε (3)

where ε represents the tolerance of reconstruction error, and when ‖DASjDT
B −Yj‖

2
F > ε,

the condition of iterations is terminated.
Combining the constraints with the l2-norm of the dictionary atoms equaling 1, and

with no correlation of atoms in the dictionary, the log function was employed to fit the full
rank and the column irrelevance of sub-dictionaries. Then, the objective function of the
dictionary update was written as

arg min
DA ,DB

‖DASDT
B −Y‖2

2 + ω[p(DA) + p(DB)] + ψ[h(DA) + h(DB)] (4)

where ω and ψ represent the fitting parameters, and h(DA), p(DA), h(DB), p(DB) are
defined as

h(DA) = −
1

m log(m)
log det(

1
n

DADT
A), p(DA) = − log(1− ((DA)

T(DA))
2
) (5)

h(DB) = −
1

m log(m)
log det(

1
n

DBDT
B), p(DB) = − log(1− ((DB)

T(DB))
2
) (6)

By means of geodesics on the Riemannian manifold, the dictionary update adopted
the conjugate gradient method to correct the most rapid descent direction of the iteration
point of the dictionary update, ensuring the rapid convergence of the cost function, and
improved the efficiency of the dictionary update.

With the aforementioned separable structure, the obtained sparse matrix composed of
correlation coefficients becomes able characterize more textural and structural information.
This can not only increase the dimensions of texture extraction without adding dictionary
redundancy, but also ameliorate the accuracy of texture extraction with effective noise
suppression performance. Through the above separable dictionary learning algorithm,
the pre-trained sub-dictionaries can be obtained. Then, the pre-trained sub-dictionaries
will participate in the subsequent transform saliency measure characterization process to
extract features from the source images.

3. Proposed Fusion Method

The framework of the proposed method is shown in Figure 2. Supposing that there are
K pre-registered source images denoted by Ik, k ∈ {1, 2, . . . , K}, the r-th overlapping image
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patch of the k-th source image Ir
k was obtained through the sliding window technique,

and the corresponding sparse coefficient map Sr
k was learned through the sparse coding

process in the separable dictionary-learning algorithm with the pre-trained sub-dictionaries
{DA, DB}. The proposed SR-based medical image fusion with measurement integrating
spatial saliency and transform saliency consisted of the following two steps:
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Figure 2. Overall framework of the proposed method.

3.1. The Measurement of Activity Level for Fusion
3.1.1. Spatial Saliency by Textural Contrast

In general, the salient area is recognized by the vision system from the retina to the
visual cortex. Some of the early information received by the retina is luminance contrast,
and orientation contrast in the visual cortex is involved in understanding the context at
higher levels. We were inspired to attempt to express spatial saliency by allowing textural
contrast to be defined by luminance contrast and orientation contrast.

First of all, the luminance contrast was defined by considering the distinctiveness
of the intensity attributes between each pixel and the corresponding image patch [41].
To increase the useful dynamic ranges and to suppress high contrast effectively in the
background, the n-th order statistic was applied as

LCr
k(x, y) =

∣∣∣∣∣∣µ̂r
k −

1
M ∑

(x,y)∈Φ′
Ir
k(x, y)

∣∣∣∣∣∣
n

(7)

where µ̂r
k denotes the mean luminance values over the r-th patch in the k-th source im-

age Ir
k , and Φ′ and M represent a 3× 3 neighborhood with pixel (x, y) centered and its

size, respectively.
Along with luminance contrast, the local image structure was captured by orientation

contrast through a weighted structure tensor. It is worth noting that we focused on
weighted gradient information rather than the gradient itself, and this highlights the main
features of the source images. The weighted structure tensor [42] was able to effectively
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summarize the dominant orientation and the energy along this direction based on the
weighted gradient field:

GIr
k
(x, y) =

∑K
k=1

(
ωk(x, y) ∂Ir

k
∂x

)2
∑K

k=1 ω2
k(x, y) ∂Ir

k
∂x

∂Ir
k

∂y

∑K
k=1 ω2

k(x, y) ∂Ir
k

∂x
∂Ir

k
∂y ∑K

k=1

(
ωk(x, y) ∂Ir

k
∂y

)2

 (8)

where ∂Ir
k/∂x and ∂Ir

k/∂y denote the gradients along the x and y directions, respectively, at
the given pixel (x, y). The weight function ωk(x, y) is calculated by

ωk(x, y) =
LSMr

k(x, y)√
∑K

k=1 (LSMr
k(x, y))2

(9)

where LSMr
k(x, y) represents the local salient metric, which reflects the importance of the

pixel (x, y) by computing the sum of intensity around it, and is calculated by

LSMr
k(x, y) = ∑

(x,y)∈Φ′

(∣∣∣∣∂Ir
k(x, y)
∂x

∣∣∣∣+ ∣∣∣∣∂Ir
k(x, y)
∂y

∣∣∣∣) (10)

where |•| denotes the absolute value operator. The local salient metric is sensitive to
the edges and texture while being insensitive to the flat part. To express the local image
structure, the weighted structure tensor as a semi-definite matrix can be decomposed by
eigenvalue decomposition as

GIr
k
= V

(
β2

1
β2

2

)
VT (11)

The orientation contrast related to the eigenvalues of β1 and β2 of this matrix is
calculated as

OCr
k(x, y) =

√
(β1 + β2)

2 + η(β1 − β2)
2 (12)

where η > −1. This parameter can determine the relative emphasis of the orientation
contrast to the corner-like structures effectively.

Since it is assumed that the salient area contains luminance contrast and orientation
contrast, as mentioned, we then attempted to define the texture contrast with two parts:

TCr
k(x, y) = LCr

k(x, y)×OCr
k(x, y) (13)

Here, each part was smoothed by Gaussian filtering, as in [43], and TCr
k was normal-

ized to [0, 255] for gray-scale representation.

3.1.2. Spatial Saliency by Textural Contrast

Compared with the conventional transform-based activity level measure, which uses
the l1-norm to describe the detail information contained in sparse vectors, the SSSF met-
ric [44] is able to highlight more significant coefficients to participate in the composition of
activity level measures through the sum of differences in adjacent areas, which is defined as

SSSFr
k (x, y) =

P

∑
p=−P

Q

∑
q=−Q

[LSSFr
k (x + p, y + q)]2 (14)
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where P and Q determine a sliding window, with the size of the sparse matrix equal to
the r-th patch in the k-th source image Ir

k . The local sparse salient feature (LSSF) metric
represents the sparse saliency diversity of adjacent pixels, and is calculated as

LSSFr
k (x, y) =

√
∑

(m,n)∈Φ
[Sr

k(x, y)− Sr
k(m, n)]2 (15)

where Φ denotes a square window centered with a certain sparse coefficient that corre-
sponds to pixel (x, y) in the source image patch Ir

k .

3.2. Fusion Scheme

Combining the transform saliency and the spatial saliency of the image patch, the
proposed activity level measure was defined as

vr
k(x, y) = SSSFr

k (x, y)× TCr
k(x, y) (16)

where vr
k is the measurement result of the source image patch Ir

k . Then, the maximum
weighted activity level measure was used to achieve the fused coefficient map:

Sr
F(x, y) = Sr

k∗(x, y), k∗ = argmax
k

[vr
k(x, y)] (17)

Then, the fusion result was obtained by sparse reconstruction as

Ir
F = DASr

FDT
B (18)

The final fused image IF was constituted by the overall fused image patches.

4. Experiments
4.1. Experimental Setting
4.1.1. Source Images

In our experiments, three categories of “Acute stroke”, “Hypertensive encephalopa-
thy”, and “Multiple embolic infarctions” from clinical multimodal image pairs in the Whole
Brain Atlas Medical Image (WBAMI) database were used as test images, which can be
downloaded at: http://www.med.harvard.edu/aanlib/home.htm, accessed on 8 June 2023.
The database covers a variety of modal combination types, and it is widely applied for the
verification of medical image fusion performance [22–24]. The spatial resolution was set
to 256× 256 for all test images. To make sure the registration was realized, we took the
feature-based registration algorithm for each pair, i.e., the method of complementary Harris
feature point extraction based on mutual information [45], which has strong robustness
and is able to adapt to various image characteristics and variations.

4.1.2. Objective Evaluation Metrics

Since there are limitations of a single objective metric in terms of reflecting the fusion
result accurately, the six popular objective metrics, namely, the Xydeas–Petrovic index [46],
the structural similarity index QS [47], the universal image quality index QU [48], the
overall image quality index Q0 [48], the weighted fusion quality index QW [49], and the
mutual information index QNMI [50], were adopted to evaluate the fusion performance in
this study. The higher the scores of the above metrics, the better the fusion result of the
corresponding fusion method. A classification of these metrics is shown in Table 1.

http://www.med.harvard.edu/aanlib/home.htm
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Table 1. Classification of different objective assessment metrics.

Category Metric Symbol Description

Textural-feature-preservation-
based metrics

Normalized mutual
information QNMI

It measures the mutual information of a
fused image and source images.

Edge-dependent-sharpness-
based metrics

Normalized weighted
performance index QAB/F

It measures the amount of edge and
orientation information of the fused image
using the Sobel edge detection operator.

Overall image
quality index Q0

It evaluates structural distortions in the
fused image.

Comprehensive-evaluation-
based metrics

Weighted fusion
quality index QW

It values the structural similarity by
addressing the coefficient correlation,
illumination, and contrast.

Structural similarity
index QS

It determines the structural similarity by
taking comparisons of luminance, contrast,
and structure.

Universal image index QU

It is designed by modeling image
distortion as a combination of the loss of
correlation, luminance distortion, and
contrast distortion.

4.1.3. Methods for Comparison

Since it was inspired by the transform-domain-based method [33] to design the activity
level measure and fusion scheme in our method, to carry out a fair and clear compari-
son, the conventional l1-norm-based scheme [33] and the sum of sparse salient features
(SSSF)-based scheme were used to verify the advantages of the proposed activity level
measurement. Meanwhile, in each of the medical image fusion categories, some newly
published representative medical image fusion methods, such as LRD [51], NSST-MSMG-
PCNN [52], and CSMCA [53], were used for comparison with the proposed method. The
competitors adopted the default parameters in the corresponding literature.

4.1.4. Algorithm Parameter Setting

For the proposed method, to obtain the pre-trained sub-dictionaries, we chose
104 patches with sizes of 8 × 8 from different uncorrupted images to be included in the
training dataset. Furthermore, the training patches were normalized with a zero mean and
unit l2-norm, and the initial sub-dictionaries were obtained by the MATLAB function randn
with normalized columns. Following the experimental setup detailed in [40], the spatial
size of the sliding window was set to 8 × 8, the patch-wise step size was set to 1 to keep
the shift invariant of SR, the two Kronecker-criterion-based separable dictionaries were set
to the same size of 8 × 16, and the tolerance of the reconstruction error ε was set to 0.01.

In addition to the above general settings, variable n and variable η were the key
parameters affecting the luminance contrast and the orientation contrast, respectively, and
the parameters set through quantitative experiments are shown in Figure 3. It can be
seen that variable n would affect the luminance contrast and the retention of effective
information in subsequent fusion results. On this basis, we set n = 3 as a compromise. With
an increase in variable η, the texture structure of the source image was clearer, and it was
conducive for extracting orientation contrast information. On this basis, we set η = 0.5.
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4.2. Comparison to Other Fusion Methods

The subjective visual and objective metrics were used to evaluate the proposed method.
The comparison experiment contained three categories of clinical multimodal medical im-
ages, including “Acute stroke”, with 28 pairs of CT/MR-PD and CT/MR-T2; “Hypertensive
encephalopathy”, with 28 pairs of CT/MR-Gad and CT/MR-T2; and “Multiple embolic
infarctions”, with 60 pairs of CT/MR-PD, CT/MR-T1, and CT/MR-T2.

4.2.1. Subjective Visual Evaluation

In the experiments using multimodal medical image fusion, CT and MRI image
fusion were the most common. This is because the information provided by CT and MRI
images can act as a good supplement, while the multimodal combination category can be
expanded to other types of fusion, such as the method used in this paper. Figure 4 shows
the nine randomly selected groups of multimodal-fused medical images in subjective visual
experiments. The first three groups belong to “Acute stroke”, the second three groups
belong to “Hypertensive encephalopathy”, and the last three groups belong to “Multiple
embolic infarctions”. To more intuitively reflect the superiority of the proposed method,
one group showing typical fusion was selected from each of the three WBAMI categories as
an example with which to conduct a detailed analysis on the amplification of representative
regions, as shown in Figures 5–7.

The CT/MR-T2 fusion results and the red box selections of the proposed method and
its competitors are shown in Figure 5. The fusion results of LRD and NSST-MSMG-PCNN
are blurred since artificial interference is unsuppressed (in Figure 5c,d), while CSMCA,
l1-norm, SSSF, and the proposed method, as SR-based methods, are robust to artificial
interference, and the fused edges are more distinct (see in Figure 5e–h). However, the
luminance loss of CSMCA caused a reduction in contrast (see in Figure 5e), and CSMCA,
l1-norm, and SSSF showed partial reductions in detail (see in Figure 5e–g). In contrast,
more details from the source images were extracted via the proposed method, with artificial
interference suppressed effectively (see in Figure 5h).

The CT/MR-T2 fusion results and the red box selections of the proposed method
and its competitors are shown in Figure 6. We can clearly see that the results of LRD and
NSST-MSMG-PCNN were disturbed by noise (see in Figure 6c,d). CSMCA, l1-norm, and
SSSF lost a significant amount of structural information (see in Figure 6e–g). In contrast,
the proposed method performed better in terms of structural integrity and robustness to
artificial interference (see in Figure 6h).

The CT/MR-T2 fusion results and the red box selections of the proposed method and
competitors are shown in Figure 7. It is clear that artifacts appeared when using the LRD
method (see in Figure 7c). NSST-MSMG-PCNN, CSMCA, l1-norm, and SSSF caused losses
of luminance, and all led to partial reductions in detail (see in Figure 7d–g). In contrast,
the proposed method was obviously superior to its competitors in terms of luminance and
detail retention (see in Figure 7h).
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Figure 4. Source images and the corresponding fusion results with nine pairs of CT/MRI images:
(a1,b1) image group 1 (CT and MR-PD); (a2,b2) image group 2 (CT and MR-T2); (a3,b3) image group
3 (CT and MR-T2); (a4,b4) image group 4 (CT and MR-Gad); (a5,b5) image group 5 (CT and MR-T2);
(a6,b6) image group 6 (CT and MR-T2); (a7,b7) image group 7 (CT and MR-T1); (a8,b8) image group
8 (CT and MR-PD); (a9,b9) image group 9 (CT and MR-T2); fused images (c1–c9) of the LRD-based
method; fused images (d1–d9) of the NSST-MSMG-PCNN-based method; fused images (e1–e9) of
the CSMCA-based method; fused images (f1–f9) of the l1-norm-based method; fused images (g1–g9)
of the SSSF-based method; and fused images (h1–h9) using the proposed method.
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Figure 5. The CT/MR-T2 image pair from the “Acute stroke” category and the corresponding
fusion results achieved using different methods: (a,b) represent the CT image and the MR-T2 image,
respectively; (c) is the fusion result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the
fusion result of CSMCA; (f) is the fusion result of l1-norm; (g) is the fusion result of SSSF; and (h) is
the fusion result of the proposed method.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 15 
 

 

are blurred since artificial interference is unsuppressed (in Figure 5c,d), while CSMCA, l1-

norm, SSSF, and the proposed method, as SR-based methods, are robust to artificial inter-

ference, and the fused edges are more distinct (see in Figure 5e–h). However, the lumi-

nance loss of CSMCA caused a reduction in contrast (see in Figure 5e), and CSMCA, l1-

norm, and SSSF showed partial reductions in detail (see in Figure 5e–g). In contrast, more 

details from the source images were extracted via the proposed method, with artificial 

interference suppressed effectively (see in Figure 5h). 

(c) (d)(a) (b)  

(e) (f) (g) (h)  

Figure 5. The CT/MR-T2 image pair from the “Acute stroke” category and the corresponding fusion 

results achieved using different methods: (a,b) represent the CT image and the MR-T2 image, re-

spectively; (c) is the fusion result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the 

fusion result of CSMCA; (f) is the fusion result of l1-norm; (g) is the fusion result of SSSF; and (h) is 

the fusion result of the proposed method. 

The CT/MR-T2 fusion results and the red box selections of the proposed method and 

its competitors are shown in Figure 6. We can clearly see that the results of LRD and NSST-

MSMG-PCNN were disturbed by noise (see in Figure 6c,d). CSMCA, l1-norm, and SSSF 

lost a significant amount of structural information (see in Figure 6e–g). In contrast, the 

proposed method performed better in terms of structural integrity and robustness to arti-

ficial interference (see in Figure 6h). 

The CT/MR-T2 fusion results and the red box selections of the proposed method and 

competitors are shown in Figure 7. It is clear that artifacts appeared when using the LRD 

method (see in Figure 7c). NSST-MSMG-PCNN, CSMCA, l1-norm, and SSSF caused losses 

of luminance, and all led to partial reductions in detail (see in Figure 7d–g). In contrast, 

the proposed method was obviously superior to its competitors in terms of luminance and 

detail retention (see in Figure 7h). 

(c) (d)(a) (b)  

(e) (f) (g) (h)  

Figure 6. The CT/MR-T2 image pair from the “Hypertensive encephalopathy” category and the cor-

responding fusion results with different methods: (a,b) are the CT image and MR-T2 image, respec-

tively; (c) is the fusion result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the fusion 

result of CSMCA; (f) is the fusion result of l1-norm; (g) is the fusion result of SSSF; and (h) is the 

fusion result of the proposed method. 

Figure 6. The CT/MR-T2 image pair from the “Hypertensive encephalopathy” category and the
corresponding fusion results with different methods: (a,b) are the CT image and MR-T2 image,
respectively; (c) is the fusion result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the
fusion result of CSMCA; (f) is the fusion result of l1-norm; (g) is the fusion result of SSSF; and (h) is
the fusion result of the proposed method.
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Figure 7. The CT/MR-T2 image pair from the “Multiple embolic infarctions” category and the
corresponding fusion results with different methods: (a,b) are the CT image and MR-T2 images,
respectively; (c) is the fusion result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the
fusion result of CSMCA; (f) is the fusion result of l1-norm; (g) is the fusion result of SSSF; and (h) is
the fusion result of the proposed method.
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Through these subjective comparison experiments, it was difficult to contain the
completed information for SR-based image fusion with a single measurement of the activity
level, such as the CSMCA, l1-norm, or SSSF. Moreover, the proposed method was not
only able to retain luminance and detail information from the source images, but also
performed better in terms of robustness to artificial interference, keeping the fused edges
more distinct. Therefore, the proposed method offered better subjective visual performance
than the competitors.

4.2.2. Objective Quality Evaluation

Objective quality evaluation is an important approach with which to evaluate fusion
performance. Table 2 reports the objective assessment results of the proposed method
and its competitors. The average scores of all of the test examples from each of the
three WBAMI categories were calculated, and the highest value of each row, shown in
bold, indicates the best fusion performance. It can be seen that the proposed method
performed best in all six metrics in the “Acute stroke” category, which included 28 pairs
of multimodal medical images. In the “Hypertensive encephalopathy” category with
28 pairs of multimodal medical images, except for Q0 ranking second, the other five metrics
of the proposed method were the best. In the “Multiple embolic infarctions” category
with 60 pairs of multimodal medical images, this metric ranked second, and the other
five metrics of the proposed method were the best. On the whole, the average results of the
six metrics of the proposed method were the best in the three clinical category experiments.
Therefore, based on the above subjective analysis and objective evaluation, the proposed
method has considerable advantages over the most recently published methods of LRD,
NSST-MSMG-PCNN, and CSMCA.

Table 2. Objective assessment of different fusion methods.

WBAMI Metric

NSST-

LRD MSMG- CSMCA l1-norm SSSF Proposed

PCNN

Acute stroke
(28 pairs of
CT/MR -PD,
CT/MR-T2)

QAB/F 0.4821 0.5187 0.5513 0.5863 0.5844 0.5880

QS 0.7244 0.6972 0.7254 0.7359 0.7366 0.7418

QU 0.6709 0.4628 0.5862 0.6803 0.6809 0.6866

Q0 0.3008 0.2984 0.3038 0.3271 0.3270 0.3319

QW 0.5633 0.5791 0.5873 0.6035 0.6061 0.6090

QNMI 0.7466 0.6693 0.7097 0.8554 0.8357 0.8827

Hypertensive
encephalopathy
(28 pairs of
CT/MR-Gad,
CT/MR-T2)

QAB/F 0.5062 0.5343 0.5840 0.6242 0.6248 0.6290

QS 0.6974 0.6699 0.7165 0.7144 0.7163 0.7211

QU 0.6283 0.4506 0.5825 0.6395 0.6413 0.6474

Q0 0.3152 0.3051 0.3130 0.3540 0.3563 0.3541

QW 0.5984 0.6254 0.6419 0.6607 0.6671 0.6736

QNMI 0.6883 0.6240 0.6680 0.7091 0.7040 0.7464

Multiple embolic
infarctions
(60 pairs of
CT/MR -PD,
CT/MR-T1,
CT/MR-T2)

QAB/F 0.4584 0.5140 0.5545 0.5850 0.5784 0.5840

QS 0.6893 0.6785 0.7002 0.6939 0.6952 0.7016

QU 0.6146 0.4438 0.6146 0.6331 0.6343 0.6412

Q0 0.3211 0.3158 0.3111 0.3449 0.3458 0.3488

QW 0.5562 0.5851 0.5842 0.5962 0.5977 0.5994

QNMI 0.6951 0.6327 0.6536 0.7204 0.7095 0.7575
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Furthermore, without changing the fusion framework, the ablation experiments were
carried out to verify the universal advantages of the proposed method over the l1-norm- and
SSSF-based schemes, which only considered the transform domain situation of the activity
level measurement. Through the six commonly used fusion metrics, the QNMI metric
of the proposed method had the most obvious advantage over the two experiments in
which ablation was competed. This indicates that the proposed new activity level measure
plays a significant role in the retention of the textural information of the source images.
Furthermore, it is worth noting that the SSSF-based scheme showed slightly significant
superiority over the l1-norm-based scheme in all test examples; this reveals the justification
for using SSSF as a substitute for l1-norm in order to participate in the construction of the
activity level measure in the transform domain.

5. Conclusions

In this study, a multi-modal medical image fusion method with Kronecker-criterion-
based SR was proposed. The main contribution of the proposed method is summarized in
three parts. Firstly, a novel activity level measure integrating spatial saliency and transform
saliency was proposed to represent more abundant textural structure features. Secondly, in-
spired by the formation process of the vision system, the spatial saliency was characterized
by the textural contrast consisting of luminance contrast and orientation contrast to induce
more highlighted textural information to participate in the fusion process. Thirdly, as a
substitution for conventional l1-norm-based sparse saliency, the sum of the sparse salient
features metric characterizes the transform saliency to promote more significant coefficients
and to participate in the composition of the activity level measure. The experimental results
of different clinical medical image categories demonstrated the effectiveness of the pro-
posed method. Extensive experiments have demonstrated the state-of-the-art performance
of the proposed method in terms of visual perception and objective assessment. Taking into
account the influence of computational efficiency, some measures can attempt to obtain
a more compact and adaptive dictionary, such as by taking source images as the training
sample and testing samples simultaneously, and some feature selection rules can be used
to exclude unfeatured image patches.
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